Antitubercular Potential of Novel Isoxazole Encompassed 1, 2, 4- Triazoles: Design, Synthesis, Molecular Docking Study and Evaluation of Antitubercular Activity

Page: [147 - 161] Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

Background: Decaprenylphosphoryl-β-D-ribose epimerase (DprE1), a flavoprotein enzyme engaged in the biosynthesis of decaprenylphosphoryl-β-D-arabinofuranose (DPA), is the only contributor of arabinose residues which is fundamental for the mycobacterium cell wall constituents. DprE1 is an interesting target for antitubercular agent and has been exploring to develop potential chemical entities as antitubercular agents.

Objective: The objective of the study is the development of novel antitubercular agents targeting Mtb Decaprenylphosphoryl-β-D-ribose epimerase (DprE1).

Methods: A series of isoxazole encompassed 1, 2, 4-triazoles were designed based on the antitubercular potential of triazoles and structural features of DprE1 inhibitors. Designed 1, 2, 4- triazoles were synthesized and characterized by spectral studies. The in vitro anti-TB activity of the compounds was screened against Mycobacterium tuberculosis H37Rv strain by Microplate Almar Blue Assay and in vitro cytotoxicity against normal cell lines by MTT assay. Molecular docking study was carried out on DprE1 enzyme to understand designed compounds interactions with amino acid residues at the active site.

Results: Antitubercular activity data revealed that eight compounds (6d, 6e,7d, 7e, 10d, 10e, 11d and 11e) have shown promising antitubercular activity with minimum inhibitory concentration at 1.6μg/mL. Cytotoxicity data of anti-TB active compounds demonstrate good safety profile on normal cell lines.

Conclusion: Eight compounds have shown promising antitubercular activity with good safety profile on normal cell lines. Molecular docking study revealed that the synthesized compounds have shown non-covalent interactions with amino acid residues of DprE1 enzyme.

Keywords: Isoxazole, 1, 2, 4-triazole, Mtb H37Rv strain, MTT assay, DprE1 enzyme, antitubercular activity.

Graphical Abstract

[1]
Rojano, B.; Caminero, J.A.; Hayek, M. Curving tuberculosis: current trends and future needs. Ann. Glob. Health, 2019, 85(1), 1-7.
[http://dx.doi.org/10.5334/aogh.2415] [PMID: 30741506]
[2]
Swindells, S.; Ramchandani, R.; Gupta, A.; Benson, C.A.; Leon-Cruz, J.; Mwelase, N.; Jean Juste, M.A.; Lama, J.R.; Valencia, J.; Omoz-Oarhe, A.; Supparatpinyo, K.; Masheto, G.; Mohapi, L.; da Silva Escada, R.O.; Mawlana, S.; Banda, P.; Severe, P.; Hakim, J.; Kanyama, C.; Langat, D.; Moran, L.; Andersen, J.; Fletcher, C.V.; Nuermberger, E.; Chaisson, R.E. BRIEF TB/A5279 Study Team. One month of rifapentine plus isoniazid to prevent HIV-related tuberculosis. N. Engl. J. Med., 2019, 380(11), 1001-1011.
[http://dx.doi.org/10.1056/NEJMoa1806808] [PMID: 30865794]
[3]
Prasad, R.; Singh, A.; Balasubramanian, V.; Gupta, N. Extensively drug-resistant tuberculosis in India: Current evidence on diagnosis & management. Indian J. Med. Res., 2017, 145(3), 271-293.
