Performance Assessment of Composite Phase Change Materials for Thermal Energy Storage-Characterization and Simulation Studies

Page: [75 - 85] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Background: The present study mainly focuses on the development of new Thermal Storage Materials (TSM) and compare the performance for thermal energy storage capacity. Linear Low- Density Polyethylene (LLDPE) based Composite Phase Change Materials (CPCMs) is prepared, and its properties are analyzed using characterization, analytical calculations, and numerical simulation methods. The composites are prepared by blending the functionalized graphene nanoparticles (1, 3 & 5%) with three different concentrations into LLDPE. All three CPCMs show enhanced thermal performance compared to the base material, but it is noticed that higher concentrations of nanoparticles increase the dynamic viscosity and produce an adverse effect on thermal performance. Thermal characterization shows improved latent heat capacity with nanoparticle concentration, analytical and numerical results also compared, which shown a difference of 10 to 25%.

Objective: The purpose of this study is the development and evaluation of the thermal storage capacity of different thermal storage materials and enlighten the techniques used for characterizing the storage materials.

Methods: Composite material preparation is carried out by using twin-screw extruders, characterization of developed material is done through FTIR, SEM, and DSC analysis. For complete analysis characterization, analytical calculations and numerical simulation methods are used.

Results: Linear low-density polyethylene-based composite materials can be successfully developed using a twin-screw extruder. This extrusion provided proper dispersion of nanoparticles into the base material, and it is validated by SEM analysis. DSC analysis confirmed the enhancement in the thermophysical properties of composite materials.

Conclusion: The latent heat capacity increased around 20% during the heating cycle and reduced approximately 23% during the cooling cycle for base material and 5% addition of nanoparticle, respectively. The comprehensive study accomplishes that the optimum concentration of nanoparticle provides better thermal performance for thermal energy storage applications.

Keywords: Characterization, composite phase change materials, heat transfer enhancement, linear low-density polyethylene, nanoparticles, numerical simulations, thermal energy storage.

