Current Pharmaceutical Analysis

Author(s): Ilma Nugrahani*

DOI: 10.2174/1573412916999200711150729

Sustainable Pharmaceutical Preparation Methods and Solid-state Analysis Supporting Green Pharmacy

Page: [969 - 982] Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

Every "entity" or compound has physical and chemical properties as references for the synthesis and determination of the entity's structure. Thermodynamically, solid-state is the most stable matter in the universe and to be the ideal form in structure elucidation of pharmaceutical. The dry treatments, such as mechanochemistry, microwave heating, and the using of deep eutectic agent are becoming popular. These techniques are viewed as futuristic methods for reducing environmental damage, in line with "green pharmacy" concept. On the other hand, solid-state analysis methods from the simplest to the most sophisticated one have been used in the long decades, but most are for qualitative purposes. Recently many reports have proven that solid-state analysis instruments are reliable and prospective for implementing in the quantitative measurement. Infrared spectroscopy, powder x-ray diffraction, and differential scanning calorimetry have been employed in various kinetics and content determination studies. A revolutionary method developed for structural elucidation is single-crystal diffraction, which is capable of rapidly and accurately determining a three-dimensional chemical structure. Hereby it is shown that the accurate, precise, economic, ease, rapid-speed, and reliability of solidstate analysis methods are eco-benefits by reducing the reagent, catalyst, and organic solvent.

Keywords: Solid-state analysis, vibrational spectrometry, thermal analysis, x-ray diffraction, green pharmacy, HPLC.

Graphical Abstract

[1]
Fujii, K.; Toyota, K.; Sekine, A.; Uekusa, H.; Nugrahani, I.; Asyarie, S.; Soewandhi, N.S.; Ibrahim, S. Potassium clavulanate. Acta Crystallogr. Sect. E Struct. Rep. Online, 2010, 66(Pt 8), m985-m986.
[http://dx.doi.org/10.1107/S1600536810027984] [PMID: 21588207]
[2]
Li, J.; Sun, J. Application of X-ray diffraction and electron crystallography for solving complex structure problems. Acc. Chem. Res., 2017, 50(11), 2737-2745.
[http://dx.doi.org/10.1021/acs.accounts.7b00366] [PMID: 29091406]
[3]
Srirambhatla, V.K.; Kraft, A.; Watt, S.; Powell, A.V. Crystal design approaches for the synthesis of paracetamol co-crystals. Cryst. Growth Des., 2012, 12(10), 4870-4879.
[http://dx.doi.org/10.1021/cg300689m]
[4]
Nugrahani, I.; Pertiwi, E.A.; Putra, O.K. Theophylline-Na-Saccharine single crystal isolation for its structure determination. Int. J. Pharm. Pharm. Sci., 2015, 7(12), 15-24.
[5]
Nugrahani, I.; Tjengal, B.; Gusdinar, T.; Horikawa, A.; Uekusa, H. A comprehensive study of a new 1.75 hydrate of ciprofloxacin salicylate: SCXRD structure determination, solid characterization, water stability, solubility, and dissolution study. Crystals (Basel), 2020, 10, 349.
[http://dx.doi.org/10.3390/cryst10050349]
[6]
Zhang, J-P.; Liao, P-Q.; Zhou, H-L.; Lin, R-B.; Chen, X-M. Single-crystal X-ray diffraction studies on structural transformations of porous coordination polymers. Chem. Soc. Rev., 2014, 43(16), 5789-5814.
[http://dx.doi.org/10.1039/C4CS00129J] [PMID: 24971601]
[7]
Nugrahani, I.; Asyarie, S.; Soewandhi, S.N.; Ibrahim, S. The cold contact methods as a simple drug interaction and detecting system. Dyes and Drugs: New Uses and Implications, Trimm, H.H.; Hunter, W., Jr, Eds.; Apple Academic Press: Toronto, New Jersey, 2011, pp. 162-167.
[http://dx.doi.org/10.1201/b13128-12]
[8]
Berry, D.J.; Seaton, C.C.; Clegg, W.; Harrington, R.W.; Coles, S.J.; Horton, P.N.; Hursthouse, M.B.; Storey, R.; Jones, W.; Friščić, T.; Blagden, N. Applying hot-stage microscopy to co-crystal screening: a study of nicotinamide with seven active pharmaceutical ingredients. Cryst. Growth Des., 2008, 8(5), 1697-1712.
[http://dx.doi.org/10.1021/cg800035w]
[9]
Stieger, N.; Aucamp, M.; Zhang, S-W.; De Villiers, M. Hot-stage optical microscopy as an analytical tool to understand solid-state changes in pharmaceutical materials Am. Pharm. Rev., 2012, 15(2)
[10]
Rochow, T.G.; Tucker, P.A. Introduction to Microscopy by Means of Light, Electrons, X Rays, or Acoustics, 2nd ed; Plenum Press: New York, 1994, pp. 239-254.
[http://dx.doi.org/10.1007/978-1-4899-1513-9]
[11]
Ibrahim, A.; Abdullah, M.F.; Sam, S.T. Hydrolysis empty fruit bunch (efb) using green solvent OP Conf. Ser.: Mater. Sci. Eng., 2018, 429, 012059.
