Microwave-Induced Expeditious Synthesis of Biologically Active Substituted Imidazoles using CuO-TiO2-GO Nanocomposite as a Recyclable Catalyst

Page: [318 - 333] Pages: 16

  • * (Excluding Mailing and Handling)

Abstract

An efficient, green and rapid protocol for one-pot synthesis of substituted imidazoles from isatin, aryl/hetero-aryl aldehydes and ammonium acetate in presence of CuO-TiO2-GO nanocomposite as catalyst under microwave irradiation has been reported in this article. The CuO-TiO2-GO nanocomposite was synthesized by the hydrothermal method. Further, the prepared composite was characterized by FT-IR, XRD, FESEM, EDS, TEM, Raman and TGA techniques. The protocol offered several advantages such as high rate of reaction, excellent yields, economic feasibility, simple work-up and reusability of catalyst up to six cycles. Further antimicrobial activities of the synthesized substituted imidazoles were evaluated by the broth dilution method.

Keywords: Substituted imidazoles, CuO-TiO2-GO nanocomposite, microwave irradiation, hydrothermal method and antimicrobial activity.

Graphical Abstract

[1]
Chng, L.L.; Erathodiyil, N.; Ying, J.Y. Acc. Chem. Res., 2013, 46(8), 1825-1837.
[http://dx.doi.org/10.1021/ar300197s] [PMID: 23350747]
[2]
Chaturvedi, S.; Dave, P.N.; Shah, N.K. J. Saudi Chem. Soc., 2012, 16, 307-325.
[http://dx.doi.org/10.1016/j.jscs.2011.01.015]
[3]
Hemalatha, K.; Madhumitha, G.; Kajbafvala, A.; Anupama, N.; Sompalle, R.; Roopan, S.M. Nanomater; , 2013. Article ID 341015, 23 pages..
[4]
Cao, A.; Lu, R.; Veser, G. Phys. Chem. Chem. Phys., 2010, 12(41), 13499-13510.
[http://dx.doi.org/10.1039/c0cp00729c] [PMID: 20820585]
[5]
Haghighi, M.; Nikoofar, K. J. Saudi Chem. Soc., 2016, 20, 101-106.
[http://dx.doi.org/10.1016/j.jscs.2014.09.002]
[6]
Bajpai, S.; Singh, S.; Srivastava, V. Arab. J. Chem., 2019, 12, 1168-1175.
[http://dx.doi.org/10.1016/j.arabjc.2014.11.037]
[7]
Titova, Y.; Federova, O.; Rusinov, G.; Vigorov, A.; Krasnov, V.; Murashkevich, A.; Charushin, V. Catal. Today, 2015, 241, 270-274.
[http://dx.doi.org/10.1016/j.cattod.2014.01.035]
[8]
Woo, H.; Kang, H.; Kim, A.; Jang, S.; Park, J.C.; Park, S.; Kim, B-S.; Song, H.; Park, K.H. Molecules, 2012, 17(11), 13235-13253.
[http://dx.doi.org/10.3390/molecules171113235] [PMID: 23132140]
[9]
Bagdi, P.R.; Basha, R.S.; Baruah, P.K.; Khan, A.T. RSC Advances, 2014, 4, 10652-10659.
[http://dx.doi.org/10.1039/c3ra44869j]
[10]
Elkhashab, R.A.; Nayl, A.A.; Badawy, E.M.; El Malah, T. J. Chem. Chem. Eng., 2016, 10, 341-346.
[11]
Gawande, M.B.; Goswami, A.; Felpin, F-X.; Asefa, T.; Huang, X.; Silva, R.; Zou, X.; Zboril, R.; Varma, R.S. Chem. Rev., 2016, 116(6), 3722-3811.
[http://dx.doi.org/10.1021/acs.chemrev.5b00482] [PMID: 26935812]
[12]
Bkour, Q.; Marin-Flores, O.G.; Graham, T.R.; Ziaei, P.; Saunders, S.R.; Norton, M.G.; Ha, S. Appl. Catal. A Gen., 2017, 546, 126-135.
[http://dx.doi.org/10.1016/j.apcata.2017.08.015]
[13]
Mishra, D.K.; Dabbawala, A.A.; Hwang, J-S. J. Mol. Catal., 2013, 376, 63-70.
[http://dx.doi.org/10.1016/j.molcata.2013.04.011]
[14]