[1]
Shadab S, Khalid L, Kevin H. Carbon nano additives to enhance latent energy storage of phase change materials. J Appl Phys 2008; 103: 1-8.
[2]
Warzoha R, Sanusi O, Mcmanus B, Amy F. Development of methods to fully saturate carbon foam with paraffin wax phase change material for energy storage. J Sol Energy Eng 2013; 135: 1-8.
[http://dx.doi.org/10.1115/1.4007934]
[3]
Yun-H Zhen-W. Shu-Lin B. Study on thermal properties of graphene foam/graphene sheets filled polymer composites. Compos PART A 2015; 72: 200-6.
[http://dx.doi.org/10.1016/j.compositesa.2015.02.011]
[4]
Santosh C, Veershetty G, Arumuga Perumal D. A review on thermal energy storage using composite phase change materials. Recent Pat Mech Eng 2018; 11(4): 298-310.
[http://dx.doi.org/10.2174/2212797611666181009153110]
[5]
Chavan S, Gumtapure V, Perumal DA. Preparation and characterization of nanoparticle blended polymers for thermal energy storage applications. AIP Conf Proc 2019; 2057: 020028-1-.
[http://dx.doi.org/10.1063/1.5085599]
[6]
Agarwal T, Chandel S. Review of current state of research on energy storage, toxicity, health hazards and commercialization of phase changing materials. Renew Sustain Energy Rev 2017; 67: 581-96.
[http://dx.doi.org/10.1016/j.rser.2016.09.070]
[7]
Almaadeed M. Effect of waste wax and chain structure on the mechanical and physical properties of polyethylene. Arab J Chem 2015; 8: 388-99.
[http://dx.doi.org/10.1016/j.arabjc.2014.01.006]
[8]
Santosh C, Veershetty G, Arumuga Perumal D. Characterization of linear low-density polyethylene with graphene as thermal energy storage material. Mater Res Express 2019; 6065511
[http://dx.doi.org/10.1088/2053-1591/ab0e36]
[9]
Mhike W. Focke1 W, Mofokeng JP, Luyt A.S. Thermally conductive phase-change materials for energy storage based on low-density polyethylene, soft Fischer Tropsch wax and graphite Contents. Thermochim Acta 2012; 527: 75-82.
[http://dx.doi.org/10.1016/j.tca.2011.10.008]
[10]
Lu X, Liang B, Sheng X, Yuan T, Qu J. Enhanced thermal conductivity of polyurethane/wood powder composite phase change materials via incorporating low loading of graphene oxide nanosheets for solar thermal energy storage. Sol Energy Mater Sol Cells 2020; 208110391
[http://dx.doi.org/10.1016/j.solmat.2019.110391]
[11]
Sarafraz MM, Safaei MR. Diurnal thermal evaluation of an Evacuated Tube Solar Collector (ETSC) charged with graphene nanoplatelets-methanol nano-suspension. Renew Energy 2019; 142: 364-72.
[http://dx.doi.org/10.1016/j.renene.2019.04.091]
[12]
Azizi S, Ouellet-Plamondon CM, Nguyen-Tri P, Fréchette M, David E. Electrical, thermal and rheological properties of low-density polyethylene/ethylene vinyl acetate/graphene-like composite. Compos, Part B Eng 2019; 177107288
[http://dx.doi.org/10.1016/j.compositesb.2019.107288]
[13]
Guo X, Shaodi Z, Jinzhen C. An energy-efficient composite by using expanded graphite stabilized paraffin as phase change material. Compos Part A 2018; 107: 83-93.
[http://dx.doi.org/10.1016/j.compositesa.2017.12.032]
[14]
Sarafraz MM, Tlili I, Baseer MA, Safaei MR. Potential of solar collectors for clean thermal energy production in smart cities using nanofluids: Experimental assessment and efficiency improvement. Appl Sci (Basel) 2019; 9: 9.
[http://dx.doi.org/10.3390/app9091877]
[15]
Sarafraz MM, Safaei MR, Tian Z, Goodarzi M, Filho EPB, Arjomandi M. Thermal assessment of nano-particulate graphene-water/ethylene glycol (WEG 60:40) nano-suspension in a compact heat exchanger. Energies 2019; 12: 10.
[http://dx.doi.org/10.3390/en12101929]
[16]
Safaei MR, Goshayeshi HR, Chaer I. Solar still efficiency enhancement by using graphene oxide/paraffin nano-PCM. Energies 2019; 12(10): 1-13.
[http://dx.doi.org/10.3390/en12102002]
[17]
Li M. A nano-graphite/paraffin phase change material with high thermal conductivity. Appl Energy 2013; 106: 25-30.
[http://dx.doi.org/10.1016/j.apenergy.2013.01.031]
[18]
Sarafraz MM, Safaei MR, Leon AS, Tlili I, Alkanhal TA, Tian Z. Experimental investigation on thermal performance of a PV/T-PCM (photovoltaic/thermal) system cooling with a PCM and nanofluid. Energies 2019; 12(13): 1-16.
[http://dx.doi.org/10.3390/en12132572]
[19]
Sarafraz MM, Tlili I, Tian Z, Bakouri M, Safaei M R. Smart optimization of a thermosyphon heat pipe for an evacuated tube solar collector using Response Surface Methodology (RSM) Phys A Stat Mech its Appl 2019; 534: 122146.
[http://dx.doi.org/10.1016/j.physa.2019.122146]
[20]
Chavan S, Gumtapure V, Perumal DA. Numerical analysis of composite phase change material in a square enclosure. Adv Energy Res 2020; 1: 359-70.
[21]
Santosh C, Veershetty G, Arumuga Perumal D. Numerical and experimental analysis on thermal energy storage of polyethylene/functionalized graphene composite phase change materials. J Energy Storage 2020; 27101045