[12]
Zainal-Abidin, M.H.; Hayyan, M.; Ngoh, G.C.; Wong, W.F.; Looi, C.Y. Emerging frontiers of deep eutectic solvents in drug discovery and drug delivery systems. J. Control. Release, 2019, 316, 168-195.
[http://dx.doi.org/10.1016/j.jconrel.2019.09.019] [PMID: 31669211]
[13]
Cherukuvada, S.; Nangia, A. Eutectics as improved pharmaceutical materials: design, properties and characterization. Chem. Commun. (Camb.), 2014, 50(8), 906-923.
[http://dx.doi.org/10.1039/C3CC47521B] [PMID: 24322207]
[14]
Mbnous, Y.B.; Hayyan, M.; Wong, W.F.; Hashim, M.A.; Looi, C.Y. Application of deep eutectic solvent in biotechnology and bioengineering-promises and challenges. Biotechnol. Adv., 2017, 36, 105-134.
[http://dx.doi.org/10.1016/j.biotechadv.2016.11.006]
[15]
Jeliński, T.; Przybyłek, M.; Cysewski, P. Natural deep eutectic solvents as agents for improving solubility, stability and delivery of curcumin. Pharm. Res., 2019, 36(8), 116.
[http://dx.doi.org/10.1007/s11095-019-2643-2] [PMID: 31161340]
[16]
Jeliński, T.; Przybyłek, M.; Cysewski, P. Solubility advantage of sulfanilamide and sulfacetamide in natural deep eutectic systems: experimental and theoretical investigations. Drug Dev. Ind. Pharm., 2019, 45(7), 1120-1129.
[http://dx.doi.org/10.1080/03639045.2019.1597104] [PMID: 30883240]
[17]
Paiva, A.; Craveiro, R.; Aroso, I.; Martins, M.; Reis, R.L.; Duarte, A.R.C. Natural deep eutectic solvents – solvents for the 21st century. ACS Sustain. Chem.& Eng., 2014, 2(5), 1063-1071.
[http://dx.doi.org/10.1021/sc500096j]
[18]
Van Osch, D.J.G.P.; Zubeir, L.F.; van den Bruinhorst, A.; Rocha, M.A.A.; Kroon, M.C. Hydrophobic deep eutectic solvents as water-immiscible extractants. Green Chem., 2015, 17, 4518-4521.
[http://dx.doi.org/10.1039/C5GC01451D]
[19]
Vanda, H.; Dai, Y.; Wilson, E.G.; Verpoorte, R.; Choi, Y.H. Green solvents from ionic liquids and deep eutectic solvents to natural deep eutectic solvents. Chim., 2018, 21, 628-638.
[http://dx.doi.org/10.1016/j.crci.2018.04.002]
[20]
Espino, M.; de los Angeles, F.M.; Gomez, F.J.V.; Silva, M.F. Natural designer solvents for greening analytical chemistry. Trends Analyt. Chem., 2016, 76, 126-136.
[http://dx.doi.org/10.1016/j.trac.2015.11.006]
[21]
Howard, J.L.; Cao, Q.; Browne, D.L. Mechanochemistry as an emerging tool for molecular synthesis: what can it offer? Chem. Sci. (Camb.), 2018, 9(12), 3080-3094.
[http://dx.doi.org/10.1039/C7SC05371A] [PMID: 29780455]
[22]
Shan, N.; Toda, F.; Jones, W. Mechanochemistry and co-crystal formation: effect of solvent on reaction kinetics. Chem. Commun. (Camb.), 2002, 20(20), 2372-2373.
[http://dx.doi.org/10.1039/b207369m] [PMID: 12430446]
[23]
Hasa, D.; Miniussi, E.; Jones, W. Mechanochemical synthesis of multicomponent crystals: one liquid for one polymorph? a myth to dispel. Cryst. Growth Des., 2016, 16, 4582-4588.
[http://dx.doi.org/10.1021/acs.cgd.6b00682]
[24]
Friščić, T.; Childs, S.L.; Rizvi, S.A.A.; Jones, W. The role of solvent in mechanochemical and sonochemical cocrystal formation: a solubility-based approach for predicting cocrystallisation outcome. CrystEngComm, 2009, 11(3), 418-426.
[http://dx.doi.org/10.1039/B815174A]
[25]
Do, J.L.; Mottillo, C.; Tan, D.; Štrukil, V.; Friščić, T. Mechanochemical ruthenium-catalyzed olefin metathesis. J. Am. Chem. Soc., 2015, 137(7), 2476-2479.
[http://dx.doi.org/10.1021/jacs.5b00151] [PMID: 25668586]
[26]
Hammerer, F.; Loots, L.; Do, J.L.; Therien, J.P.D.; Nickels, C.W.; Friščić, T.; Auclair, K. Solvent‐free enzyme activity: quick, high‐yielding mechanoenzymatic hydrolysis of cellulose into glucose. Angew. Chem. Int. Ed. Engl., 2018, 57(10), 2621-2624.
[http://dx.doi.org/10.1002/anie.201711643] [PMID: 29342316]
[27]
Galembeck, F.; Burgo, A.L.; Balestrin, L.B.S.; Gouvenia, R.F.; Silva, C.A.; Falembeck, A. Friction, tribochemistry and triboelectricity: recent progress and perspectives. RSC Advances, 2014, 4(109), 64280-64298.