Carabineiro, S.A.C.; Martins, L.M.D.R.S.; Avalos-Borja, M.; Buijnsters, J.G.; Pombeiro, A.J.L.; Figueiredo, J.L. Appl. Catal. A Gen., 2013, 467, 279-290.
[http://dx.doi.org/10.1016/j.apcata.2013.07.035]
[15]
Navalon, S.; Dhakshinamoorthy, A.; Alvaro, M.; Garcia, H. Chem. Rev., 2014, 114(12), 6179-6212.
[http://dx.doi.org/10.1021/cr4007347] [PMID: 24867457]
[16]
Luceño-Sánchez, J.A.; Maties, G.; Gonzalez-Arellano, C.; Diez-Pascual, A.M. Nanomaterials (Basel), 2018, 8, 870.
[http://dx.doi.org/10.3390/nano8110870]
[17]
Mirabedini, M.; Motamedi, E.; Kassaee, M.Z. Chin. Chem. Lett., 2015, 26, 1055-1196.
[http://dx.doi.org/10.1016/j.cclet.2015.05.021]
[18]
Ertl, G.; Knözinger, H.; Weitkamp, J. Handbook of Heterogeneous Catalysis; Wiley-VCH Verlag GmbH & Co., KGaA: New York, 2008..
[http://dx.doi.org/10.1002/9783527610044]
[19]
Nakamura, T.; Kakinuma, H.; Umemiya, H.; Amada, H.; Miyata, N.; Taniguchi, K.; Bando, K.; Sato, M. Bioorg. Med. Chem. Lett., 2004, 14(2), 333-336.
[http://dx.doi.org/10.1016/j.bmcl.2003.11.005] [PMID: 14698153]
[20]
Natrajan, S.R.; Doherty, J.B. Curr. Top. Med. Chem., 2005, 5, 987-1003.
[http://dx.doi.org/10.2174/1568026054985876] [PMID: 16178742]
[21]
Niculescu-Duvaz, D.; Niculescu-Duvaz, I.; Suijkerbuijk, B.M.; Ménard, D.; Zambon, A.; Davies, L.; Pons, J.F.; Whittaker, S.; Marais, R.; Springer, C.J. Bioorg. Med. Chem. Lett., 2013, 21, 1284-1304.
[http://dx.doi.org/10.1016/j.bmc.2012.12.035]
[22]
Dyck, B.; Goodfellow, V.S.; Phillips, T.; Grey, J.; Haddach, M.; Rowbottom, M.; Naeve, G.S.; Brown, B.; Saunders, J. Bioorg. Med. Chem. Lett., 2004, 14(5), 1151-1154.
[http://dx.doi.org/10.1016/j.bmcl.2003.12.068] [PMID: 14980654]
[23]
Rani, N.; Sharma, A.; Gupta, G.K.; Singh, R. Mini Rev. Med. Chem., 2013, 13(11), 1626-1655.
[http://dx.doi.org/10.2174/13895575113139990069] [PMID: 23815583]
[24]
Zhang, J.; Ba, Y.; Wang, S.; Yang, H.; Hou, X.; Xu, Z. Eur. J. Med. Chem., 2019, 179, 376-388.
[http://dx.doi.org/10.1016/j.ejmech.2019.06.068] [PMID: 31260891]
[25]
Ali, I.; Lone, M.N.; Aboul-Enein, H.Y. MedChemComm, 2017, 8(9), 1742-1773.
[http://dx.doi.org/10.1039/C7MD00067G] [PMID: 30108886]
[26]
Luthra, T.; Nayak, A.K.; Bose, S.; Chakrabarti, S.; Gupta, A.; Sen, S. Eur. J. Med. Chem., 2019, 168, 11-27.
[http://dx.doi.org/10.1016/j.ejmech.2019.02.019] [PMID: 30798050]
[27]
El-Sharief, A.M.S.; Ammar, A.Y.; Belal, A.; El-Sharief, M.A.M.S.; Mohamed, Y.A.; Mehany, A.B.M.; Ali, G.A.M. Bioorg. Chem., 2019, 85, 399-412.
[http://dx.doi.org/10.1016/j.bioorg.2019.01.016] [PMID: 30665034]
[28]
Penta, A.; Lu, C-L.; Chander, S.; Zheng, Y-T.; Murugesan, S. Chem. Biol. Drug Des., 2015, 85, 722-728.
[http://dx.doi.org/10.1111/cbdd.12456] [PMID: 25328020]
[29]
Sayed, M.; El‐Dean, A.M.K.; Ahmed, M.; Hassanien, R. J. Chin. Chem. Soc. (Taipei), 2018, 66, 218-225.
[http://dx.doi.org/10.1002/jccs.201800115]
[30]
ElBordiny, H.S.; El-Miligy, M.M.; Kassab, S.E.; Daabees, H.; Mohamed Ali, W.A.; Abdelhamid Mohamed El-Hawash, S. Eur. J. Med. Chem., 2018, 145, 594-605.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.026] [PMID: 29339254]
[31]
Huang, Y.; Zhang, B.; Li, J. Liu, H.; Zhang, Y.; Yang, Z.; Liu, W. Eur. J. Med. Chem., 2019, 180, 41-50.