[PMID: 28749390]
[4]
Akkerman, O.; Aleksa, A.; Alffenaar, J.W.; Al-Marzouqi, N.H.; Arias-Guillén, M.; Belilovski, E.; Bernal, E.; Boeree, M.J.; Borisov, S.E.; Bruchfeld, J.; Cadiñanos Loidi, J.; Cai, Q.; Caminero, J.A.; Cebrian Gallardo, J.J.; Centis, R.; Codecasa, L.R.; D’Ambrosio, L.; Dalcolmo, M.; Danila, E.; Dara, M.; Davidavičienė, E.; Davies Forsman, L.; De Los Rios Jefe, J.; Denholm, J.; Duarte, R.; Elamin, S.E.; Ferrarese, M.; Filippov, A.; Ganatra, S.; Garcia, A.; García-García, J.M.; Gayoso, R.; Giraldo Montoya, A.M.; Gomez Rosso, R.G.; Gualano, G.; Hoefsloot, W.; Ilievska-Poposka, B.; Jonsson, J.; Khimova, E.; Kuksa, L.; Kunst, H.; Laniado-Laborín, R.; Li, Y.; Magis-Escurra, C.; Manfrin, V.; Manga, S.; Marchese, V.; Martínez Robles, E.; Maryandyshev, A.; Matteelli, A.; Migliori, G.B.; Mullerpattan, J.B.; Munoz-Torrico, M.; Mustafa Hamdan, H.; Nieto Marcos, M.; Noordin, N.M.; Palmero, D.J.; Palmieri, F.; Payen, M.C.; Piubello, A.; Pontali, E.; Pontarelli, A.; Quirós, S.; Rendon, A.; Skrahina, A.; Šmite, A.; Solovic, I.; Sotgiu, G.; Souleymane, M.B.; Spanevello, A.; Stošić, M.; Tadolini, M.; Tiberi, S.; Udwadia, Z.F.; van den Boom, M.; Vescovo, M.; Viggiani, P.; Visca, D.; Zhurkin, D.; Zignol, M. members of the International Study Group on new anti-tuberculosis drugs and adverse events monitoring. Surveillance of adverse events in the treatment of drug-resistant tuberculosis: A global feasibility study. Int. J. Infect. Dis., 2019, 83, 72-76.
[http://dx.doi.org/10.1016/j.ijid.2019.03.036] [PMID: 30953827]
[5]
Dhall, E.; Sain, S.; Jain, S.; Dwivedi, J. Synthesis of Triazole derivatives manifesting antimicrobial and anti-tubercular activities. Mini Rev. Org. Chem., 2018, 15(4), 291-314.
[http://dx.doi.org/10.2174/1570193X15666180108152302]
[6]
Bangalore, P.K.; Vagolu, S.K.; Bollikanda, R.K.; Veeragoni, D.K.; Choudante, P.C.; Misra, S.; Sriram, D.; Sridhar, B.; Kantevari, S. Usnic Acid Enaminone-Coupled 1,2,3-Triazoles as Antibacterial and Antitubercular Agents. J. Nat. Prod., 2020, 83(1), 26-35.
[http://dx.doi.org/10.1021/acs.jnatprod.9b00475] [PMID: 31858800]
[7]
Karabanovich, G.; Dušek, J.; Savková, K.; Pavliš, O.; Pávková, I.; Korábečný, J.; Kučera, T.; Kočová Vlčková, H.; Huszár, S.; Konyariková, Z.; Konečná, K.; Jand’ourek, O.; Stolaříková, J.; Korduláková, J.; Vávrová, K.; Pávek, P.; Klimešová, V.; Hrabálek, A.; Mikušová, K.; Roh, J. Development of 3,5-Dinitrophenyl-Containing 1,2,4-Triazoles and Their Trifluoromethyl Analogues as Highly Efficient Antitubercular Agents Inhibiting Decaprenylphosphoryl-β-d-ribofuranose 2′-Oxidase. J. Med. Chem., 2019, 62(17), 8115-8139.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00912] [PMID: 31393122]
[8]
Shaikh, M.H.; Subhedar, D.D.; Nawale, L.; Sarkar, D.; Khan, F.A.K.; Sangshetti, J.N.; Shingate, B.B. Novel Benzylidenehydrazide-1,2,3-Triazole Conjugates as Antitubercular Agents: Synthesis and Molecular Docking. Mini Rev. Med. Chem., 2019, 19(14), 1178-1194.
[http://dx.doi.org/10.2174/1389557518666180718124858] [PMID: 30019644]
[9]
Zampieri, D.; Cateni, F.; Moneghini, M.; Zacchigna, M.; Laurini, E.; Marson, D.; De Logu, A.; Sanna, A.; Mamolo, M.G. Imidazole and 1,2,4-Triazole-based Derivatives Gifted with Antitubercular Activity: Cytotoxicity and Computational Assessment. Curr. Top. Med. Chem., 2019, 19(8), 620-632.