[http://dx.doi.org/10.1016/j.est.2019.101045]
[22]
Goodarzi H, Akbari OA, Sarafraz MM, Karchegani MM, Safaei MR, Sheikh Shabani GA. Numerical simulation of natural convection heat transfer of nanofluid with Cu, MWCNT, and Al2O3 nanoparticles in a cavity with different aspect ratios. J Therm Sci Eng Appl 2019; 11(6): 3-6.
[http://dx.doi.org/10.1115/1.4043809]
[23]
Gaska K, Xu X, Gubanski S, Kádár R, Gaska K. Electrical, mechanical, and thermal properties of LDPE graphene nanoplatelets composites produced by means of melt extrusion process. Polymers (Basel) 2017; 9(1): 30-40.
[http://dx.doi.org/10.3390/polym9010011] [PMID: 30970688]
[24]
Simon DA, Bischoff E, Buonocore GG, Cerruti P, Raucci MG, Xia H, et al. Graphene-based masterbatch obtained via modified polyvinyl alcohol liquid-shear exfoliation and its application in enhanced polymer composites. Mater Des 2017; 134: 103-10.
[http://dx.doi.org/10.1016/j.matdes.2017.08.032]
[25]
Khodadadi JM, Hosseinizadeh SF. Nanoparticle-Enhanced Phase Change Materials (NEPCM) with great potential for improved thermal energy storage. Int Commun Heat Mass Transf 2007; 34: 534-43.
[http://dx.doi.org/10.1016/j.icheatmasstransfer.2007.02.005]
[26]
Tang Y, Su D, Huang X, Alva G, Liu L, Fang G. Synthesis and thermal properties of the MA/HDPE composites with nano-additives as form-stable PCM with improved thermal conductivity. Appl Energy 2016; 180: 116-29.
[http://dx.doi.org/10.1016/j.apenergy.2016.07.106]
[27]
Santosh C, Veershetty G, Arumuga Perumal D. Numerical studies for charging and discharging characteristics of composite phase change material in deep and shallow rectangular enclosure. IOP Conf Ser Mater Sci Eng 2018; 376012059
[28]
Ebrahimi A, Dadvand A. Simulation of melting of a Nano-enhanced Phase Change Material (NePCM) in a square cavity with two heat source - sink pairs. Alexandria Eng J 2015; 54: 1003-17.
[http://dx.doi.org/10.1016/j.aej.2015.09.007]
[29]
Roth H, Roth D. Thermal energy storage system. US6761041 (2004), US6938436 (2005), US7051550 (2006) & US20080006629 (2008).
[30]
Whitaker EJ. Thermal storage system. US20090211568 (2009)
[31]
Kapteyn KL. Thermal energy storage system. US8851066 (2014)
[32]
Baldwin D. Thermal heat storage system. US9593866 (2017)
[33]
Howes JS, MacNaghten J, Hunt RG, Bennett RG, Wilson AB. Thermal heat storage apparatus. US009970715 (2018)
[34]
Patterson MK, Alduino AC. Thermal management using phase change material. US20170176118 (2017).
[35]
Qiu S, White MA, Yarger DJ, Galbraith R. Thermal energy storage device. US20100212656 (2010).
[36]
Benson DK, Burrows RW, Yvonne D. Composite material for thermal energy storage. WO4572864 (1986)
[37]
Khodadadi JM. Nanoparticle enhanced Phase Change Materials (NePCM) with improved thermal energy storage. US009027633 (2015)
[38]
Buckley TM. Phase change material thermal capacitor footwear. US20020164474 (2002).
[39]
Owens BC, Cox JN, Horwath PF, Sawafta RI. US20150204618 (2015)
[40]
Claar TD, Petri RJ. High temperature direct-contact thermal energy storage using phase change media. WO4421661 (1983)
[41]
Christopher B, Mirja W, Sabine F. Functionalized graphene. US20170081195 (2017).
[42]
Nitzan E, Moshav S, Micro P, Tione di T. Elastomers and/or composite based material for thermal energy storage. US20160251558 (2016).
[43]
Li AW, Hunt JH, Wayne RH. Graphene-based thermal management systems. US20150257308 (2015).
[44]
Wu JL. Thermal conductivity improved composition with addition of nano particles used for interface materials. US20140293546 (2014).
[45]
Balandin AA. Graphene based thermal interface materials and methods of manufacturing the same. US20140120399 (2014).
[46]
Aksay IA, Michael P, Roy-Mayhew J. Nano-graphene and nanographene oxide. US20140079932 (2014).
[47]
Kolpak AM, Grossman JC. Nano-templated energy storage materials. US20120325200 (2012).
[48]
Prashant NK, Wei W. Compositions including nano-particles and a nano-structured support matrix and methods of preparation as reversible high capacity anodes in energy storage systems. US20100310941 (2010).
[49]
Kim D-H, Sang-Kwan L, Moon-Kwang U, et al. Methods of fabricating nano composite material. US20060055083 (2006).
[50]
Hoffmeyer MK, Mann PV. Thermal interface material structures. US10182514 (2019)
[51]
Blanford C, Flintsch S, Wehner M. Functionalized graphene. US10173898 (2019)
[52]
Strehlow RH, Bobgan PM. Thermal energy storage assembly. US10036599 (2018)
[53]
Li AW, Hunt JH, Howe WR. Graphene-based thermal management systems. US009930808 (2018)
[54]
Jha CM, Eid F, Swan JM, Gupta A. Copper nanorod-based Thermal Interface Materials (TIM), US009865521 (2018)
[55]
