Gold Nanoparticles- Boon in Cancer Theranostics

Page: [5134 - 5151] Pages: 18

  • * (Excluding Mailing and Handling)

Abstract

Background: Cancer is the world’s second-largest cause of death, with an estimated 9.6 million fatalities in 2018. Malignant tumour (cancer) is caused by a mixture of genetic modifications due to the environmental variables that tend to activate or inactivate different genes, ultimately resulting in neoplastic transformations. Cancer is a multi-stage process that results from the conversion of the ordinary cells to tumour cells and progresses from a pre-cancer lesion to abnormal growth.

Methods: Chemotherapy inhibits the ability of the cells to divide rapidly in an abnormal manner, but this treatment simultaneously affects the entire cellular network in the human body leading to cytotoxic effects. In this review article, the same issue has been addressed by discussing various aspects of the newer class of drugs in cancer therapeutics, i.e., Gold Nanoparticles (AuNPs) from metal nanoparticle (NP) class.

Results: Metal NPs are advantageous over conventional chemotherapy as the adverse drug reactions are lesser. Additionally, ease of drug delivery, targeting and gene silencing are salient features of this treatment. Functionalized ligand-targeting metal NPs provide better energy deposition control in tumour. AuNPs are promising agents in the field of cancer treatment and are comprehensively studied as contrast agents, carriers of medicinal products, radiosensitizers and photothermal agents. For the targeted delivery of chemotherapeutic agents, AuNPs are used and also tend to enhance tumour imaging in vivo for a variety of cancer types and diseased organs.

Conclusion: The first part of the review focuses on various nano-carriers that are used for cancer therapy and deals with the progression of metal NPs in cancer therapy. The second part emphasizes the use of nanotechnology by considering the latest studies for diagnostic and therapeutic properties of AuNPs. AuNPs present the latest studies in the field of nanotechnology, which leads to the development of early-stage clinical trials. The next part of the review discusses the major features of five principal types of AuNPs: gold nanorods, gold nanoshells, gold nanospheres, gold nanocages, and gold nanostars that have their application in photothermal therapy (PTT).

Keywords: Tumor, metal nanoparticles, diagnostic, theranostic, ligand, cytotoxicity, photothermal therapy.

[1]
Blanco E, Hsiao A, Mann AP, Landry MG, Meric-Bernstam F, Ferrari M. Nanomedicine in cancer therapy: innovative trends and prospects. Cancer Sci 2011; 102(7): 1247-52.
[http://dx.doi.org/10.1111/j.1349-7006.2011.01941.x] [PMID: 21447010]
[2]
Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2007; 2(12): 751-60.
[http://dx.doi.org/10.1038/nnano.2007.387] [PMID: 18654426]
[3]
Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin 2013; 63(1): 11-30.
[http://dx.doi.org/10.3322/caac.21166] [PMID: 23335087]
[4]
Anand P, Kunnumakkara AB, Sundaram C, et al. Cancer is a preventable disease that requires major lifestyle changes. Pharm Res 2008; 25(9): 2097-116.
[http://dx.doi.org/10.1007/s11095-008-9661-9] [PMID: 18626751]
[5]
Conde J, Doria G, Baptista P. Noble metal nanoparticles applications in cancer. J Drug Deliv Sci Technol 2012.751075
[http://dx.doi.org/10.1155/2012/751075] [PMID: 22007307]
[6]
Vinardell MP, Mitjans M. Antitumor activities of metal oxide nanoparticles. Nanomaterials (Basel) 2015; 5(2): 1004-21.
[http://dx.doi.org/10.3390/nano5021004] [PMID: 28347048]
[7]
Levy-Nissenbaum E, Radovic-Moreno AF, Wang AZ, Langer R, Farokhzad OC. Nanotechnology and aptamers: applications in drug delivery. Trends Biotechnol 2008; 26(8): 442-9.
[http://dx.doi.org/10.1016/j.tibtech.2008.04.006] [PMID: 18571753]
[8]
Stewart BW, Bray F, Forman D, et al. Cancer prevention as part of precision medicine: ‘plenty to be done’. Carcinogenesis 2016; 37(1): 2-9.
[http://dx.doi.org/10.1093/carcin/bgv166] [PMID: 26590901]
[9]
Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ. Cancer statistics, 2007. CA Cancer J Clin 2007; 57(1): 43-66.
[http://dx.doi.org/10.3322/canjclin.57.1.43] [PMID: 17237035]
[10]
Sutradhar KB, Amin ML. Nanotechnology in cancer drug delivery and selective targeting. ISRN Nanotech 2014; 2014939378
[http://dx.doi.org/10.1155/2014/939378]
[11]
Zhao G, Rodriguez BL. Molecular targeting of liposomal nanoparticles to tumor microenvironment. Int J Nanomedicine 2013; 8: 61-71.
[PMID: 23293520]
[12]
Nguyen KT. Targeted nanoparticles for cancer therapy: Promises and challenge. J Nanomed Nanotechnol 2011; 2(5): 1-2.
[13]
Coates A, Abraham S, Kaye SB, et al. On the receiving end--patient perception of the side-effects of cancer chemotherapy. Eur J Cancer Clin Oncol 1983; 19(2): 203-8.
[http://dx.doi.org/10.1016/0277-5379(83)90418-2] [PMID: 6681766]
[14]
Narvekar M, Xue HY, Eoh JY, Wong HL. Nanocarrier for poorly water-soluble anticancer drugs--barriers of translation and solutions. AAPS PharmSciTech 2014; 15(4): 822-33.
[http://dx.doi.org/10.1208/s12249-014-0107-x] [PMID: 24687241]
[15]
Anchordoquy TJ, Barenholz Y, Boraschi D, et al. Mechanisms and barriers in cancer nanomedicine: addressing challenges, looking for solutions. ACS Nano 2017; 11(1): 12-8.
[http://dx.doi.org/10.1021/acsnano.6b08244] [PMID: 28068099]
[16]
Karimi M, Sahandi Zangabad P, Ghasemi A, et al. Temperature-responsive smart nanocarriers for delivery of therapeutic agents: Applications and recent advances. ACS Appl Mater Interfaces 2016; 8(33): 21107-33.
[http://dx.doi.org/10.1021/acsami.6b00371] [PMID: 27349465]
[17]
Liu J, Zhang W, Du X, et al. Molecular characterization and functional analysis of the GATA4 in tongue sole (Cynoglossus semilaevis). Comp Biochem Physiol B Biochem Mol Biol 2016; 193: 1-8.
[http://dx.doi.org/10.1016/j.cbpb.2015.12.001] [PMID: 26667142]
[18]
Yang C, Bromma K, Di Ciano-Oliveira C, Zafarana G, Van Prooijen M, Chithrani DB. Gold nanoparticle mediated combined cancer therapy. Cancer Nanotechnol 2018; 9(1): 4.