[http://dx.doi.org/10.2174/1568026619666190227183826] [PMID: 30827247]
[10]
Reddyrajula, R.; Dalimba, U. The bioisosteric modification of pyrazinamide derivatives led to potent antitubercular agents: Synthesis via click approach and molecular docking of pyrazine-1,2,3-triazoles. Bioorg. Med. Chem. Lett., 2020, 30(2), 126846-126852.
[http://dx.doi.org/10.1016/j.bmcl.2019.126846] [PMID: 31839540]
[11]
Naresh Kumar, R.; Jitender Dev, G.; Ravikumar, N.; Krishna Swaroop, D.; Debanjan, B.; Bharath, G.; Narsaiah, B.; Nishant Jain, S.; Gangagni Rao, A. Synthesis of novel triazole/isoxazole functionalized 7-(trifluoromethyl)pyrido[2,3-d]pyrimidine derivatives as promising anticancer and antibacterial agents. Bioorg. Med. Chem. Lett., 2016, 26(12), 2927-2930.
[http://dx.doi.org/10.1016/j.bmcl.2016.04.038] [PMID: 27130357]
[12]
Azzali, E.; Machado, D.; Kaushik, A.; Vacondio, F.; Flisi, S.; Cabassi, C.S.; Lamichhane, G.; Viveiros, M.; Costantino, G.; Pieroni, M. Substituted N-phenyl-5-(2-(phenylamino) thiazol-4-yl) isoxazole-3-carboxamides are valuable antitubercular candidates that evade innate efflux machinery. J. Med. Chem., 2017, 60(16), 7108-7122.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00793] [PMID: 28749666]
[13]
Balaji, N.V. HariBabu, B.; Rao, V.U.; Subbaraju, G.V.; Nagasree, K.P.; Kumar, M.M.K. HariBabu, B.; Rao, V.U.; Subbaraju, G.V.; Nagasree, K.P.; Kumar, M.M. Synthesis, screening and docking analysis of hispolon pyrazoles and isoxazoles as potential antitubercular agents. Curr. Top. Med. Chem., 2019, 19(9), 662-682.
[http://dx.doi.org/10.2174/1568026619666190305124954] [PMID: 30834836]
[14]
Sysak, A.; Obmińska-Mrukowicz, B. Isoxazole ring as a useful scaffold in a search for new therapeutic agents. Eur. J. Med. Chem., 2017, 137, 292-309.
[http://dx.doi.org/10.1016/j.ejmech.2017.06.002] [PMID: 28605676]
[15]
Maddila, S.; Pagadala, R.; Jonnalagadda, B.S. 1,2,4-Triazole: A Review of Synthetic Approaches and the Biological Activity. Lett. Org. Chem., 2013, 10, 693-714.
[http://dx.doi.org/10.2174/157017861010131126115448]
[16]
Keri, R.S.; Patil, S.A.; Budagumpi, S.; Nagaraja, B.M. Triazole: a promising antitubercular agent. Chem. Biol. Drug Des., 2015, 86(4), 410-423.
[http://dx.doi.org/10.1111/cbdd.12527] [PMID: 25643871]
[17]
Al-Soud, Y.A.; Al-Masoudi, N.A. Ferwanah, Ael-R. Synthesis and properties of new substituted 1,2,4-triazoles: potential antitumor agents. Bioorg. Med. Chem., 2003, 11(8), 1701-1708.
[http://dx.doi.org/10.1016/S0968-0896(03)00043-9] [PMID: 12659756]
[18]
Farghaly, T.A.; Abdallah, M.A.; Mahmoud, H.K.; El‐Metwaly, N.; Elaasser, M. Pyrazolo [5, 1‐c][1, 2, 4] triazoles: Antimicrobial, antitumor activities, and computational docking studies. J. Heterocycl. Chem., 2017, 54(5), 2859-2866.