[http://dx.doi.org/10.1039/C4RA09604E]
[28]
Hoffmann, R.; Woodward, R.B. Conservation of orbital symmetry. Acc. Chem. Res., 1968, 1(1), 17-22.
[http://dx.doi.org/10.1021/ar50001a003]
[29]
Woodward, R.B.; Hoffmann, R. Stereochemistry of electrocyclic reactions. J. Am. Chem. Soc., 1965, 87(2), 395-397.
[http://dx.doi.org/10.1021/ja01080a054]
[30]
Wollenhaupt, M.; Krupička, M.; Marx, D. Should the woodward–hoffmann rules be applied to mechanochemical reactions? ChemPhysChem, 2015, 16(8), 1593-1597.
[http://dx.doi.org/10.1002/cphc.201500054] [PMID: 25689065]
[31]
Hickenboth, C.R.; Moore, J.S.; White, S.R.; Sottos, N.R.; Baudry, J.; Wilson, S.R. Biasing reaction pathways with mechanical force. Nature, 2007, 446(7134), 423-427.
[http://dx.doi.org/10.1038/nature05681] [PMID: 17377579]
[32]
Stevenson, R.; De Bo, G. Controlling reactivity by geometry in retro-diels–alder reactions under tension. J. Am. Chem. Soc., 2017, 139(46), 16768-16771.
[http://dx.doi.org/10.1021/jacs.7b08895] [PMID: 29087705]
[33]
Wang, G.W. Mechanochemical organic synthesis. Chem. Soc. Rev., 2013, 42(18), 7668-7700.
[http://dx.doi.org/10.1039/c3cs35526h] [PMID: 23660585]
[34]
James, S.L.; Adams, C.J.; Bolm, C.; Braga, D.; Collier, P.; Friščić, T.; Grepioni, F.; Harris, K.D.; Hyett, G.; Jones, W.; Krebs, A.; Mack, J.; Maini, L.; Orpen, A.G.; Parkin, I.P.; Shearouse, W.C.; Steed, J.W.; Waddell, D.C. Mechanochemistry: opportunities for new and cleaner synthesis. Chem. Soc. Rev., 2012, 41(1), 413-447.
[http://dx.doi.org/10.1039/C1CS15171A] [PMID: 21892512]
[35]
Kulla, H.; Wilke, M.; Fischer, F.; Röllig, M.; Maierhofer, C.; Emmerling, F. Warming up for mechanosynthesis - temperature development in ball mills during synthesis. Chem. Commun. (Camb.), 2017, 53(10), 1664-1667.
[http://dx.doi.org/10.1039/C6CC08950J] [PMID: 28099549]
[36]
Achar, T.K.; Bose, A.; Mal, P. Mechanochemical synthesis of small organic molecules. Beilstein J. Org. Chem., 2017, 13, 1907-1931.
[http://dx.doi.org/10.3762/bjoc.13.186] [PMID: 29062410]
[37]
Do, J.L.; Friščić, T. Mechanochemistry: a force of synthesis. ACS Cent. Sci., 2017, 3(1), 13-19.
[http://dx.doi.org/10.1021/acscentsci.6b00277] [PMID: 28149948]
[38]
Hernández, J.G.; Bolm, C. Altering product selectivity by mechanochemistry. J. Org. Chem., 2017, 82(8), 4007-4019.
[http://dx.doi.org/10.1021/acs.joc.6b02887] [PMID: 28080050]
[39]
Ravelli, D.; Dondi, D.; Fagnoni, M.; Albini, A. Photocatalysis. A multi-faceted concept for green chemistry. Chem. Soc. Rev., 2009, 38(7), 1999-2011.
[http://dx.doi.org/10.1039/b714786b] [PMID: 19551179]
[40]
Walsh, P.J.; Li, H.; de Parrodi, C.A. A green chemistry approach to asymmetric catalysis: solvent-free and highly concentrated reactions. Chem. Rev., 2007, 107(6), 2503-2545.
[http://dx.doi.org/10.1021/cr0509556] [PMID: 17530908]
[41]
Constable, D.J.C.; Dunn, P.J.; Hayler, J.D.; Humphrey, G.R.; Leazer, J.L., Jr; Linderman, R.J.; Lorenz, K.; Manley, J.; Pearlman, B.A.; Wells, A.; Zaks, A.; Zhang, T.Y. Key green chemistry research areas-a perspective from pharmaceutical manufacturers. Green Chem., 2007, 9(5), 411-420.
[http://dx.doi.org/10.1039/B703488C]
[42]
DeVierno, K.A.; House-Knight, T.; Whitford, J.; Ponnusamy, E.; Miller, P.; Jesse, N.; Rodenborn, R.; Sayag, S.; Gebel, M.; Aped, I.; Sharfstein, I.; Manaster, E.; Ergaz, I.; Harris, A.; Nelowet, G.L. A method for assessing greener alternatives between chemical products following the 12 principles of green chemistry. ACS Sustain. Chem. Eng., 2017, 5, 2927-2935.