[http://dx.doi.org/10.1186/s12645-018-0039-3]
[19]
Chugh H, Sood D, Chandra I, Tomar V, Dhawan G, Chandra R. Role of gold and silver nanoparticles in cancer nano-medicine. Artif Cell Nanomed B 2018; 46(sup1): 1210-20.
[http://dx.doi.org/10.1080/21691401.2018.1449118] [PMID: 29533101]
[20]
Wu HQ, Wang CC. Biodegradable smart nanogels: A new platform for targeting drug delivery and biomedical diagnostics. Langmuir 2016; 32(25): 6211-25.
[http://dx.doi.org/10.1021/acs.langmuir.6b00842] [PMID: 27255455]
[21]
Nakamura Y, Mochida A, Choyke PL, Kobayashi H. Nanodrug delivery: Is the enhanced permeability and retention effect sufficient for curing cancer? Bioconjugate chem 2016; 27(10): 2225-38.
[http://dx.doi.org/10.1021/acs.bioconjchem.6b00437] [PMID: 27547843]
[22]
Koushik AM, Hu F, Kumar S. IEEE Global Communications Conference (GLOBECOM). 1-6.
[23]
Salzano G, Torchilin VP. Intracellular delivery of nanoparticles with cell penetrating peptides. Methods Mol Biol 2005; 4(2): 145.
[PMID: 26202282]
[24]
Couvreur P, Vauthier C. Nanotechnology: intelligent design to treat complex disease. Pharm Res 2006; 23(7): 1417-50.
[http://dx.doi.org/10.1007/s11095-006-0284-8] [PMID: 16779701]
[25]
Alonso MJ. Nanomedicines for overcoming biological barriers. Biomed Pharmacother 2004; 58(3): 168-72.
[http://dx.doi.org/10.1016/j.biopha.2004.01.007] [PMID: 15082339]
[26]
Ali HS, Ahmed S, Khan GA. Gold nanoparticles in cancer therapy. Eur J Pharm Med Res 2016; 3(2): 54-67.
[27]
Bhattacharyya S, Kudgus RA, Bhattacharya R, Mukherjee P. Inorganic nanoparticles in cancer therapy. Pharm Res 2011; 28(2): 237-59.
[http://dx.doi.org/10.1007/s11095-010-0318-0] [PMID: 21104301]
[28]
Ghosh P, Han G, De M, Kim CK, Rotello VM. Gold nanoparticles in delivery applications. Adv Drug Deliv Rev 2008; 60(11): 1307-15.
[http://dx.doi.org/10.1016/j.addr.2008.03.016] [PMID: 18555555]
[29]
Nishiyama N. Nanomedicine: nanocarriers shape up for long life. Nat Nanotechnol 2007; 2(4): 203-4.
[http://dx.doi.org/10.1038/nnano.2007.88] [PMID: 18654260]
[30]
Xie J, Lee S, Chen X. Nanoparticle-based theranostic agents. Adv Drug Deliv Rev 2010; 62(11): 1064-79.
[http://dx.doi.org/10.1016/j.addr.2010.07.009] [PMID: 20691229]
[31]
Sau TK, Rogach AL, Jäckel F, Klar TA, Feldmann J. Properties and applications of colloidal nonspherical noble metal nanoparticles. Adv Mater 2010; 22(16): 1805-25.
[http://dx.doi.org/10.1002/adma.200902557] [PMID: 20512954]
[32]
Sperling RA, Rivera Gil P, Zhang F, Zanella M, Parak WJ. Biological applications of gold nanoparticles. Chem Soc Rev 2008; 37(9): 1896-908.
[http://dx.doi.org/10.1039/b712170a] [PMID: 18762838]
[33]
Jain PK, Huang X, El-Sayed IH, El-Sayed MA. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res 2008; 41(12): 1578-86.
[http://dx.doi.org/10.1021/ar7002804] [PMID: 18447366]
[34]
Lee KS, El-Sayed MA. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition. J Phys Chem B 2006; 110(39): 19220-5.
[http://dx.doi.org/10.1021/jp062536y] [PMID: 17004772]
[35]
Sperling RA, Parak WJ. Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philos Trans- Royal Soc, Math Phys Eng Sci 2010; 368(1915): 1333-83.
[http://dx.doi.org/10.1098/rsta.2009.0273] [PMID: 20156828]
[36]
Chen H, Shao L, Ming T, et al. Understanding the photothermal conversion efficiency of gold nanocrystals. Small 2010; 6(20): 2272-80.
[http://dx.doi.org/10.1002/smll.201001109] [PMID: 20827680]
[37]
Day ES, Morton JG, West JL. Nanoparticles for thermal cancer therapy. J Biomech Eng 2009; 131(7)074001
[http://dx.doi.org/10.1115/1.3156800] [PMID: 19640133]
[38]
Sharma H, Mishra PK, Talegaonkar S, Vaidya B. Metal nanoparticles: a theranostic nanotool against cancer. Drug Discov Today 2015; 20(9): 1143-51.
[http://dx.doi.org/10.1016/j.drudis.2015.05.009] [PMID: 26007605]
[39]
Sharma A, Goyal AK, Rath G. Recent advances in metal nanoparticles in cancer therapy. J Drug Target 2018; 26(8): 617-32.
[http://dx.doi.org/10.1080/1061186X.2017.1400553] [PMID: 29095640]
[40]
Wahajuddin SA, Arora S. Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers. Int J Nanomedicine 2012; 7: 3445-71.
[http://dx.doi.org/10.2147/IJN.S30320] [PMID: 22848170]
[41]
Baselga J, Swain SM. CLEOPATRA: a phase III evaluation of pertuzumab and trastuzumab for HER2-positive metastatic breast cancer. Clin Breast Cancer 2010; 10(6): 489-91.
[http://dx.doi.org/10.3816/CBC.2010.n.065] [PMID: 21147694]
[42]
Cho WC, Roukos DH. Trastuzumab emtansine for advanced HER2-positive breast cancer and beyond: genome landscape-based targets. Expert Rev Anticancer Ther 2013; 13(1): 5-8.
[http://dx.doi.org/10.1586/era.12.152] [PMID: 23259420]
[43]
Zhou L, Xu N, Sun Y, Liu XM. Targeted biopharmaceuticals for cancer treatment. Cancer Lett 2014; 352(2): 145-51.
[http://dx.doi.org/10.1016/j.canlet.2014.06.020] [PMID: 25016064]
[44]
O’Shannessy DJ, Somers EB, Maltzman J, Smale R, Fu YS. Folate receptor alpha (FRA) expression in breast cancer: identification of a new molecular subtype and association with triple negative disease. Springerplus 2012; 1(1): 22.