[http://dx.doi.org/10.1002/jhet.2892]
[19]
Witkowski, J.T.; Robins, R.K.; Khare, G.P.; Sidwell, R.W. Synthesis and antiviral activity of 1,2,4-triazole-3-thiocarboxamide and 1,2,4-triazole-3-carboxamidine ribonucleosides. J. Med. Chem., 1973, 16(8), 935-937.
[http://dx.doi.org/10.1021/jm00266a014] [PMID: 4355593]
[20]
Todoulou, O.G.; Papadaki-Valiraki, A.E.; Ikeda, S.; De Clercq, E. Synthesis and antiviral activity of some new 1H-1, 2, 4-triazole derivatives. Eur. J. Med. Chem., 1994, 29(7-8), 611-620.
[http://dx.doi.org/10.1016/0223-5234(94)90152-X]
[21]
Akhtar, T.; Hameed, S.; Al‐Masoudi, N.A.; Khan, K.M. Synthesis and anti‐HIV activity of new chiral 1, 2, 4‐triazoles and 1, 3, 4‐thiadiazoles. Heteroatom Chem., 2007, 18(3), 316-322.
[http://dx.doi.org/10.1002/hc.20282]
[22]
Godhani, D.R.; Jogel, A.A.; Sanghani, A.M.; Mehta, J.P. Synthesis and biological screening of 1, 2, 4-triazole derivatives. Indian J. Chem., 2015, 54B, 556-564.
[23]
Patel, N.B.; Khan, I.H.; Pannecouque, C.; De Clercq, E. Anti-HIV, antimycobacterial and antimicrobial studies of newly synthesized 1, 2, 4-triazole clubbed benzothiazoles. Med. Chem. Res., 2013, 22(3), 1320-1329.
[http://dx.doi.org/10.1007/s00044-012-0129-4]
[24]
Hussain, S.; Kaushik, D.; Sharma, M. Synthesis and biological evaluation of some new 1-substituted-3, 5-dimethyl-4-[(substituted phenyl) diazenyl] pyrazole derivatives. Am-Euras. J. Sci. Res., 2010, 5(4), 257-263.
[25]
Datoussaid, Y.; Othman, A.; Kirsch, G. Synthesis and Antibacterial Activity of some 5, 5′-(1, 4-phenylene)-bis-1, 3, 4-Oxadiazole and bis-1, 2, 4-Triazole Derivatives as Precursors of New S-Nucleosides. S. Afr. J. Chem., 2012, 65(1), 30-35.
[26]
Belkadi, M.; Othman, A.A. Regioselective glycosylation: Synthesis, characterization and biological evaluation of new acyclo C-nucleosides bearing 5-(substituted)-1, 3, 4-oxadiazole-2-thione, 5-(substituted)-4-amino-1, 2, 4-triazole-3-thiol and 5-(substituted)-1, 2, 4-triazole-3-thiones moieties. Trends Appl. Sci. Res., 2011, 6(1), 19-33.
[http://dx.doi.org/10.3923/tasr.2011.19.33]
[27]
Mohan Krishna, K.; Inturi, B.; Pujar, G.V.; Purohit, M.N.; Vijaykumar, G.S. Design, synthesis and 3D-QSAR studies of new diphenylamine containing 1,2,4-triazoles as potential antitubercular agents. Eur. J. Med. Chem., 2014, 84, 516-529.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.051] [PMID: 25055342]
[28]
Shiradkar, M.R.; Murahari, K.K.; Gangadasu, H.R.; Suresh, T.; Kalyan, C.A.; Panchal, D.; Kaur, R.; Burange, P.; Ghogare, J.; Mokale, V.; Raut, M. Synthesis of new S-derivatives of clubbed triazolyl thiazole as anti-Mycobacterium tuberculosis agents. Bioorg. Med. Chem., 2007, 15(12), 3997-4008.
[http://dx.doi.org/10.1016/j.bmc.2007.04.003] [PMID: 17442576]
[29]
Patel, N.B.; Khan, I.H.; Rajani, S.D. Pharmacological evaluation and characterizations of newly synthesized 1,2,4-triazoles. Eur. J. Med. Chem., 2010, 45(9), 4293-4299.