Balandin AA. Graphene based thermal interface materials and methods of manufacturing the same. US009716299 (2017)
[56]
Wu JL. Thermal conductivity improved composition with addition of nano particles used for interface materials. US009157019 (2015)
[57]
Hubler AW, Osuangwu O. Nano vaccume tube arrays for energy storage. US008699206 (2014)
[58]
Fedorov AG. Nano-patch thermal management devices, methods, and systems. US007545644 (2009)
[59]
Navrotsky A, Parikh AN. Methods for removing organic compounds from nano-composite materials. US006960327 (2005)
[60]
Li X, Chen H, Liu L, Lu Z, Sanjayan JG, Duan WH. Development of granular expanded perlite/paraffin phase change material composites and prevention of leakage. Sol Energy 2016; 137: 179-88.
[http://dx.doi.org/10.1016/j.solener.2016.08.012]
[61]
Yang J, Yang L, Xu C, Du X. Experimental study on enhancement of thermal energy storage with phase-change material. Appl Energy 2016; 169: 164-76.
[62]
Lv Y, Zhou W, Jin W. Experimental and numerical study on thermal energy storage of polyethylene glycol/expanded graphite composite phase change material. Energy Build 2016; 111: 242-52.
[http://dx.doi.org/10.1016/j.enbuild.2015.11.042]
[63]
Sushobhan BR, Kar SP. Thermal modeling of melting of nano based phase change material for improvement of thermal energy storage. Energy Procedia 2017; 109: 385-92.
[http://dx.doi.org/10.1016/j.egypro.2017.03.035]
[64]
Caron-Soupart A, Fourmigué J-F, Marty P, Couturier R. Performance analysis of thermal energy storage systems using phase change material. Appl Therm Eng 2016; 98: 1286-96.
[http://dx.doi.org/10.1016/j.applthermaleng.2016.01.016]
[65]
Liu L. Di Su, Yaojie Tang, Guiyin Fang. Thermal conductivity enhancement of phase change materials for thermal energy storage: A review. Renew Sustain Energy Rev 2016; 62: 305-17.
[http://dx.doi.org/10.1016/j.rser.2016.04.057]
[66]
Wang F, Zhang C, Liu J, Fang X, Zhang Z. Highly stable graphite nanoparticle-dispersed phase change emulsions with little supercooling and high thermal conductivity for cold energy. Appl Energy 2017; 188: 97-106.
[http://dx.doi.org/10.1016/j.apenergy.2016.11.122]
[67]
Parsazadeh M, Duan X. Numerical and statistical study on melting of nanoparticle enhanced phase change material in a shell-and-tube thermal energy storage system. Appl Therm Eng 2017; 111: 950-60.
[http://dx.doi.org/10.1016/j.applthermaleng.2016.09.133]
[68]
Sobolciak P, Karkri M, Al-Maadeed MA, Krupa I. Thermal characterization of phase change materials based on linear low-density polyethylene, paraffin wax and expanded graphite. Renew Energy 2016; 88: 372-82.
[http://dx.doi.org/10.1016/j.renene.2015.11.056]
[69]
Zhong Y, Zhou M, Huang F, Lin T, Wan D. Effect of graphene aerogel on thermal behavior of phase change materials for thermal management. Sol Energy Mater Sol Cells 2013; 113: 195-200.
[http://dx.doi.org/10.1016/j.solmat.2013.01.046]
[70]
Saha M, Tambe P, Pal S. Thermodynamic approach to enhance the dispersion of graphene in epoxy matrix and its effect on mechanical and thermal properties of epoxy nanocomposites. Compos Interfaces 2016; 6440: 1-18.
[http://dx.doi.org/10.1080/09276440.2016.1136515]
[71]
Su W, Darkwa J, Kokogiannakis G, Li Y. Preparation of Microencapsulated Phase Change Materials (MEPCM) for thermal energy storage. Energy Procedia 2017; 121: 95-101.
[http://dx.doi.org/10.1016/j.egypro.2017.07.485]
[72]
Xiang J, Drzal LT. Investigation of exfoliated graphite nanoplatelets (xGnP) in improving thermal conductivity of paraffin wax-based phase change material. Sol Energy Mater Sol Cells 2011; 95: 1811-8.
[http://dx.doi.org/10.1016/j.solmat.2011.01.048]
[73]
Balandin AA. Thermal properties of graphene and nanostructured carbon materials. Nat Mater 2011; 10(8): 569-81.
[http://dx.doi.org/10.1038/nmat3064] [PMID: 21778997]
[74]
Ibos L, Radhouan T, Boudenne A, Fois M, Dujardin N, Candau Y. Thermophysical characterization of polymers according to the temperature using a periodic method. Polym Test 2018; 66: 235-43.
[75]
Harish S, Orejon D, Takata Y, Kohno M. Thermal conductivity enhancement of lauric acid phase change nanocomposite in solid and liquid state with single-walled carbon nanohorn inclusions. Thermochim Acta 2015; 600: 1-6.
[http://dx.doi.org/10.1016/j.tca.2014.12.004]
[76]
Liu X, Rao Z. Experimental study on the thermal performance of graphene and exfoliated graphite sheet for thermal energy storage phase change material. Thermochim Acta 2017; 647: 15-21.
[http://dx.doi.org/10.1016/j.tca.2016.11.010]
[77]
Karaipekli A, Biçer A, Sarı A, Tyagi VV. Thermal characteristics of expanded perlite/paraffin composite phase change material with enhanced thermal conductivity using carbon nanotubes. Energy Convers Manage 2017; 134: 373-81.
[http://dx.doi.org/10.1016/j.enconman.2016.12.053]