[http://dx.doi.org/10.1186/2193-1801-1-22] [PMID: 23961352]
[45]
Danishefsky SJ, Allen JR. From the laboratory to the clinic: a retrospective on fully synthetic carbohydrate‐based anticancer vaccines. Angew Chem Int Ed Engl 2000; 39(5): 836-63.
[http://dx.doi.org/10.1002/(SICI)1521-3773(20000303)39:5<836:AID-ANIE836>3.0.CO;2-I] [PMID: 10760879]
[46]
Freire T, Bay S, Vichier-Guerre S, Lo-Man R, Leclerc C. Carbohydrate antigens: synthesis aspects and immunological applications in cancer. Mini Rev Med Chem 2006; 6(12): 1357-73.
[http://dx.doi.org/10.2174/138955706778992996] [PMID: 17168812]
[47]
Hakomori S. Glycosylation defining cancer malignancy: new wine in an old bottle. Proc Natl Acad Sci USA 2002; 99(16): 10231-3.
[http://dx.doi.org/10.1073/pnas.172380699] [PMID: 12149519]
[48]
El-Boubbou K, Zhu DC, Vasileiou C, et al. Magnetic glyco-nanoparticles: a tool to detect, differentiate, and unlock the glyco-codes of cancer via magnetic resonance imaging. J Am Chem Soc 2010; 132(12): 4490-9.
[http://dx.doi.org/10.1021/ja100455c] [PMID: 20201530]
[49]
Chatterjee DK, Diagaradjane P, Krishnan S. Nanoparticle-mediated hyperthermia in cancer therapy. Ther Deliv 2011; 2(8): 1001-14.
[http://dx.doi.org/10.4155/tde.11.72] [PMID: 22506095]
[50]
Rasmussen JW, Martinez E, Louka P, Wingett DG. Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert Opin Drug Deliv 2010; 7(9): 1063-77.
[http://dx.doi.org/10.1517/17425247.2010.502560] [PMID: 20716019]
[51]
Hanley C, Layne J, Punnoose A, et al. Preferential killing of cancer cells and activated human T cells using ZnO nanoparticles. Nanotechnology 2008; 19(29)295103
[http://dx.doi.org/10.1088/0957-4484/19/29/295103] [PMID: 18836572]
[52]
Sharma SK, Pujari PK, Sudarshan K, et al. Positron annihilation spectroscopic studies of solvothermally synthesized ZnO nanobipyramids and nanoparticles. J Chem Phys 2009; 149(13-14): 550-4.
[53]
Raghunandan D, Ravishankar B, Sharanbasava G, et al. Anti-cancer studies of noble metal nanoparticles synthesized using different plant extracts. Cancer Nanotechnol 2011; 2(1-6): 57-65.
[http://dx.doi.org/10.1007/s12645-011-0014-8] [PMID: 26069485]
[54]
Asharani PV, Hande MP, Valiyaveettil S. Anti-proliferative activity of silver nanoparticles. BMC Cell Biol 2009; 10(1): 65.
[http://dx.doi.org/10.1186/1471-2121-10-65] [PMID: 19761582]
[55]
Greulich C, Diendorf J, Simon T, Eggeler G, Epple M, Köller M. Uptake and intracellular distribution of silver nanoparticles in human mesenchymal stem cells. Acta Biomater 2011; 7(1): 347-54.
[http://dx.doi.org/10.1016/j.actbio.2010.08.003] [PMID: 20709196]
[56]
Kim S, Choi JE, Choi J, et al. Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicol In Vitro 2009; 23(6): 1076-84.
[http://dx.doi.org/10.1016/j.tiv.2009.06.001] [PMID: 19508889]
[57]
Rosas-Hernández H, Jiménez-Badillo S, Martínez-Cuevas PP, et al. Effects of 45-nm silver nanoparticles on coronary endothelial cells and isolated rat aortic rings. Toxicol Lett 2009; 191(2-3): 305-13.
[http://dx.doi.org/10.1016/j.toxlet.2009.09.014] [PMID: 19800954]
[58]
Hsin YH, Chen CF, Huang S, Shih TS, Lai PS, Chueh PJ. The apoptotic effect of nanosilver is mediated by a ROS- and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicol Lett 2008; 179(3): 130-9.
[http://dx.doi.org/10.1016/j.toxlet.2008.04.015] [PMID: 18547751]
[59]
Kalishwaralal K, Banumathi E, Ram Kumar Pandian S, et al. Silver nanoparticles inhibit VEGF induced cell proliferation and migration in bovine retinal endothelial cells. Colloids Surf B Biointerfaces 2009; 73(1): 51-7.
[http://dx.doi.org/10.1016/j.colsurfb.2009.04.025] [PMID: 19481908]
[60]
Sriram MI, Kanth SB, Kalishwaralal K, Gurunathan S. Antitumor activity of silver nanoparticles in Dalton’s lymphoma ascites tumor model. Int J Nanomedicine 2010; 5: 753-62.
[PMID: 21042421]
[61]
Zhang M, Song R, Liu Y, et al. Calcium overload mediated tumor therapy by calcium peroxide nanoparticles. Chem 2019; 5: 1-12.
[http://dx.doi.org/10.1016/j.chempr.2019.06.003]
[62]
Doskey CM, Buranasudja V, Wagner BA, et al. Tumor cells have decreased ability to metabolize H2O2: Implications for pharmacological ascorbate in cancer therapy. Redox Biol 2016; 10: 274-84.
[http://dx.doi.org/10.1016/j.redox.2016.10.010] [PMID: 27833040]
[63]
Ermak G, Davies KJ. Calcium and oxidative stress: from cell signaling to cell death. Mol Immunol 2002; 38(10): 713-21.
[http://dx.doi.org/10.1016/S0161-5890(01)00108-0] [PMID: 11841831]
[64]
Pinton P, Giorgi C, Siviero R, Zecchini E, Rizzuto R. Calcium and apoptosis: ER-mitochondria Ca2+ transfer in the control of apoptosis. Oncogene 2008; 27(50): 6407-18.
[http://dx.doi.org/10.1038/onc.2008.308] [PMID: 18955969]
[65]
Shukla R, Bansal V, Chaudhary M, Basu A, Bhonde RR, Sastry M. Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir 2005; 21(23): 10644-54.
[http://dx.doi.org/10.1021/la0513712] [PMID: 16262332]
[66]
Zhou H, Yang H, Wang G, Gao A, Yuan Z. Recent advances of plasmonic gold nanoparticles in optical sensing and therapy. Curr Pharm Des 2019; 25(46): 4861-76.
[http://dx.doi.org/10.2174/1381612826666191219130033] [PMID: 31854273]
[67]
Nel A, Xia T, Mädler L, Li N. Toxic potential of materials at the nanolevel. Science 2006; 311(5761): 622-7.
[http://dx.doi.org/10.1126/science.1114397] [PMID: 16456071]
[68]
Park JH, von Maltzahn G, Ruoslahti E, Bhatia SN, Sailor MJ. Micellar hybrid nanoparticles for simultaneous magnetofluorescent imaging and drug delivery. Angew Chem Int Ed Engl 2008; 47(38): 7284-8.