[http://dx.doi.org/10.1016/j.ejmech.2019.07.004] [PMID: 31299586]
[32]
Bhragual, D.D.; Kumar, N. J. Chem. Pharm. Res., 2010, 2, 345-349.
[33]
Bajpai, S.; Singh, S. Mater. Today Proceed., 2017, 4, 10498-10503.
[http://dx.doi.org/10.1016/j.matpr.2017.06.408]
[34]
Bajpai, S.; Singh, S.; Srivastava, V. RSC Advances, 2015, 5, 28163-28170.
[http://dx.doi.org/10.1039/C4RA16211K]
[35]
Jasim, D.A.; Lozano, N.; Kostarelos, K. D Mater, 2016, 3, 014006..
[36]
Vijayalakshmi, R.; Rajendran, K.V. Int. J. Pure Appl. Phys., 2011, 7, 105-115.
[37]
Patomnetikul, C.; Thongtem, S.; Narksitipan, S. Proc. SPIE 9234, International Conference on Experimental Mechanics 2013 and Twelfth Asian Conference on Experimental Mechanics, November 25-27, 2014, p. 923406..
[38]
Bagri, A.; Mattevi, C.; Acik, M.; Chabal, Y.J.; Chhowalla, M.; Shenoy, V.B. Nat. Chem., 2010, 2(7), 581-587.
[http://dx.doi.org/10.1038/nchem.686] [PMID: 20571578]
[39]
Al-Taweel, S.S.; Saud, H.R.; Al-Taweel, S.S.; Saud, H.R. J. Chem. Pharm. Res., 2016, 8, 620-626.
[40]
Kumari, S.; Shekhar, A.; Pathak, D.D. New J. Chem., 2016, 40, 5053.
[http://dx.doi.org/10.1039/C5NJ03380B]
[41]
Mishra, A.K.; Ramaprabhu, S. PhysChemComm, 2011, 115, 14006-14013.
[42]
Sagadevan, S.; Chowdhary, Z.Z.; Johan, M.R.B.; Aziz, F.A.; Salleh, E.M.; Hawa, A.; Rafique, R.F. J. Exp. Nanosci., 2018, 13, 284-296.
[http://dx.doi.org/10.1080/17458080.2018.1542512]
[43]
Sharma, M.; Mondal, D.; Mukesh, C.; Prasad, K. RSC Advances, 2014, 4, 42197-42201.
[http://dx.doi.org/10.1039/C4RA05552G]
[44]
Bregadiolli, B.A.; Fernandes, S.L.; Frederico, C.; de Oliveira, G. Mater. Res., 2017, 20, 912-919.
[http://dx.doi.org/10.1590/1980-5373-mr-2016-0684]
[45]
Niveditha, C.V.; Fatima, M.J.; Sindhu, S. J. Electrochem. Soc., 2016, 163, H426-H433.
[http://dx.doi.org/10.1149/2.0971606jes]
[46]
Thakur, S.; Karak, N. Carbon, 2012, 50, 5331-5339.
[http://dx.doi.org/10.1016/j.carbon.2012.07.023]
[47]
Johra, F.T.; Lee, J-K.; Jung, W-G. J. Ind. Eng. Chem., 2014, 20, 2883-2887.
[http://dx.doi.org/10.1016/j.jiec.2013.11.022]
[48]
Juliet, S.S.; Ramalingom, S.; Ravidhas, C.; Raj, A.M.E. J. Appl. Phys., 2017, 9, 32-39.
[49]
Rashad, M.; Rüsing, M.; Berth, G.; Lischka, K.; Pawlis, A. J. Nanomater, 2013. Article ID 714853, 6 pages.
[50]
Rajagopalan, B.; Chung, J.S. Nanoscale Res. Lett., 2014, 9(1), 535.
[http://dx.doi.org/10.1186/1556-276X-9-535] [PMID: 25298756]
[51]
Kayani, Z.N.; Umer, M.; Riaz, S.; Naseem, S. J. Electron. Mater., 2015, 44, 3704-3709.
[http://dx.doi.org/10.1007/s11664-015-3867-5.]]
[52]
Cenovar, A.; Paunovic, P.; Grozdavov, A.; Makreski, P.; Fidancevska, E. Adv. Nat. Sci: Theory Appl, 2012, 1, 133-142.
[53]
Ryu, S.K.; Lee, W.K.; Park, S.J. Carbon Sci, 2004, 5, 180-185.
[54]
Drewniak, S.; Muzyka, R.; Stolarczyk, A.; Pustelny, T.; Kotyczka-Morańska, M.; Setkiewicz, M. Sensors (Basel), 2016, 16(1), 103.
[http://dx.doi.org/10.3390/s16010103] [PMID: 26784198]
[55]
Hack, R.; Correia, C.H.G.; Antônio de Simone Zanon, R.; Pezzin, S.H. Materia (Rio J.), 2018, 23.
[http://dx.doi.org/10.1590/s1517-707620170001.0324]