[http://dx.doi.org/10.1021/acssuschemeng.6b02399]
[43]
Gedye, R.; Smith, F.; Westaway, K.; Ali, H.; Baldisera, L.; Laberge, L.; Rousell, J. The use of microwave ovens for rapid organic synthesis. Tetrahedron Lett., 1986, 27(3), 279-282.
[http://dx.doi.org/10.1016/S0040-4039(00)83996-9]
[44]
Grewal, A.S.; Kumar, K.; Redhu, S.; Bhardwaj, S. Microwave assisted synthesis: a green chemistry approach. Int. Res. J. Pharm. App. Sci., 2013, 3(5), 278-285.
[45]
Polshettiwar, V.; Nadagouda, M.N.; Varma, R.S. Microwave assisted chemistry: A rapid and sustainable route to synthesis of organics and nanomaterials. Aust. J. Chem., 2009, 62, 16-26.
[http://dx.doi.org/10.1071/CH08404]
[46]
Pagire, S.; Korde, R.A.; Deshmukh, S.; Dash, R.C.; Dhumal, A.; Paradkar, A. Microwave assisted synthesis of caffeine/maleic acid co-crystals: the role of the dielectric and physicochemical properties of the solvent. CrystEngComm, 2013, 15, 3705-3710.
[http://dx.doi.org/10.1039/c3ce40292d]
[47]
Nugrahani, I.; Utami, D.; Ayuningtyas, L.; Garmana, N.A.; Oktaviary, R. New preparation method using microwave, kinetics, in vitro dissolution‐diffusion, and anti‐inflammatory study of diclofenac‐ proline co–crystal. ChemistrySelect, 2019, 4(45), 13396-13403.
[http://dx.doi.org/10.1002/slct.201903342]
[48]
Madej, K. Microwave-assisted and cloud-point extraction in determination of drugs and other bioactive compounds. TrAC. Trends Analyt. Chem., 2009, 28(4), 436-446.
[http://dx.doi.org/10.1016/j.trac.2009.02.002]
[49]
Ahuja, D.; Ramisetty, K.A.; Sumanth, K.K.; Crowley, C.M.; Lusi, M.; Rasmuson, A.C. Microwave assisted slurry conversion crystallization for manufacturing of new co-crystals of sulfamethazine and sulfamerazine. CrystEngComm, 2020.
[http://dx.doi.org/10.1039/C9CE01886G]
[50]
Xiao, Y.; Liu, Y.Q.; Li, G.; Huang, P. Microwave-assisted synthesis, structure and properties of a co-crystal compound with 2-ethoxy-6-methyliminomethyl-phenol. Supramol. Chem., 2015, 27, 161-166.
[http://dx.doi.org/10.1080/10610278.2014.918268]
[51]
Lin, H.L.; Zhang, G.C.; Huang, Y.T.; Lin, S.Y. An investigation of indomethacin-nicotinamide cocrystal formation induced by thermal stress in the solid or liquid state. J. Pharm. Sci., 2014, 103(8), 2386-2395.
[http://dx.doi.org/10.1002/jps.24056] [PMID: 24942554]
[52]
Pan, L.; Liu, X.; Suna, Z. SuN C.Q. Nanophotocatalysts via microwave-assisted solution-phase synthesis for efficient photocatalysis. J. Mater. Chem. A Mater. Energy Sustain., 2013, 1, 8299-8326.
[http://dx.doi.org/10.1039/c3ta10981j]
[53]
Oliver Kappe, C. Microwave dielectric heating in synthetic organic chemistry. Chem. Soc. Rev., 2008, 37(6), 1127-1139.
[http://dx.doi.org/10.1039/b803001b] [PMID: 18497926]
[54]
Morschhauser, R.; Krull, M.; Kayser, C.; Boberski, C.; Bierbaum, R. Microwave-assisted continuous flow synthesis on industrial scale. Green Process Synth., 2012, 1, 281-290.
[http://dx.doi.org/10.1515/gps-2012-0032]
[55]
Hsu, S.M.; Zhang, J.; Yin, Z. Microwave mediated synthesis in pharmaceutical chemistry. Tribol. Lett., 2002, 13, 131-139.
[http://dx.doi.org/10.1023/A:1020112901674]
[56]
Díaz-Ortiz, Á.; Prieto, P.; de la Hoz, A. A critical overview on the effect of microwave irradiation in organic synthesis. Chem. Rec., 2019, 19(1), 85-97.
[http://dx.doi.org/10.1002/tcr.201800059] [PMID: 30035361]
[57]
Polowsky, P.J.; Tansman, G.F.; Kindstedt, P.S.; Hughes, J.M. Characterization and identification of surface crystals on smear-ripened cheese by polarized light microscopy. J. Dairy Sci., 2018, 101(9), 7714-7723.
[http://dx.doi.org/10.3168/jds.2018-14712] [PMID: 29970258]
[58]
Nugrahani, I.; Asyarie, S.; Soewandhi, S.N.; Ibrahim, S. Identification of physical interaction between levodopa–benzerazide hydrochloride. Indones. J. Pharm., 2007, 18(2), 475-481.
[59]
Nugrahani, I.; Asyarie, S.; Soewandhi, S.N.; Ibrahim, S. Solid-state interaction between amoxicillin trihydrate and potassium clavulanate. Malays. J. Pharm. Sci., 2007, 5(1), 45-57.