[http://dx.doi.org/10.1002/anie.200801810] [PMID: 18696519]
[69]
Chithrani BD, Ghazani AA, Chan WC. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 2006; 6(4): 662-8.
[http://dx.doi.org/10.1021/nl052396o] [PMID: 16608261]
[70]
Maeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul 2001; 41(1): 189-207.
[http://dx.doi.org/10.1016/S0065-2571(00)00013-3] [PMID: 11384745]
[71]
Maki S, Konno T, Maeda H. Image enhancement in computerized tomography for sensitive diagnosis of liver cancer and semiquantitation of tumor selective drug targeting with oily contrast medium. Cancer 1985; 56(4): 751-7.
[http://dx.doi.org/10.1002/1097-0142(19850815)56:4<751:AID-CNCR2820560409>3.0.CO;2-Y] [PMID: 3160453]
[72]
Pan Y, Wu Q, Qin L, Cai J, Du B. Gold nanoparticles inhibit VEGF165-induced migration and tube formation of endothelial cells via the Akt pathway. Biomed Res Int 2014.418624
[http://dx.doi.org/10.1155/2014/418624] [PMID: 24987682]
[73]
Roh YJ, Rho CR, Cho WK, Kang S. The antiangiogenic effects of gold nanoparticles on experimental choroidal neovascularization in mice. Invest Ophthalmol Vis Sci 2016; 57(15): 6561-7.
[http://dx.doi.org/10.1167/iovs.16-19754] [PMID: 27918830]
[74]
Tiloke C, Phulukdaree A, Anand K, Gengan RM, Chuturgoon AA. Moringa oleifera gold nanoparticles modulate oncogenes, tumor suppressor genes, and caspase-9 splice variants in A549 cells. J Cell Biochem 2016; 117(10): 2302-14.
[http://dx.doi.org/10.1002/jcb.25528] [PMID: 26923760]
[75]
Kang B, Mackey MA, El-Sayed MA. Nuclear targeting of gold nanoparticles in cancer cells induces DNA damage, causing cytokinesis arrest and apoptosis. J Am Chem Soc 2010; 132(5): 1517-9.
[http://dx.doi.org/10.1021/ja9102698] [PMID: 20085324]
[76]
Brown SD, Nativo P, Smith JA, et al. Gold nanoparticles for the improved anticancer drug delivery of the active component of oxaliplatin. J Am Chem Soc 2010; 132(13): 4678-84.
[http://dx.doi.org/10.1021/ja908117a] [PMID: 20225865]
[77]
Abel EE, Poonga PR, Panicker SG. Characterization and in vitro studies on anticancer, antioxidant activity against colon cancer cell line of gold nanoparticles capped with Cassia tora SM leaf extract. Appl Nanosci 2016; 6(1): 121-9.
[http://dx.doi.org/10.1007/s13204-015-0422-x]
[78]
Meyers JD, Cheng Y, Broome AM, et al. Peptide targeted gold nanoparticles for photodynamic therapy of brain cancer. Part Part Syst Charact 2015; 32(4): 448-57.
[http://dx.doi.org/10.1002/ppsc.201400119] [PMID: 25999665]
[79]
Turkevich J, Stevenson PC, Hillier J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Faraday Discuss Chem Soc 1951; 11: 55-75.
[http://dx.doi.org/10.1039/df9511100055]
[80]
Polte J. Fundamental growth principles of colloidal metal nanoparticles-a new perspective. CrystEngComm 2015; 17(36): 6809-30.
[http://dx.doi.org/10.1039/C5CE01014D]
[81]
Deraedt C, Salmon L, Gatard S, et al. Sodium borohydride stabilizes very active gold nanoparticle catalysts. Chem Commun (Camb) 2014; 50(91): 14194-6.
[http://dx.doi.org/10.1039/C4CC05946H] [PMID: 25283248]
[82]
Kalimuthu P, John SA. Studies on ligand exchange reaction of functionalized mercaptothiadiazole compounds onto citrate capped gold nanoparticles. Mater Chem Phys 2010; 122(2-3): 380-5.
[http://dx.doi.org/10.1016/j.matchemphys.2010.03.009]
[83]
Raj CR, Okajima T, Ohsaka T. Gold nanoparticle arrays for the voltammetric sensing of dopamine. J Electroanal Chem (Lausanne Switz) 2003; 543(2): 127-33.
[http://dx.doi.org/10.1016/S0022-0728(02)01481-X]
[84]
Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R. Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system. J Chem Soc 1994; 0(7): 801-2.
[85]
Brust M, Gordillo GJ. Electrocatalytic hydrogen redox chemistry on gold nanoparticles. J Am Chem Soc 2012; 134(7): 3318-21.
[http://dx.doi.org/10.1021/ja2096514] [PMID: 22295974]
[86]
Uson L, Sebastian V, Arruebo M, Santamaria J. Continuous microfluidic synthesis and functionalization of gold nanorods. Chem Eng Trans 2016; 285: 286-92.
[http://dx.doi.org/10.1016/j.cej.2015.09.103]
[87]
Jana NR, Gearheart L, Murphy CJ. Seeding growth for size control of 5-40 nm diameter gold nanoparticles. Langmuir 2001; 17(22): 6782-6.
[http://dx.doi.org/10.1021/la0104323]
[88]
Biswal J, Ramnani SP, Shirolikar S, Sabharwal S. Synthesis of rectangular plate like gold nanoparticles by in situ generation of seeds by combining both radiation and chemical methods. Radiat Phys Chem 2011; 80(1): 44-9.
[http://dx.doi.org/10.1016/j.radphyschem.2010.08.016]
[89]
Siddiqi KS, Husen A. Recent advances in plant-mediated engineered gold nanoparticles and their application in biological system. J Trace Elem Med Biol 2017; 40: 10-23.
[http://dx.doi.org/10.1016/j.jtemb.2016.11.012] [PMID: 28159216]
[90]
Jayaseelan C, Ramkumar R, Rahuman AA, Perumal P. Green synthesis of gold nanoparticles using seed aqueous extract of Abelmoschus esculentus and its antifungal activity. Ind Crops Prod 2013; 45: 423-9.
[http://dx.doi.org/10.1016/j.indcrop.2012.12.019]
[91]
Goodman CM, McCusker CD, Yilmaz T, Rotello VM. Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug Chem 2004; 15(4): 897-900.
[http://dx.doi.org/10.1021/bc049951i] [PMID: 15264879]
[92]
Feng ZV, Gunsolus IL, Qiu TA, et al. Impacts of gold nanoparticle charge and ligand type on surface binding and toxicity to Gram-negative and Gram-positive bacteria. Chem Sci (Camb) 2015; 6(9): 5186-96.
