Updates on the Pharmacology of Chloroquine against Coronavirus Disease 2019 (COVID-19): A Perspective on its Use in the General and Geriatric Population

Page: [534 - 540] Pages: 7

  • * (Excluding Mailing and Handling)

Abstract

Background: Chloroquine has been used to treat malaria for more than 70 years. Its safety profile and cost-effectiveness are well-documented. Scientists have found that chloroquine has in vitro activity against novel coronavirus (SARS-CoV-2). Currently, chloroquine has been adopted in the Protocol for Managing Coronavirus Disease 2019 (COVID-19) (Version 7) issued by the China National Health Commission for clinically managing COVID-19.

Objective: This review will focus on the antiviral mechanism, effectiveness and safety, dosage and DDIs of chloroquine, for the purpose of providing evidence-based support for rational use of chloroquine in the treatment of COVID-19.

Methods: Use the search terms "chloroquine" linked with "effectiveness", "safety", "mechanism", "drug-drug interaction (DDIs)" or other terms respectively to search relevant literature through PubMed.

Results: After searching, we found literature about antivirus mechanism, dosage, DDIs of chloroquine. However, studies on the effectiveness and safety of chloroquine treatment for COVID-19 for the general and geriatric patients are not enough.

Conclusion: According to literature reports, chloroquine has been proven to have anti-SARS-CoV-2 effect in vitro and the potential mechanism of chloroquine in vivo. Pharmacokinetic characteristics and DDIs study are helpful in guiding rational drug use in general and geriatric patients. Although there have been reports of successful clinical application of chloroquine in the treatment COVID-19, more clinical test data are still needed to prove its effectiveness and safety.

Keywords: Coronavirus disease 2019 (COVID-19), chloroquine, pharmacology, SARS-CoV-2, geriatric population, dosage, mechanism.