[60]
Nugrahani, I.; Anggraeni, S. Effect of ethanol-water composition on clindamycin hydrochoride pseudopolymorphism. Int. J. Pharma Sci., 2016, 8(11), 269-274.
[61]
Utami, D.; Nugrahani, I.; Ibrahim, S. Formation and characterization of mefenamic acid-nicotinamide cocrystal during co-milling based on x-ray powder diffraction analysis. J. Appl. Pharm. Sci., 2016, 6(10), 75-81.
[http://dx.doi.org/10.7324/JAPS.2016.601010]
[62]
Yuyun, Y.; Nugrahani, I. Study of Physical Interaction Mefenamic Acid Isonicotinamide AIP Conference Proceedings, 2015. 177, p. 100010.
[63]
Utami, D.; Nugrahani, I.; Ibrahim, S. Studies of preparation, characterization, and solubility of mefenamic acid-nicotinamide co-crystal synthesized by using melt crystallization method. Asian J. Pharm. Clin. Res., 2017, 10(5), 135-139.
[http://dx.doi.org/10.22159/ajpcr.2017.v10i5.15863]
[64]
Nugrahani, I.; Kartini, K.A. Study of physical interaction between ibuprofen and caffeine and its influence on solubility and hygroscopicity of ibuprofen. Int. J. Pharm. Pharm. Sci., 2015, 7(11), 223-227.
[65]
Nugrahani, I.; Mussadah, M.V. Development and validation analysis of acyclovir tablet content determination method using FTIR. Int. J. Appl. Pharm., 2016, 8(3), 43-47.
[66]
Nugrahani, I.; Kartini, C. Determination of thiamine HCl (vitamin B1) and pyridoxine HCl (vitamin B6) content in tablet by FTIR. Int. J. Pharm. Pharm. Sci., 2016, 8(10), 257-264.
[http://dx.doi.org/10.22159/ijpps.2016v8i10.14026]
[67]
Higgins, J.P.; Arrivo, S.M.; Reed, R.A. Approach to the determination of hydrate form conversions of drug compounds and solid dosage forms by near-infrared spectroscopy. J. Pharm. Sci., 2003, 92(11), 2303-2316.
[http://dx.doi.org/10.1002/jps.10465] [PMID: 14603515]
[68]
Nugrahani, I.; Min, S.S. Hydrate transformation of sodium sulfacetamide and neomycin sulphate. Int. J. Pharm. Pharm. Sci., 2015, 7(10), 409-415.
[69]
Nugrahani, I.; Bahari, M.U. The dynamic study of cocrystal formation between anhydrous and monohydrate theophylline with sodium saccharine dihydrate by FTIR. J. Chem. Biochem., 2014, 2(2), 117-137.
[http://dx.doi.org/10.15640/jcb.v2n2a6]
[70]
Nugrahani, I.; Ibrahim, S.; Mauludin, R.; Almira, M. Hydrate transformation study of fluoroquinolone antibiotics using fourier transform infrared spectroscopy (FTIR). Int. J. Pharm. Pharm. Sci., 2015, 7(8), 246-252.
[71]
Nugrahani, I.; Asyarie, S.; Soewandhi, S.N.; Ibrahim, S. The antibiotic potency of amoxicillin-clavulanate co-crystal. Int. J. Pharmacol., 2007, 3(36), 475-471.
[72]
Guru, P. Spectral studies of some complexes with chloramphenicol. Int. J. Chemtech Res., 2011, 3(1), 119-121.
[73]
Nugrahani, I.; Khalida, F. Green method for acetaminophen and ibuprofen simultaneous assay in the combination tablet using FTIR. Int. J. Appl. Pharm., 2018, 10(3), 77-83.
[74]
Nugrahani, I.; Dillen, N. Rapid assay development of diclofenac sodium coated tablet assay using FTIR compared to HPLC method. Int. J. Appl. Pharm., 2018, 10(4), 43-50.
[http://dx.doi.org/10.22159/ijap.2018v10i4.25682]
[75]
Nugrahani, I.; Sulistya, S. The rapid and green hair analysis method development using FTIR for papaverine HCl determination. Int. J. Appl. Pharm., 2019, 11(2), 211-217.
[http://dx.doi.org/10.22159/ijap.2019v11i2.31225]
[76]
Nugrahani, I.; Auli, W.N. The performance of derivate FTIR spectrophotometry method compared to colorimetry for tranexamic acid tablet content determination. Pharmaciana, 2018, 8(1), 11-23.
[http://dx.doi.org/10.12928/pharmaciana.v8i1.8227]
[77]
Nugrahani, I.; Manosa, E.Y.; Chintya, L. FTIR-derivative as a green method for simultaneous content determination of caffeine, paracetamol, and acetosal in a tablet compared to HPLC. Vib. Spectrosc., 2019, 104102941
[http://dx.doi.org/10.1016/j.vibspec.2019.102941]
[78]
Nugrahani, I.; Aliah, A.I. The –NO2 vibrational spectra of metronidazole for analytical method development using Fourier Transform Infrared compared to the UV-VIS spectrophotometry. Biointerface Res. Appl. Chem., 2019, 9(6), 4446-4451.