[http://dx.doi.org/10.1039/C5SC00792E] [PMID: 29449924]
[93]
Dykman LA, Khlebtsov NG. Gold nanoparticles in biology and medicine: recent advances and prospects. Acta Naturae 2011; 3(2): 34-55.
[http://dx.doi.org/10.32607/20758251-2011-3-2-34-55] [PMID: 22649683]
[94]
Villiers C, Freitas H, Couderc R, Villiers MB, Marche P. Analysis of the toxicity of gold nano particles on the immune system: effect on dendritic cell functions. J Nanopart Res 2010; 12(1): 55-60.
[http://dx.doi.org/10.1007/s11051-009-9692-0] [PMID: 21841911]
[95]
Doria G, Conde J, Veigas B, et al. Noble metal nanoparticles for biosensing applications. Sensors (Basel) 2012; 12(2): 1657-87.
[http://dx.doi.org/10.3390/s120201657] [PMID: 22438731]
[96]
Mishra D, Hubenak JR, Mathur AB. Nanoparticle systems as tools to improve drug delivery and therapeutic efficacy. J Biomed Mater Res A 2013; 101(12): 3646-60.
[http://dx.doi.org/10.1002/jbm.a.34642] [PMID: 23878102]
[97]
Conde J, Tian F, de la Fuente JM, Baptista PV. Editorial: cancer nanotheranostics: what have we learned so far? Front Chem 2016; 3: 71.
[http://dx.doi.org/10.3389/fchem.2015.00071] [PMID: 26779477]
[98]
Duncan B, Kim C, Rotello VM. Gold nanoparticle platforms as drug and biomacromolecule delivery systems. J Control Release 2010; 148(1): 122-7.
[http://dx.doi.org/10.1016/j.jconrel.2010.06.004] [PMID: 20547192]
[99]
Mendes R, Fernandes AR, Baptista PV. Gold nanoparticle approach to the selective delivery of gene silencing in cancer-the case for combined delivery? Genes (Basel) 2017; 8(3): 94.
[http://dx.doi.org/10.3390/genes8030094] [PMID: 28257109]
[100]
El-Aneed A. An overview of current delivery systems in cancer gene therapy. J Control Release 2004; 94(1): 1-14.
[http://dx.doi.org/10.1016/j.jconrel.2003.09.013] [PMID: 14684267]
[101]
Tamm I, Dörken B, Hartmann G. Antisense therapy in oncology: new hope for an old idea? Lancet 2001; 358(9280): 489-97.
[http://dx.doi.org/10.1016/S0140-6736(01)05629-X] [PMID: 11513935]
[102]
Park H, Tsutsumi H, Mihara H. Cell penetration and cell-selective drug delivery using α-helix peptides conjugated with gold nanoparticles. Biomaterials 2013; 34(20): 4872-9.
[http://dx.doi.org/10.1016/j.biomaterials.2013.03.049] [PMID: 23545289]
[103]
Pedrosa P, Vinhas R, Fernandes A, Baptista PV. Gold nanotheranostics: proof-of-concept or clinical tool? Nanomaterials (Basel) 2015; 5(4): 1853-79.
[http://dx.doi.org/10.3390/nano5041853] [PMID: 28347100]
[104]
Vinhas R, Fernandes AR, Baptista PV. Gold Nanoparticles for BCR-ABL1 gene silencing: Improving tyrosine kinase inhibitor efficacy in chronic myeloid leukemia. Mol Ther Nucleic Acids 2017; 7: 408-16.
[http://dx.doi.org/10.1016/j.omtn.2017.05.003] [PMID: 28624216]
[105]
Mendes R, Pedrosa P, Lima JC, Fernandes AR, Baptista PV. Photothermal enhancement of chemotherapy in breast cancer by visible irradiation of Gold Nanoparticles. Sci Rep 2017; 7(1): 10872.
[http://dx.doi.org/10.1038/s41598-017-11491-8] [PMID: 28883606]
[106]
Riley RS, Day ES. Gold nanoparticle-mediated photothermal therapy: applications and opportunities for multimodal cancer treatment. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2017; 9(4)e1449
[http://dx.doi.org/10.1002/wnan.1449] [PMID: 28160445]
[107]
Hainfeld JF, Slatkin DN, Smilowitz HM. The use of gold nanoparticles to enhance radiotherapy in mice. Phys Med Biol 2004; 49(18): N309-15.
[http://dx.doi.org/10.1088/0031-9155/49/18/N03] [PMID: 15509078]
[108]
Butterworth KT, Coulter JA, Jain S, et al. Evaluation of cytotoxicity and radiation enhancement using 1.9 nm gold particles: potential application for cancer therapy. Nanotechnology 2010; 21(29)295101
[http://dx.doi.org/10.1088/0957-4484/21/29/295101] [PMID: 20601762]
[109]
Murphy CJ, Gole AM, Stone JW, et al. Gold nanoparticles in biology: beyond toxicity to cellular imaging. Acc Chem Res 2008; 41(12): 1721-30.
[http://dx.doi.org/10.1021/ar800035u] [PMID: 18712884]
[110]
Conde J, Dias JT, Grazú V, Moros M, Baptista PV, de la Fuente JM. Revisiting 30 years of biofunctionalization and surface chemistry of inorganic nanoparticles for nanomedicine. Front Chem 2014; 2: 48.
[http://dx.doi.org/10.3389/fchem.2014.00048] [PMID: 25077142]
[111]
Curry T, Kopelman R, Shilo M, Popovtzer R. Multifunctional theranostic gold nanoparticles for targeted CT imaging and photothermal therapy. Contrast Media Mol Imaging 2014; 9(1): 53-61.
[http://dx.doi.org/10.1002/cmmi.1563] [PMID: 24470294]
[112]
Guo J, Rahme K, He Y, Li LL, Holmes JD, O’Driscoll CM. Gold nanoparticles enlighten the future of cancer theranostics. Int J Nanomedicine 2017; 12: 6131-52.
[http://dx.doi.org/10.2147/IJN.S140772] [PMID: 28883725]
[113]
Xu X, Ho W, Zhang X, Bertrand N, Farokhzad O. Cancer nanomedicine: from targeted delivery to combination therapy. Trends Mol Med 2015; 21(4): 223-32.
[http://dx.doi.org/10.1016/j.molmed.2015.01.001] [PMID: 25656384]
[114]
Pedrosa P, Heuer-Jungemann A, Kanaras AG, Fernandes AR, Baptista PV. Potentiating angiogenesis arrest in vivo via laser irradiation of peptide functionalised gold nanoparticles. J Nanobiotechnology 2017; 15(1): 85.
[http://dx.doi.org/10.1186/s12951-017-0321-2] [PMID: 29162137]
[115]
Catarina A, Nuno J, Simões S. Combination chemotherapy in cancer: Principles, evaluation and drug delivery strategies. Current Cancer Treat 2011; p. 9.