Graphical Abstract

[1]
Farias, K.J.S.; Machado, P.R.L.; Muniz, J.A.P.C.; Imbeloni, A.A.; da Fonseca, B.A.L. Antiviral activity of chloroquine against dengue virus type 2 replication in Aotus monkeys. Viral Immunol., 2015, 28(3), 161-169.
[http://dx.doi.org/10.1089/vim.2014.0090 ] [PMID: 25664975]
[2]
Tan, Y.W.; Yam, W.K.; Sun, J.; Chu, J.J.H. An evaluation of Chloroquine as a broad-acting antiviral against Hand, Foot and Mouth Disease. Antiviral Res., 2018, 149, 143-149.
[http://dx.doi.org/10.1016/j.antiviral.2017.11.017 ] [PMID: 29175128]
[3]
Li, C.; Zhu, X.; Ji, X.; Quanquin, N.; Deng, Y.Q.; Tian, M.; Aliyari, R.; Zuo, X.; Yuan, L.; Afridi, S.K.; Li, X.F.; Jung, J.U.; Nielsen-Saines, K.; Qin, F.X.F.; Qin, C.F.; Xu, Z.; Cheng, G. Chloroquine, a FDA-approved Drug, Prevents Zika Virus Infection and its Associated Congenital Microcephaly in Mice. EBioMedicine, 2017, 24, 189-194.
[http://dx.doi.org/10.1016/j.ebiom.2017.09.034 ] [PMID: 29033372]
[4]
Ooi, E.E.; Chew, J.S.W.; Loh, J.P.; Chua, R.C. In vitro inhibition of human influenza A virus replication by chloroquine. Virol. J., 2006, 3, 39.
[http://dx.doi.org/10.1186/1743-422X-3-39 ] [PMID: 16729896]
[5]
Shibata, M.; Aoki, H.; Tsurumi, T.; Sugiura, Y.; Nishiyama, Y.; Suzuki, S.; Maeno, K. Mechanism of uncoating of influenza B virus in MDCK cells: action of chloroquine. J. Gen. Virol., 1983, 64(Pt 5), 1149-1156.
[http://dx.doi.org/10.1099/0022-1317-64-5-1149 ] [PMID: 6842189]
[6]
Wang, M.; Cao, R.; Zhang, L.; Yang, X.; Liu, J.; Xu, M.; Shi, Z.; Hu, Z.; Zhong, W.; Xiao, G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res., 2020, 30(3), 269-271.
[http://dx.doi.org/10.1038/s41422-020-0282-0 ] [PMID: 32020029]
[7]
Keyaerts, E.; Vijgen, L.; Maes, P.; Neyts, J.; Van Ranst, M. In vitro inhibition of severe acute respiratory syndrome coronavirus by chloroquine. Biochem. Biophys. Res. Commun., 2004, 323(1), 264-268.
[http://dx.doi.org/10.1016/j.bbrc.2004.08.085 ] [PMID: 15351731]
[8]
Yao, X. Ye, F.; Zhang, M.; Cui, C.; Huang, B.; Niu, P.; Liu, X.; Zhao, L.; Dong, E.; Song, C.; Zhan, S.; Lu, R.; Li, H.; Tan, W.; Liu, D. In Vitro Antiviral Activity and Projection of Optimized Dosing Design of Hydroxychloroquine for the Treatment of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Clin. Infect. Dis., 2020, ciaa237.
[http://dx.doi.org/10.1093/cid/ciaa237] [PMID: 32150618]
[9]
Li, W.; Moore, M.J.; Vasilieva, N.; Sui, J.; Wong, S.K.; Berne, M.A.; Somasundaran, M.; Sullivan, J.L.; Luzuriaga, K.; Greenough, T.C.; Choe, H.; Farzan, M. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature, 2003, 426(6965), 450-454.
[http://dx.doi.org/10.1038/nature02145 ] [PMID: 14647384]
[10]
Wang, P.H.; Cheng, Y. Increasing host cellular receptor angiotensin converting enzyme 2 (ACE2) expression by coronavirus may facilitate 2019-nCoV infection. bioRxiv, 2020; Available from:. https://www.biorxiv.org/content/10.1101/2020.02.24.963348v1
[http://dx.doi.org/10.1101/2020.02.24.963348]
[11]
Li, R.; Qiao, S.; Zhang, G. Analysis of angiotensin-converting enzyme 2 (ACE2) from different species sheds some light on cross-species receptor usage of a novel coronavirus 2019-nCoV. J. Infect., 2020, 80(4), 469-496.
[http://dx.doi.org/10.1016/j.jinf.2020.02.013 ] [PMID: 32092392]
[12]
Xu, X.; Chen, P.; Wang, J.; Feng, J.; Zhou, H.; Li, X.; Zhong, W.; Hao, P. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Sci. China Life Sci., 2020, 63(3), 457-460.