[http://dx.doi.org/10.1016/j.ejmech.2010.06.031] [PMID: 20630629]
[30]
Kaplancikli, Z.A.; Turan-Zitouni, G.; Chevallet, P. Synthesis and antituberculosis activity of new 3-alkylsulfanyl-1,2,4-triazole derivatives. J. Enzyme Inhib. Med. Chem., 2005, 20(2), 179-182.
[http://dx.doi.org/10.1080/14756360500043471] [PMID: 15968822]
[31]
Wolucka, B.A.; McNeil, M.R.; de Hoffmann, E.; Chojnacki, T.; Brennan, P.J. Recognition of the lipid intermediate for arabinogalactan/arabinomannan biosynthesis and its relation to the mode of action of ethambutol on mycobacteria. J. Biol. Chem., 1994, 269(37), 23328-23335.
[PMID: 8083238]
[32]
Brecik, M.; Centárová, I.; Mukherjee, R.; Kolly, G.S.; Huszár, S.; Bobovská, A.; Kilacsková, E.; Mokošová, V.; Svetlíková, Z.; Šarkan, M.; Neres, J.; Korduláková, J.; Cole, S.T.; Mikušová, K. DprE1 is a vulnerable tuberculosis drug target due to its cell wall localization. ACS Chem. Biol., 2015, 10(7), 1631-1636.
[http://dx.doi.org/10.1021/acschembio.5b00237] [PMID: 25906160]
[33]
Makarov, V.; Manina, G.; Mikusova, K.; Möllmann, U.; Ryabova, O.; Saint-Joanis, B.; Dhar, N.; Pasca, M.R.; Buroni, S.; Lucarelli, A.P.; Milano, A.; De Rossi, E.; Belanova, M.; Bobovska, A.; Dianiskova, P.; Kordulakova, J.; Sala, C.; Fullam, E.; Schneider, P.; McKinney, J.D.; Brodin, P.; Christophe, T.; Waddell, S.; Butcher, P.; Albrethsen, J.; Rosenkrands, I.; Brosch, R.; Nandi, V.; Bharath, S.; Gaonkar, S.; Shandil, R.K.; Balasubramanian, V.; Balganesh, T.; Tyagi, S.; Grosset, J.; Riccardi, G.; Cole, S.T. Benzothiazinones kill Mycobacterium tuberculosis by blocking arabinan synthesis. Science, 2009, 324(5928), 801-804.
[http://dx.doi.org/10.1126/science.1171583] [PMID: 19299584]
[34]
Wang, F.; Sambandan, D.; Halder, R.; Wang, J.; Batt, S.M.; Weinrick, B.; Ahmad, I.; Yang, P.; Zhang, Y.; Kim, J.; Hassani, M.; Huszar, S.; Trefzer, C.; Ma, Z.; Kaneko, T.; Mdluli, K.E.; Franzblau, S.; Chatterjee, A.K.; Johnsson, K.; Mikusova, K.; Besra, G.S.; Fütterer, K.; Robbins, S.H.; Barnes, S.W.; Walker, J.R.; Jacobs, W.R., Jr; Schultz, P.G. Identification of a small molecule with activity against drug-resistant and persistent tuberculosis. Proc. Natl. Acad. Sci. USA, 2013, 110(27), E2510-E2517.
[http://dx.doi.org/10.1073/pnas.1309171110] [PMID: 23776209]
[35]
Gawad, J.; Bonde, C. Decaprenyl-phosphoryl-ribose 2′-epimerase (DprE1): challenging target for antitubercular drug discovery. Chem. Cent. J., 2018, 12(1), 72.
[http://dx.doi.org/10.1186/s13065-018-0441-2] [PMID: 29936616]
[36]
Pujar, G.V.; Manohar, K.V.; Udupi, R.H.; Purohit, M.N.; Chandrashekar, M.N.J. Syntheses, antitubercular and antimicrobial activity of some 3-aryl-4-[4′-(2”-6”-diclhoro phenyl) amino] benzyl carboxamido-5-mercapto-1,2,4-triazoles. Indian. Indian J. Heterocycl. Chem., 2006, 16, 69-70.
[37]
Niemczyk, H.J. Ribonucleoside-TRIBOSE U.S. Patent 6,518,254,, 2003.