[http://dx.doi.org/10.5772/22656]
[116]
Groenendijk FH, Bernards R. Drug resistance to targeted therapies: déjà vu all over again. Mol Oncol 2014; 8(6): 1067-83.
[http://dx.doi.org/10.1016/j.molonc.2014.05.004] [PMID: 24910388]
[117]
Almeida JP, Figueroa ER, Drezek RA. Gold nanoparticle mediated cancer immunotherapy. Nanomed- Nanotechnol 2014; 10(3): 503-14.
[http://dx.doi.org/10.1016/j.nano.2013.09.011] [PMID: 25354691]
[118]
Hočevar S, Milošević A, Rodriguez-Lorenzo L, et al. Polymer-coated gold nanospheres do not impair the innate immune function of human b lymphocytes in vitro. ACS Nano 2019; 13(6): 6790-800.
[http://dx.doi.org/10.1021/acsnano.9b01492] [PMID: 31117377]
[119]
Wan J, Ma X, Xu D, Yang B, Yang S, Han S. Docetaxel-decorated anticancer drug and gold nanoparticles encapsulated apatite carrier for the treatment of liver cancer. J Photochem Photobiol B 2018; 185: 73-9.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.05.021] [PMID: 29870961]
[120]
Hu F, Zhao Y, Yu Y, et al. Docetaxel-mediated autophagy promotes chemoresistance in castration-resistant prostate cancer cells by inhibiting STAT3. Cancer Lett 2018; 416: 24-30.
[http://dx.doi.org/10.1016/j.canlet.2017.12.013] [PMID: 29246644]
[121]
Nagesh PKB, Johnson NR, Boya VKN, et al. PSMA targeted docetaxel-loaded superparamagnetic iron oxide nanoparticles for prostate cancer. Colloids Surf B Biointerfaces 2016; 144: 8-20.
[http://dx.doi.org/10.1016/j.colsurfb.2016.03.071] [PMID: 27058278]
[122]
Ohtaka A, Aoki H, Nagata M, et al. Sarcopenia is a poor prognostic factor of castration-resistant prostate cancer treated with docetaxel therapy. Prostate Int 2019; 7(1): 9-14.
[http://dx.doi.org/10.1016/j.prnil.2018.04.002] [PMID: 30937292]
[123]
Kumar SSD, Mahesh A, Antoniraj MG, Rathore HS, Houreld NN, Kandasamy R. Cellular imaging and folate receptor targeting delivery of gum kondagogu capped gold nanoparticles in cancer cells. Int J Biol Macromol 2018; 109: 220-30.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.12.069] [PMID: 29258900]
[124]
Lee CS, Kim H, Yu J, et al. Doxorubicin-loaded oligonucleotide conjugated gold nanoparticles: A promising in vivo drug delivery system for colorectal cancer therapy. Eur J Med Chem 2017; 142: 416-23.
[http://dx.doi.org/10.1016/j.ejmech.2017.08.063] [PMID: 28870452]
[125]
Yan JJ, Liao JZ, Lin JS, He XX. Active radar guides missile to its target: receptor-based targeted treatment of hepatocellular carcinoma by nanoparticulate systems. Tumour Biol 2015; 36(1): 55-67.
[http://dx.doi.org/10.1007/s13277-014-2855-3] [PMID: 25424700]
[126]
Connor DM, Broome AM. Gold nanoparticles for the delivery of cancer therapeutics. Adv Cancer Res 2018; 139: 163-84.
[http://dx.doi.org/10.1016/bs.acr.2018.05.001] [PMID: 29941104]
[127]
Park MT, Kim MJ, Kang YH, et al. Phytosphingosine in combination with ionizing radiation enhances apoptotic cell death in radiation-resistant cancer cells through ROS-dependent and -independent AIF release. Blood 2005; 105(4): 1724-33.
[http://dx.doi.org/10.1182/blood-2004-07-2938] [PMID: 15486061]
[128]
Watkins R, Wu L, Zhang C, Davis RM, Xu B. Natural product-based nanomedicine: recent advances and issues. Int J Nanomedicine 2015; 10: 6055-74.
[PMID: 26451111]
[129]
Vemuri SK, Banala RR, Subbaiah GP, Srivastava SK, Reddy AG, Malarvili T. Anti-cancer potential of a mix of natural extracts of turmeric, ginger and garlic: A cell-based study. Egyptian J Basic Appl Sci 2017; 4(4): 332-44.
[http://dx.doi.org/10.1016/j.ejbas.2017.07.005]
[130]
Perez EA, Vogel CL, Irwin DH, Kirshner JJ, Patel R. Multicenter phase II trial of weekly paclitaxel in women with metastatic breast cancer. J Clin Oncol 2001; 19(22): 4216-23.
[http://dx.doi.org/10.1200/JCO.2001.19.22.4216] [PMID: 11709565]
[131]
Sparano JA, Wang M, Martino S, et al. Weekly paclitaxel in the adjuvant treatment of breast cancer. N Engl J Med 2008; 358(16): 1663-71.
[http://dx.doi.org/10.1056/NEJMoa0707056] [PMID: 18420499]
[132]
Onetto N, Canetta R, Winograd B, et al. Overview of Taxol safety. J Natl Cancer Inst Monogr 1993; (15): 131-9.
[PMID: 7912519]
[133]
Hamel E. Evaluation of antimitotic agents by quantitative comparisons of their effects on the polymerization of purified tubulin. Cell Biochem Biophys 2003; 38(1): 1-22.
[http://dx.doi.org/10.1385/CBB:38:1:1] [PMID: 12663938]
[134]
Mollinedo F, Gajate C. Microtubules, microtubule-interfering agents and apoptosis. Apoptosis 2003; 8(5): 413-50.
[http://dx.doi.org/10.1023/A:1025513106330] [PMID: 12975575]
[135]
McGrogan BT, Gilmartin B, Carney DN, McCann A. Taxanes, microtubules and chemoresistant breast cancer. Biochim Biophys Acta 2008; 1785(2): 96-132.
[PMID: 18068131]
[136]
Maier-Lenz H, Hauns B, Haering B, et al. Phase I study of paclitaxel administered as a 1-hour infusion: toxicity and pharmacokinetics Semin Oncol 1997; 24(6)(Suppl. 19): S19-S16-S19-S19.
[PMID: 9427259]
[137]
Kim B, Lee C, Lee ES, Shin BS, Youn YS. Paclitaxel and curcumin co-bound albumin nanoparticles having antitumor potential to pancreatic cancer. Asian J Pharm Sci 2016; 11(6): 708-14.
[http://dx.doi.org/10.1016/j.ajps.2016.05.005]
[138]
Sivaraj M, Mukherjee A, Mariappan R, Mariadoss AV, Jeyaraj M. Polyorganophosphazene stabilized gold nanoparticles for intracellular drug delivery in breast carcinoma cells. Process Biochem 2018; 72: 152-61.