[http://dx.doi.org/10.1007/s11427-020-1637-5 ] [PMID: 32009228]
[13]
Vincent, M.J.; Bergeron, E.; Benjannet, S.; Erickson, B.R.; Rollin, P.E.; Ksiazek, T.G.; Seidah, N.G.; Nichol, S.T. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol. J., 2005, 2, 69.
[http://dx.doi.org/10.1186/1743-422X-2-69 ] [PMID: 16115318]
[14]
Kwiek, J.J.; Haystead, T.A.J.; Rudolph, J. Kinetic mechanism of quinone oxidoreductase 2 and its inhibition by the antimalarial quinolines. Biochemistry, 2004, 43(15), 4538-4547.
[http://dx.doi.org/10.1021/bi035923w ] [PMID: 15078100]
[15]
Klumperman, J.; Locker, J.K.; Meijer, A.; Horzinek, M.C.; Geuze, H.J.; Rottier, P.J. Coronavirus M proteins accumulate in the Golgi complex beyond the site of virion budding. J. Virol., 1994, 68(10), 6523-6534.
[http://dx.doi.org/10.1128/JVI.68.10.6523-6534.1994 ] [PMID: 8083990]
[16]
Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; Cheng, Z.; Yu, T.; Xia, J.; Wei, Y.; Wu, W.; Xie, X.; Yin, W.; Li, H.; Liu, M.; Xiao, Y.; Gao, H.; Guo, L.; Xie, J.; Wang, G.; Jiang, R.; Gao, Z.; Jin, Q.; Wang, J.; Cao, B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020, 395(10223), 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5 ] [PMID: 31986264]
[17]
Chen, L.; Liu, H.G.; Liu, W.; Liu, J.; Liu, K.; Shang, J.; Deng, Y.; Wei, S. Analysis of clinical features of 29 patients with 2019 novel coronavirus pneumonia. Zhonghua Jie He He Hu Xi Za Zhi, 2020, 43, E005
[18]
Devaux, C.A.; Rolain, J.M.; Colson, P.; Raoult, D. New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19? Int. J. Antimicrob. Agents, 2020, 55(5), 105938
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105938 ] [PMID: 32171740]
[19]
Embi, M.N.; Ganesan, N.; Sidek, H.M. Is GSK3β a molecular target of chloroquine treatment against COVID-19? Drug Discov. Ther., 2020, 14(2), 107-108.
[http://dx.doi.org/10.5582/ddt.2020.03010 ] [PMID: 32321878]
[20]
Diaz, J.H. Hypothesis: angiotensin - converting enzyme inhibitors and angiotensin receptor blockers may increase the risk of severe COVID- 19. J. Travel. Med., 2020, 27(3), taaa041.
[21]
Meng, J.; Xiao, G.; Zhang, J.; He, X.; Ou, M.; Bi, J.; Yang, R.; Di, W.; Wang, Z.; Li, Z.; Gao, H.; Liu, L.; Zhang, G. Renin-angiotensin system inhibitors improve the clinical outcomes of COVID-19 patients with hypertension. Emerg. Microbes Infect., 2020, 9(1), 757-760.
[http://dx.doi.org/10.1080/22221751.2020.1746200 ] [PMID: 32228222]
[22]
Patel, A.B.; Verma, A. COVID-19 and angiotensin-converting enzyme inhibitors and angiotensin receptor blockers: what is the evidence? JAMA, 2020, 323(18), 1769-1770.
[http://dx.doi.org/10.1001/jama.2020.4812 ] [PMID: 32208485]
[23]
Huang, Z.; Cao, J.; Yao, Y.; Jin, X.; Luo, Z.; Xue, Y.; Zhu, C.; Song, Y.; Wang, Y.; Zou, Y.; Qian, J.; Yu, K.; Gong, H.; Ge, J. The effect of RAS blockers on the clinical characteristics of COVID-19 patients with hypertension. Ann. Transl. Med., 2020, 8(7), 430.
[http://dx.doi.org/10.21037/atm.2020.03.229 ] [PMID: 32395474]
[24]
Chinese Clinical Trial Registry: chloroquine. Available from:. http://www.chictr.org.cn/index.aspx
[25]
Gao, J.; Tian, Z.; Yang, X. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci. Trends, 2020, 14(1), 72-73.
[http://dx.doi.org/10.5582/bst.2020.01047 ] [PMID: 32074550]
[26]
Touret, F.; de Lamballerie, X. Of chloroquine and COVID-19. Antiviral Res., 2020, 177, 104762
[http://dx.doi.org/10.1016/j.antiviral.2020.104762 ] [PMID: 32147496]