[http://dx.doi.org/10.33263/BRIAC96.446451]
[79]
Nugrahani, I.; Sundalian, M. Chemometrical analysis of Fourier Transform Infrared Spectrum profile of Indonesia’s black tea products (Camellia sinensis L.). Biointerface Res. Appl. Chem., 2020, 10(1), 4721-4727.
[80]
Nugrahani, I.; Utami, D.; Ibrahim, S.; Nugraha, Y.P.; Uekusa, H. Zwitterionic cocrystal of diclofenac and l-proline: Structure determination, solubility, kinetics of cocrystallization, and stability study. Eur. J. Pharm. Sci., 2018, 117, 168-176.
[http://dx.doi.org/10.1016/j.ejps.2018.02.020] [PMID: 29475066]
[81]
Nugrahani, I.; Utami, D.; Nugraha, Y.P.; Uekusa, H.; Hasianna, R.; Darusman, A.M. Cocrystal construction between the ethyl ester with parent drug of diclofenac: structural, stability, and anti-inflammatory study. Heliyon, 2019, 15(2), 1-13.
[http://dx.doi.org/10.1016/j.heliyon.2019.e02946]
[82]
Ku, M.S.; Liang, J.Q.; Lu, D. Application of microscopy in pharmaceutical development from discovery to manufacture process scale-up. Microsc. Microanal., 2010, 16(2), 636-637.
[http://dx.doi.org/10.1017/S1431927610056345]
[83]
Feist, M. Thermal analysis: basics, applications, and benefit. ChemTexts, 2015, 1, 8.
[http://dx.doi.org/10.1007/s40828-015-0008-y]
[84]
Giron, D. Applications of thermal analysis and coupled techniques in pharmaceutical industry. J. Therm. Anal. Calorim., 2002, 68, 335-357.
[http://dx.doi.org/10.1023/A:1016015113795]
[85]
Giron, D. Applications of thermal analysis in the pharmaceutical industry. J. Pharm. Biomed. Anal., 1986, 4(6), 755-770.
[http://dx.doi.org/10.1016/0731-7085(86)80086-3] [PMID: 16867557]
[86]
Monajjemzadeh, F.; Ghaderi, F. Thermal analysis methods in pharmaceutical quality control. J. Mol. Pharm. Org. Process Res., 2015, 3(1)e121
[87]
Fortunato, A. The Application of Calorimetric TechniquesDrug-Biomembrane Interaction Studies; Rosario Pignatello, 1st; Woodhead Publishing Series in Biomedicine: Oxford, 2013, pp. 169-212.
[88]
Hitachi. Principle of Differential Scanning Calorimetry (DSC) https://www.hitachihightech.com/global/products/science/tech/ana/thermal/descriptions/dsc.html
[89]
Boettinger, W.J.; Ursula, R.K.; Moon, K.W.; Perepezko, J.H. Chapter Five DTA and Heat-Flux DSC Measurements of Alloy Melting and Freezing. Methods for Phase Diagram Determination; J.-C. Zhao; Elsevier: USA, 2007, pp. 151-221.
[http://dx.doi.org/10.1016/B978-008044629-5/50005-7]
[90]
Chirayil, C.J. Abraham, J.; Mishra, R.K.; George, S.C.; Thomas, S. Instrumental Techniques for the Characterization of Nanoparticles. Thermal and Rheological Measurement Techniques for Nanomaterials Characterization; Sabu Thomas, Raju Thomas, Ajesh Zachariah, Raghvendra Kumar, 1st; Elsevier, 2017, 3, pp. 1-36.
[http://dx.doi.org/10.1016/B978-0-323-46139-9.00001-3]
[91]
Harris, K.D.M. Modern applications of Powder X-ray diffraction in pharmaceutical sciences. Am. Pharm. Rev., 2004, 7, 86-91.
[92]
Shah, B.; Kakumanu, V.K.; Bansal, A.K.; Bansal, J. Analytical techniques for quantification of amorphous/crystalline phases in pharmaceutical solids. J. Pharm. Sci., 2006, 95(8), 1641-1665.
[http://dx.doi.org/10.1002/jps.20644] [PMID: 16802362]
[93]
Naftaly, M.; Miles, R.E. In: Terahertz time-domain spectroscopy for material characterization. Proc. IEEE, 2007, 95(8), 1658-1665.
[http://dx.doi.org/10.1109/JPROC.2007.898835]
[94]
Beard, M.C.; Turner, G.M.; Schmuttenmaer, C.A. Terahertz spectroscopy. J. Phys. Chem. B, 2002, 106(29), 7146-7159.
[http://dx.doi.org/10.1021/jp020579i]
[95]
Coutaz, J. Terahertz Time-Domain Spectroscopy: Principles and Recent Developments, 16th URSI General Assembly and Scientific Symposium (URSI GASS), Beijing 2014, pp. 1-1.
[96]
García-García, E.; Diez, E.; Meziani, Y.M.; Velázquez-Pérez, J.E.; Calvo-Gallcao, J. 2013 Spanish Conference on Electron Devices, Valladolid2013, pp. 199-202.
[97]
Ciccarelli, C.; Joyce, H.; Robinson, J.; Kholid, F.N.; Hamara, D.; Kar, S.; Jeonc, K-R. Terahertz time-domain spectroscopy; Scivpro, 2020, p. 1.