[http://dx.doi.org/10.1016/j.procbio.2018.06.006]
[139]
Baneshi M, Dadfarnia S, Shabani AMH, Sabbagh SK, Haghgoo S, Bardania H. A novel theranostic system of AS1411 aptamer-functionalized albumin nanoparticles loaded on iron oxide and gold nanoparticles for doxorubicin delivery. Int J Pharm 2019; 564: 145-52.
[http://dx.doi.org/10.1016/j.ijpharm.2019.04.025] [PMID: 30978484]
[140]
Manivasagan P, Bharathiraja S, Bui NQ, et al. Doxorubicin-loaded fucoidan capped gold nanoparticles for drug delivery and photoacoustic imaging. Int J Biol Macromol 2016; 91: 578-88.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.06.007] [PMID: 27267570]
[141]
Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin 2015; 65(2): 87-108.
[http://dx.doi.org/10.3322/caac.21262] [PMID: 25651787]
[142]
Liu C, Zhao G, Liu J, et al. Novel biodegradable lipid nano complex for siRNA delivery significantly improving the chemosensitivity of human colon cancer stem cells to paclitaxel. J Control Release 2009; 140(3): 277-83.
[http://dx.doi.org/10.1016/j.jconrel.2009.08.013] [PMID: 19699770]
[143]
Mohammadian F, Pilehvar-Soltanahmadi Y, Mofarrah M, Dastani-Habashi M, Zarghami N. Down regulation of miR-18a, miR-21 and miR-221 genes in gastric cancer cell line by chrysin-loaded PLGA-PEG nanoparticles. Artif Cells Nanomed Biotechnol 2016; 44(8): 1972-8.
[http://dx.doi.org/10.3109/21691401.2015.1129615] [PMID: 26772615]
[144]
Mohammadinejad S, Akbarzadeh A, Rahmati-Yamchi M, et al. Preparation and evaluation of chrysin encapsulated in PLGA-PEG nanoparticles in the T47-D breast cancer cell line. Asian Pac J Cancer Prev 2015; 16(9): 3753-8.
[http://dx.doi.org/10.7314/APJCP.2015.16.9.3753] [PMID: 25987033]
[145]
Khoo BY, Chua SL, Balaram P. Apoptotic effects of chrysin in human cancer cell lines. Int J Mol Sci 2010; 11(5): 2188-99.
[http://dx.doi.org/10.3390/ijms11052188] [PMID: 20559509]
[146]
Schuemann J, Berbeco R, Chithrani DB, et al. Roadmap to clinical use of gold nanoparticles for radiation sensitization. Int J Radiat Oncol Biol Phys 2016; 94(1): 189-205.
[http://dx.doi.org/10.1016/j.ijrobp.2015.09.032] [PMID: 26700713]
[147]
Banu H, Sethi DK, Edgar A, et al. Doxorubicin loaded polymeric gold nanoparticles targeted to human folate receptor upon laser photothermal therapy potentiates chemotherapy in breast cancer cell lines. J Photochem Photobiol B 2015; 149: 116-28.
[http://dx.doi.org/10.1016/j.jphotobiol.2015.05.008] [PMID: 26057021]
[148]
Maity R, Chatterjee M, Banerjee A, et al. Gold nanoparticle-assisted enhancement in the anti-cancer properties of theaflavin against human ovarian cancer cells. Mat Sci Eng C-Mater 2019; p. 109909.
[149]
Karakocak BB, Liang J, Biswas P, Ravi N. Hyaluronate coating enhances the delivery and biocompatibility of gold nanoparticles. Carbohydr Polym 2018; 186: 243-51.
[http://dx.doi.org/10.1016/j.carbpol.2018.01.046] [PMID: 29455984]
[150]
Kirby JS, Miller CJ. Intralesional chemotherapy for nonmelanoma skin cancer: a practical review. J Am Acad Dermatol 2010; 63(4): 689-702.
[http://dx.doi.org/10.1016/j.jaad.2009.09.048] [PMID: 20605654]
[151]
Wu XM, Todo H, Sugibayashi K. Enhancement of skin permeation of high molecular compounds by a combination of microneedle pretreatment and iontophoresis. J Control Release 2007; 118(2): 189-95.
[http://dx.doi.org/10.1016/j.jconrel.2006.12.017] [PMID: 17270306]
[152]
Jose A, Labala S, Venuganti VV. Co-delivery of curcumin and STAT3 siRNA using deformable cationic liposomes to treat skin cancer. J Drug Target 2017; 25(4): 330-41.
[http://dx.doi.org/10.1080/1061186X.2016.1258567] [PMID: 27819148]
[153]
Hsiao PF, Tsai HC, Peng S, et al. Transdermal delivery of poly (ethylene glycol)-co-oleylamine modified gold nanoparticles: Effect of size and shape. Mater Chem Phys 2019; 224: 22-8.
[http://dx.doi.org/10.1016/j.matchemphys.2018.11.060]
[154]
Cai C, Wang M, Wang X, et al. Transferrin adsorbed on pegylated gold nanoparticles and its relevance to targeting specificity. J Nanosci Nanotechnol 2018; 18(8): 5306-13.
[http://dx.doi.org/10.1166/jnn.2018.15435] [PMID: 29458581]
[155]
Cheng Y, Meyers JD, Agnes RS, et al. Addressing brain tumors with targeted gold nanoparticles: a new gold standard for hydrophobic drug delivery? Small 2011; 7(16): 2301-6.
[http://dx.doi.org/10.1002/smll.201100628] [PMID: 21630446]
[156]
Eghtedari M, Liopo AV, Copland JA, Oraevsky AA, Motamedi M. Engineering of hetero-functional gold nanorods for the in vivo molecular targeting of breast cancer cells. Nano Lett 2009; 9(1): 287-91.
[http://dx.doi.org/10.1021/nl802915q] [PMID: 19072129]
[157]
Zhang Z, Jia J, Lai Y, Ma Y, Weng J, Sun L. Conjugating folic acid to gold nanoparticles through glutathione for targeting and detecting cancer cells. Bioorg Med Chem 2010; 18(15): 5528-34.
[http://dx.doi.org/10.1016/j.bmc.2010.06.045] [PMID: 20621495]
[158]
Zhao W, Brook MA, Li Y. Design of gold nanoparticle-based colorimetric biosensing assays. ChemBioChem 2008; 9(15): 2363-71.
[http://dx.doi.org/10.1002/cbic.200800282] [PMID: 18821551]
[159]
Medley CD, Smith JE, Tang Z, Wu Y, Bamrungsap S, Tan W. Gold nanoparticle-based colorimetric assay for the direct detection of cancerous cells. Anal Chem 2008; 80(4): 1067-72.