[27]
Gendrot, M.; Javelle, E.; Clerc, A.; Savini, H.; Pradines, B. Chloroquine as a prophylactic agent against COVID-19? Int. J. Antimicrob. Agents, 2020., 105980
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105980 ] [PMID: 32294495]
[28]
Frisk-Holmberg, M.; Bergkvist, Y.; Domeij-Nyberg, B.; Hellström, L.; Jansson, F. Chloroquine serum concentration and side effects: evidence for dose-dependent kinetics. Clin. Pharmacol. Ther., 1979, 25(3), 345-350.
[http://dx.doi.org/10.1002/cpt1979253345 ] [PMID: 310749]
[29]
Pereira, D.; Daher, A.; Zanini, G.; Maia, I.; Fonseca, L.; Pitta, L.; Ruffato, R.; Marchesini, P.; Fontes, C.J. Safety, efficacy and pharmacokinetic evaluations of a new coated chloroquine tablet in a single-arm open-label non-comparative trial in Brazil: a step towards a user-friendly malaria vivax treatment. Malar. J., 2016, 15, 477.
[http://dx.doi.org/10.1186/s12936-016-1530-0 ] [PMID: 27639847]
[30]
Lentini, G.; Cavalluzzi, M.M.; Habtemariam, S. COVID-19, Chloroquine Repurposing, and Cardiac Safety Concern: chirality Might Help. Molecules, 2020, 25(8), E1834
[http://dx.doi.org/10.3390/molecules25081834 ] [PMID: 32316270]
[31]
van den Broek, M.P.H.; Möhlmann, J.E.; Abeln, B.G.S.; Liebregts, M.; van Dijk, V.F.; van de Garde, E.M.W. Chloroquine-induced QTc prolongation in COVID-19 patients. Neth. Heart J., 2020, 29, 1-4.
[PMID: 32350818]
[32]
Borba, M.G.S.; Val, F.F.A.; Sampaio, V.S.; Alexandre, M.A.A.; Melo, G.C.; Brito, M.; Mourão, M.P.G.; Brito-Sousa, J.D.; Baía-da-Silva, D.; Guerra, M.V.F.; Hajjar, L.A.; Pinto, R.C.; Balieiro, A.A.S.; Pacheco, A.G.F.; Santos, J.D.O.J.; Naveca, F.G.; Xavier, M.S.; Siqueira, A.M.; Schwarzbold, A.; Croda, J.; Nogueira, M.L.; Romero, G.A.S.; Bassat, Q.; Fontes, C.J.; Albuquerque, B.C.; Daniel-Ribeiro, C.T.; Monteiro, W.M.; Lacerda, M.V.G. CloroCovid-19 Team. Effect of high vs low doses of chloroquine diphosphate as adjunctive therapy for patients hospitalized with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection a randomized clinical trial. JAMA Netw. Open , 2020.3e208857
[http://dx.doi.org/10.1001/jamanetworkopen.2020.]
[33]
Juurlink, D.N. Safety considerations with chloroquine, hydroxychloroquine and azithromycin in the management of SARS-CoV-2 infection. CMAJ, 2020, 192(17), E450-E453.
[http://dx.doi.org/10.1503/cmaj.200528 ] [PMID: 32269021] [http://dx.doi.org/10.1001/jamanetworkopen.2020.8857]
[34]
U.S. Food and Drug Administration/Drugs@FDA: FDA-Approved Drugs/New Drug Application (NDA): FDA ARALEN: Chloroquine Phosphate label. Available from:. https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/006002s045lbl.pdf
[35]
Pereira, B.B. Challenges and cares to promote rational use of chloroquine and hydroxychloroquine in the management of coronavirus disease 2019 (COVID-19) pandemic: a timely review. J. Toxicol. Environ. Health B Crit. Rev., 2020, 23(4), 177-181.
[http://dx.doi.org/10.1080/10937404.2020.1752340 ] [PMID: 32281481]
[36]
Gbinigie, K.; Frie, K. Should chloroquine and hydroxychloroquine be used to treat COVID-19? A rapid review; BJGP Open, 2020, 4(2), bjgpopen20X101069.
[37]
Projean, D.; Baune, B.; Farinotti, R.; Flinois, J.P.; Beaune, P.; Taburet, A.M.; Ducharme, J. In vitro metabolism of chloroquine: identification of CYP2C8, CYP3A4, and CYP2D6 as the main isoforms catalyzing N-desethylchloroquine formation. Drug Metab. Dispos., 2003, 31(6), 748-754.