[98]
Neu, J.; Schmuttenmaer, C.A. Tutorial: An introduction to terahertz time domain spectroscopy (THz-TDS). J. Appl. Phys., 2018, 124(23)231101
[http://dx.doi.org/10.1063/1.5047659]
[99]
Smith, R.M.; Arnold, M.A. Terahertz time-domain spectroscopy of solid samples: principles, applications, and challenges. Appl. Spectrosc. Rev., 2011, 46(8), 636-679.
[http://dx.doi.org/10.1080/05704928.2011.614305]
[100]
Taday, P.F. Applications of terahertz spectroscopy to pharmaceutical sciences. Philos. Trans.- Royal Soc., Math. Phys. Eng. Sci., 2004, 362(1815), 351-363.
[http://dx.doi.org/10.1098/rsta.2003.1321] [PMID: 15306525]
[101]
Han, P.Y.; Tani, M.; Usami, M.; Kono, S.; Kersting, R.; Zhang, X-C. A direct comparison between terahertz time–domain spectroscopy and far-infrared Fourier transform spectroscopy. J. Appl. Phys., 2001, 89, 2357.
[http://dx.doi.org/10.1063/1.1343522]
[102]
Sengupta, A. Novel Characterization of Materials using THz Spectroscopic Techniques., PhD Dissertation, The State University of New Jersey, Newark, 2006.
[103]
Tishmack, P.A.; Bugay, D.E.; Byrn, S.R. Solid-state nuclear magnetic resonance spectroscopy--pharmaceutical applications. J. Pharm. Sci., 2003, 92(3), 441-474.
[http://dx.doi.org/10.1002/jps.10307] [PMID: 12587108]
[104]
Harris, R.K. Applications of solid-state NMR to pharmaceutical polymorphism and related matters. J. Pharm. Pharmacol., 2007, 59(2), 225-239.
[http://dx.doi.org/10.1211/jpp.59.2.0009] [PMID: 17270076]
[105]
Geppi, M.; Mollica, G.; Borsacchi, S.; Veracini, C.A. Solid-state NMR studies of pharmaceutical systems. Appl. Spectrosc. Rev., 2008, 43(3), 202-302.
[http://dx.doi.org/10.1080/05704920801944338]
[106]
Vogt, F.G. Evolution of solid-state NMR in pharmaceutical analysis. Future Med. Chem., 2010, 2(6), 915-921.
[http://dx.doi.org/10.4155/fmc.10.200] [PMID: 21426109]
[107]
Berendt, R.T.; Sperger, D.M.; Isbester, P.K.; Munson, E.J. Solid-state NMR spectroscopy in pharmaceutical research and analysis. Trends Analyt. Chem., 2006, 25(10), 977-984.
[http://dx.doi.org/10.1016/j.trac.2006.07.006]
[108]
Frederick, G.V.; Williams, J.R. Advanced approaches to effective solid-state analysis: x-ray diffraction, vibrational spectroscopy and solid-state NMR. Am. Pharm. Rev., 2010.
[109]
Offerdahl, T.J.; Salsbury, J.S.; Dong, Z.; Grant, D.J.W.; Schroeder, S.A.; Prakash, I.; Gorman, E.M.; Barich, D.H.; Munson, E.J. Quantitation of crystalline and amorphous forms of anhydrous neotame using 13C CPMAS NMR spectroscopy. J. Pharm. Sci., 2005, 94(12), 2591-2605.
[http://dx.doi.org/10.1002/jps.20469] [PMID: 16258988]
[110]
Lefort, R.; De Gusseme, A.; Willart, J.F.; Danède, F.; Descamps, M. Solid state NMR and DSC methods for quantifying the amorphous content in solid dosage forms: an application to ball-milling of trehalose. Int. J. Pharm., 2004, 280(1-2), 209-219.
[http://dx.doi.org/10.1016/j.ijpharm.2004.05.012] [PMID: 15265560]
[111]
Farrer, B.T.; Peresypkin, A.; Wenslow, R.M. Quantitation of crystalline material within a liquid vehicle using 1H/19F CP/MAS NMR. J. Pharm. Sci., 2007, 96(2), 264-267.
[http://dx.doi.org/10.1002/jps.20759] [PMID: 17051585]
[112]
Virtanen, T.; Maunu, S.L. Quantitation of a polymorphic mixture of an active pharmaceutical ingredient with solid state (13)C CPMAS NMR spectroscopy. Int. J. Pharm., 2010, 394(1-2), 18-25.
[http://dx.doi.org/10.1016/j.ijpharm.2010.04.017] [PMID: 20416365]
[113]
Zielińska-Pisklak, M.; Pisklak, D.M.; Wawer, I. Application of 13C CPMAS NMR for qualitative and quantitative characterization of carvedilol and its commercial formulations. J. Pharm. Sci., 2012, 101(5), 1763-1772.
[http://dx.doi.org/10.1002/jps.23062] [PMID: 22331650]
[114]
Gao, P. Determination of the composition of delavirdine mesylate polymorph and pseudopolymorph mixtures using 13C CP/MAS NMR. Pharm. Res., 1996, 13(7), 1095-1104.