[http://dx.doi.org/10.1021/ac702037y] [PMID: 18198894]
[160]
Lu W, Arumugam SR, Senapati D, et al. Multifunctional oval-shaped gold-nanoparticle-based selective detection of breast cancer cells using simple colorimetric and highly sensitive two-photon scattering assay. ACS Nano 2010; 4(3): 1739-49.
[http://dx.doi.org/10.1021/nn901742q] [PMID: 20155973]
[161]
Ambrosi A, Airò F, Merkoçi A. Enhanced gold nanoparticle based ELISA for a breast cancer biomarker. Anal Chem 2010; 82(3): 1151-6.
[http://dx.doi.org/10.1021/ac902492c] [PMID: 20043655]
[162]
Kang JH, Asami Y, Murata M, et al. Gold nanoparticle-based colorimetric assay for cancer diagnosis. Biosens Bioelectron 2010; 25(8): 1869-74.
[http://dx.doi.org/10.1016/j.bios.2009.12.022] [PMID: 20153162]
[163]
Zhou F, Yuan L, Wang H, Li D, Chen H. Gold nanoparticle layer: a promising platform for ultra-sensitive cancer detection. Langmuir 2011; 27(6): 2155-8.
[http://dx.doi.org/10.1021/la1049937] [PMID: 21319767]
[164]
Shi X, Wang S, Meshinchi S, et al. Dendrimer-entrapped gold nanoparticles as a platform for cancer-cell targeting and imaging. Small 2007; 3(7): 1245-52.
[http://dx.doi.org/10.1002/smll.200700054] [PMID: 17523182]
[165]
Huang X, Jain PK, El-Sayed IH, El-Sayed MA. Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine (Lond) 2007; 2(5): 681-93.
[http://dx.doi.org/10.2217/17435889.2.5.681] [PMID: 17976030]
[166]
Di Pasqua AJ, Mishler RE II, Ship YL, Dabrowiak JC, Asefa T. Preparation of antibody-conjugated gold nanoparticles. Mater Lett 2009; 63(21): 1876-9.
[http://dx.doi.org/10.1016/j.matlet.2009.05.070]
[167]
Alkilany AM, Lohse SE, Murphy CJ. The gold standard: gold nanoparticle libraries to understand the nano-bio interface. Acc Chem Res 2013; 46(3): 650-61.
[http://dx.doi.org/10.1021/ar300015b] [PMID: 22732239]
[168]
Rengan AK, Jagtap M, De A, Banerjee R, Srivastava R. Multifunctional gold coated thermo-sensitive liposomes for multimodal imaging and photo-thermal therapy of breast cancer cells. Nanoscale 2014; 6(2): 916-23.
[http://dx.doi.org/10.1039/C3NR04448C] [PMID: 24281647]
[169]
Coughlin AJ, Ananta JS, Deng N, Larina IV, Decuzzi P, West JL. Gadolinium conjugated gold nanoshells for multimodal diagnostic imaging and photothermal cancer therapy. Small 2014; 10(3): 556-65.
[http://dx.doi.org/10.1002/smll.201302217] [PMID: 24115690]
[170]
Meng L, Niu L, Li L, Lu Q, Fei Z, Dyson PJ. Gold nanoparticles grown on ionic liquid-functionalized single-walled carbon nanotubes: new materials for photothermal therapy. Chemistry 2012; 18(42): 13314-9.
[http://dx.doi.org/10.1002/chem.201201811] [PMID: 22945763]
[171]
Huang X, El-Sayed MA. Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy. J Adv Res 2010; 1(1): 13-28.
[http://dx.doi.org/10.1016/j.jare.2010.02.002]
[172]
Xu W, Lin Q, Yin Y, et al. a review on cancer therapy based on the photothermal effect of gold nanorod. Curr Pharm Des 2019; 25(46): 4836-47.
[http://dx.doi.org/10.2174/1381612825666191216150052] [PMID: 31840600]
[173]
Huang X, El-Sayed IH, Qian W, El-Sayed MA. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 2006; 128(6): 2115-20.
[http://dx.doi.org/10.1021/ja057254a] [PMID: 16464114]
[174]
Link S, Mohamed MB, El-Sayed MA. Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. J Phys Chem B 1999; 103(16): 3073-7.
[http://dx.doi.org/10.1021/jp990183f]
[175]
Morales-Dalmau J, Vilches C, de Miguel I, Sanz V, Quidant R. Optimum morphology of gold nanorods for light-induced hyperthermia. Nanoscale 2018; 10(5): 2632-8.
[http://dx.doi.org/10.1039/C7NR06825E] [PMID: 29355866]
[176]
Yang W, Liang H, Ma S, Wang D, Huang J. Gold nanoparticle based photothermal therapy: Development and application for effective cancer treatment. Sus Mater Technol 2019; 22e00109
[http://dx.doi.org/10.1016/j.susmat.2019.e00109]
[177]
Hirsch LR, Stafford RJ, Bankson JA, et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci USA 2003; 100(23): 13549-54.
[http://dx.doi.org/10.1073/pnas.2232479100] [PMID: 14597719]
[178]
Prevo BG, Esakoff SA, Mikhailovsky A, Zasadzinski JA. Scalable routes to gold nanoshells with tunable sizes and response to near-infrared pulsed-laser irradiation. Small 2008; 4(8): 1183-95.
[http://dx.doi.org/10.1002/smll.200701290] [PMID: 18623295]
[179]
Kennedy LC, Bickford LR, Lewinski NA, et al. A new era for cancer treatment: gold-nanoparticle-mediated thermal therapies. Small 2011; 7(2): 169-83.
[http://dx.doi.org/10.1002/smll.201000134] [PMID: 21213377]
[180]
Huang X, Qian W, El-Sayed IH, El-Sayed MA. The potential use of the enhanced nonlinear properties of gold nanospheres in photothermal cancer therapy. Lasers Surg Med 2007; 39(9): 747-53.
[http://dx.doi.org/10.1002/lsm.20577] [PMID: 17960762]
[181]
Sun H, Su J, Meng Q, et al. Cancer cell membrane coated gold nanocages with hyperthermia triggered drug release and homotypic target inhibits growth and metastasis of breast cancer. Adv Funct Mater 2017; 27(3)1604300
[http://dx.doi.org/10.1002/adfm.201604300]
[182]
Liu Y, Ashton JR, Moding EJ, et al. A plasmonic gold nanostar theranostic probe for in vivo tumor imaging and photothermal therapy. Theranostics 2015; 5(9): 946-60.
[http://dx.doi.org/10.7150/thno.11974] [PMID: 26155311]
[183]
Dam DH, Culver KS, Kandela I, et al. Biodistribution and in vivo toxicity of aptamer-loaded gold nanostars. Nanomed- Nanotechnol 2015; 11(3): 671-9.
[http://dx.doi.org/10.1016/j.nano.2014.10.005] [PMID: 25461281]