[http://dx.doi.org/10.1124/dmd.31.6.748 ] [PMID: 12756207]
[38]
Ducharme, J.; Farinotti, R. Clinical pharmacokinetics and metabolism of chloroquine. Focus on recent advancements. Clin. Pharmacokinet., 1996, 31(4), 257-274.
[http://dx.doi.org/10.2165/00003088-199631040-00003 ] [PMID: 8896943]
[39]
National Health Commission of the People’s Republic of China. Home/latest information/comprehensive management/public health and medical management/dynamic: Coronavirus Disease 2019 (COVID-19) Therapy (7th Edition). 2019.Available from:. http://www.nhc.gov.cn/yzygj/s7652m/202003/a31191442e29474b98bfed5579d5af95.shtml
[40]
Soma-Pillay, P.; Nelson-Piercy, C.; Tolppanen, H.; Mebazaa, A.; Tolppanen, H.; Mebazaa, A. Physiological changes in pregnancy. Cardiovasc. J. Afr., 2016, 27(2), 89-94.
[http://dx.doi.org/10.5830/CVJA-2016-021 ] [PMID: 27213856]
[41]
Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; Guan, L.; Wei, Y.; Li, H.; Wu, X.; Xu, J.; Tu, S.; Zhang, Y.; Chen, H.; Cao, B. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet, 2020, 395(10229), 1054-1062.
[http://dx.doi.org/10.1016/S0140-6736(20)30566-3 ] [PMID: 32171076]
[42]
Yu, P.; Qi, F.; Xu, Y.; Li, F.; Liu, P.; Liu, J.; Bao, L.; Deng, W.; Gao, H.; Xiang, Z.; Xiao, C.; Lv, Q.; Gong, S.; Liu, J.; Song, Z.; Qu, Y.; Xue, J.; Wei, Q.; Liu, M.; Wang, G.; Wang, S.; Yu, H.; Liu, X.; Huang, B.; Wang, W.; Zhao, L.; Wang, H.; Ye, F.; Zhou, W.; Zhen, W.; Han, J.; Wu, G.; Jin, Q.; Wang, J.; Tan, W.; Qin, C. Age-related rhesus macaque models of COVID-19. Animal Model Exp Med, 2020, 3(1), 93-97.
[http://dx.doi.org/10.1002/ame2.12108 ] [PMID: 32318665]
[43]
Woodhouse, K.W.; Wynne, H.A. Age-related changes in liver size and hepatic blood flow. The influence on drug metabolism in the elderly. Clin. Pharmacokinet., 1988, 15(5), 287-294.
[http://dx.doi.org/10.2165/00003088-198815050-00002 ] [PMID: 3203484]
[44]
Mangoni, A.A.; Jackson, S.H.D. Age-related changes in pharmacokinetics and pharmacodynamics: basic principles and practical applications. Br. J. Clin. Pharmacol., 2004, 57(1), 6-14.
[http://dx.doi.org/10.1046/j.1365-2125.2003.02007.x ] [PMID: 14678335]
[45]
Gerosa, M.; Schioppo, T.; Meroni, P.L. Challenges and treatment options for rheumatoid arthritis during pregnancy. Expert Opin. Pharmacother., 2016, 17(11), 1539-1547.
[http://dx.doi.org/10.1080/14656566.2016.1197204 ] [PMID: 27283340]
[46]
Masimirembwa, C.M.; Naik, Y.S.; Hasler, J.A. The effect of chloroquine on the pharmacokinetics and metabolism of praziquantel in rats and in humans. Biopharm. Drug Dispos., 1994, 15(1), 33-43.
[http://dx.doi.org/10.1002/bdd.2510150103 ] [PMID: 8161714]
[47]
Blazar, B.R.; Whitley, C.B.; Kitabchi, A.E.; Tsai, M.Y.; Santiago, J.; White, N.; Stentz, F.B.; Brown, D.M. In vivo chloroquine-induced inhibition of insulin degradation in a diabetic patient with severe insulin resistance. Diabetes, 1984, 33, 1133.
[48]
Alisky, J.M.; Chertkova, E.L.; Iczkowski, K.A. Drug interactions and pharmacogenetic reactions are the basis for chloroquine and mefloquine-induced psychosis. Med. Hypotheses, 2006, 67(5), 1090-1094.
[http://dx.doi.org/10.1016/j.mehy.2006.01.059 ] [PMID: 16843615]
[49]
Toimela, T.; Salminen, L.; Tähti, H. Effects of tamoxifen, toremifene and chloroquine on the lysosomal enzymes in cultured retinal pigment epithelial cells. Pharmacol. Toxicol., 1998, 83(6), 246-251.
[http://dx.doi.org/10.1111/j.1600-0773.1998.tb01477.x ] [PMID: 9868742]