[http://dx.doi.org/10.1023/A:1016027212156] [PMID: 8842052]
[115]
Pugliese, A.; Hawarden, L.E.; Abraham, A.; Tobyn, M.; Blanc, F. Solid state nuclear magnetic resonance studies of hydroxypropylmethylcellulose acetyl succinate polymer, a useful carrier in pharmaceutical solid dispersions. Magn. Reson. Chem., 2019, 1-13.
[PMID: 31880823]
[116]
Brus, J.; Urbanova, M.; Sedenkova, I.; Brusova, H. New perspectives of 19F MAS NMR in the characterization of amorphous forms of atorvastatin in dosage formulations. Int. J. Pharm., 2011, 409(1-2), 62-74.
[http://dx.doi.org/10.1016/j.ijpharm.2011.02.030] [PMID: 21356299]
[117]
Kimura, K.; Hirayama, F.; Arima, H.; Uekama, K. Solid-state 13C nuclear magnetic resonance spectroscopic study on amorphous solid complexes of tolbutamide with 2-hydroxypropyl-alpha- and -beta-cyclodextrins. Pharm. Res., 1999, 16(11), 1729-1734.
[http://dx.doi.org/10.1023/A:1018958116349] [PMID: 10571279]
[118]
Forster, A.; Apperley, D.; Hempenstall, J.; Lancaster, R.; Rades, T. Investigation of the physical stability of amorphous drug and drug/polymer melts using variable temperature solid state NMR. Pharmazie, 2003, 58(10), 761-762.
[PMID: 14609294]
[119]
Schachter, D.M.; Xiong, J.; Tirol, G.C. Solid state NMR perspective of drug-polymer solid solutions: a model system based on poly(ethylene oxide). Int. J. Pharm., 2004, 281(1-2), 89-101.
[http://dx.doi.org/10.1016/j.ijpharm.2004.05.024] [PMID: 15288346]
[120]
Brittain, H.G.; Morris, K.R.; Bugay, D.E.; Thakur, A.B.; Serajuddin, A.T. Solid-state NMR and IR for the analysis of pharmaceutical solids: polymorphs of fosinopril sodium. J. Pharm. Biomed. Anal., 1993, 11(11-12), 1063-1069.
[http://dx.doi.org/10.1016/0731-7085(93)80083-D] [PMID: 8123714]
[121]
Pham, T.N.; Watson, S.A.; Edwards, A.J.; Chavda, M.; Clawson, J.S.; Strohmeier, M.; Vogt, F.G. Analysis of amorphous solid dispersions using 2D solid-state NMR and (1)H T(1) relaxation measurements. Mol. Pharm., 2010, 7(5), 1667-1691.
[http://dx.doi.org/10.1021/mp100205g] [PMID: 20681586]
[122]
Masuda, K.; Tabata, S.; Sakata, Y.; Hayase, T.; Yonemochi, E.; Terada, K. Comparison of molecular mobility in the glassy state between amorphous indomethacin and salicin based on spin-lattice relaxation times. Pharm. Res., 2005, 22(5), 797-805.
[http://dx.doi.org/10.1007/s11095-005-2597-4] [PMID: 15906176]
[123]
Luthra, S.A.; Utz, M.; Gorman, E.M.; Pikal, M.J.; Munson, E.J.; Lubach, J.W. Carbon-deuterium rotational-echo double-resonance NMR spectroscopy of lyophilized aspartame formulations. J. Pharm. Sci., 2012, 101(1), 283-290.
[http://dx.doi.org/10.1002/jps.22769] [PMID: 21935954]
[124]
Yoshioka, S.; Aso, Y.; Kojima, S. The effect of excipients on the molecular mobility of lyophilized formulations, as measured by glass transition temperature and NMR relaxation-based critical mobility temperature. Pharm. Res., 1999, 16(1), 135-140.
[http://dx.doi.org/10.1023/A:1018891317006] [PMID: 9950292]
[125]
Suihko, E.J.; Forbes, R.T.; Apperley, D.C. A solid-state NMR study of molecular mobility and phase separation in co-spray-dried protein-sugar particles. Eur. J. Pharm. Sci., 2005, 25(1), 105-112.
[http://dx.doi.org/10.1016/j.ejps.2005.02.002] [PMID: 15854806]
[126]
Wojnarowska, Z.; Grzybowska, K.; Adrjanowicz, K.; Kaminski, K.; Paluch, M.; Hawelek, L.; Wrzalik, R.; Dulski, M.; Sawicki, W.; Mazgalski, J.; Tukalska, A.; Bieg, T. Study of the amorphous glibenclamide drug: analysis of the molecular dynamics of quenched and cryomilled material. Mol. Pharm., 2010, 7(5), 1692-1707.
[http://dx.doi.org/10.1021/mp100077c] [PMID: 20669906]
[127]
Harris, R.K. NMR studies of organic polymorphs and solvates. Analyst (Lond.), 2006, 131(3), 351-373.
[http://dx.doi.org/10.1039/b516057j] [PMID: 16496044]
[128]
Wenslow, R.M. 19F solid-state NMR spectroscopic investigation of crystalline and amorphous forms of a selective muscarinic M3 receptor antagonist, in both bulk and pharmaceutical dosage form samples. Drug Dev. Ind. Pharm., 2002, 28(5), 555-561.
[http://dx.doi.org/10.1081/DDC-120003451] [PMID: 12098844]