[38]
Bayrak, H.; Demirbas, A.; Karaoglu, S.A.; Demirbas, N. Synthesis of some new 1,2,4-triazoles, their Mannich and Schiff bases and evaluation of their antimicrobial activities. Eur. J. Med. Chem., 2009, 44(3), 1057-1066.
[http://dx.doi.org/10.1016/j.ejmech.2008.06.019] [PMID: 18676062]
[39]
Gao, C.; Ye, T.H.; Wang, N.Y.; Zeng, X.X.; Zhang, L.D.; Xiong, Y.; You, X.Y.; Xia, Y.; Xu, Y.; Peng, C.T.; Zuo, W.Q.; Wei, Y.; Yu, L.T. Synthesis and structure-activity relationships evaluation of benzothiazinone derivatives as potential anti-tubercular agents. Bioorg. Med. Chem. Lett., 2013, 23(17), 4919-4922.
[http://dx.doi.org/10.1016/j.bmcl.2013.06.069] [PMID: 23886691]
[40]
Reddy, K.R.; Mamatha, R.; Babu, M.S.; Shiva Kumar, K.; Jayaveera, K.N.; Narayanaswamy, G. Synthesis and antimicrobial activities of some triazole, thiadiazole, and oxadiazole substituted coumarins. J. Heterocycl. Chem., 2014, 51(1), 132-137.
[http://dx.doi.org/10.1002/jhet.1745]
[41]
Ryan, C.; Nguyen, B.T.; Sullivan, S.J. Rapid assay for mycobacterial growth and antibiotic susceptibility using gel microdrop encapsulation. J. Clin. Microbiol., 1995, 33(7), 1720-1726.
[http://dx.doi.org/10.1128/JCM.33.7.1720-1726.1995] [PMID: 7665635]
[42]
Leonard, B.; Coronel, J.; Siedner, M.; Grandjean, L.; Caviedes, L.; Navarro, P.; Gilman, R.H.; Moore, D.A.J. Inter- and intra-assay reproducibility of microplate Alamar blue assay results for isoniazid, rifampicin, ethambutol, streptomycin, ciprofloxacin, and capreomycin drug susceptibility testing of Mycobacterium tuberculosis. J. Clin. Microbiol., 2008, 46(10), 3526-3529.
[http://dx.doi.org/10.1128/JCM.02083-07] [PMID: 18701659]
[43]
Coxon, G.D.; Cooper, C.B.; Gillespie, S.H.; McHugh, T.D. Strategies and challenges involved in the discovery of new chemical entities during early-stage tuberculosis drug discovery. J. Infect. Dis., 2012, 205(2)(Suppl. 2), S258-S264.
[http://dx.doi.org/10.1093/infdis/jis191] [PMID: 22448016]
[44]
Chang, C.; Zhu, Y.Q.; Mei, J.J.; Liu, S.Q.; Luo, J. Involvement of mitochondrial pathway in NCTD-induced cytotoxicity in human hepG2 cells. J. Exp. Clin. Cancer Res., 2010, 29(1), 145-154.
[http://dx.doi.org/10.1186/1756-9966-29-145] [PMID: 21059274]
[45]
Inturi, B.; Pujar, G.V.; Purohit, M.N.; Iyer, V.B.; Sowmya, G.S.; Kulkarni, M. Design, synthesis and evaluation of diphenyl ether analogues as antitubercular agents. RSC Advances, 2016, 6(112)110571
[http://dx.doi.org/10.1039/C6RA19821J]
[46]
Bhutani, I.; Loharch, S.; Gupta, P.; Madathil, R.; Parkesh, R. Structure, dynamics, and interaction of Mycobacterium tuberculosis (Mtb) DprE1 and DprE2 examined by molecular modeling, simulation, and electrostatic studies. PLoS One, 2015, 10(3)e0119771
[http://dx.doi.org/10.1371/journal.pone.0119771] [PMID: 25789990]
[47]
Chikhale, R.V.; Barmade, M.A.; Murumkar, P.R.; Yadav, M.R. Overview of the development of DprE1 inhibitors for combating the menace of tuberculosis. J. Med. Chem., 2018, 61(19), 8563-8593.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00281] [PMID: 29851474]