Development of Strategies for Glycopeptide Synthesis: An Overview on the Glycosidic Linkage

Page: [2475 - 2497] Pages: 23

  • * (Excluding Mailing and Handling)

Abstract

Glycoproteins and glycopeptides are an interesting focus of research, because of their potential use as therapeutic agents, since they are related to carbohydrate-carbohydrate, carbohydrate-protein, and carbohydrate-lipid interactions, which are commonly involved in biological processes. It has been established that natural glycoconjugates could be an important source of templates for the design and development of molecules with therapeutic applications. However, isolating large quantities of glycoconjugates from biological sources with the required purity is extremely complex, because these molecules are found in heterogeneous environments and in very low concentrations. As an alternative to solving this problem, the chemical synthesis of glycoconjugates has been developed. In this context, several methods for the synthesis of glycopeptides in solution and/or solid-phase have been reported. In most of these methods, glycosylated amino acid derivatives are used as building blocks for both solution and solid-phase synthesis. The synthetic viability of glycoconjugates is a critical parameter for allowing their use as drugs to mitigate the impact of microbial resistance and/or cancer. However, the chemical synthesis of glycoconjugates is a challenge, because these molecules possess multiple reaction sites and have a very specific stereochemistry. Therefore, it is necessary to design and implement synthetic routes, which may involve various protection schemes but can be stereoselective, environmentally friendly, and high-yielding. This review focuses on glycopeptide synthesis by recapitulating the progress made over the last 15 years.

Keywords: Glycopeptides, glycosidic linkage, building blocks, glycosylated amino acid, solid phase peptide synthesis, click chemistry.

Graphical Abstract

[1]
Seeberger, P.H.; Rademache, C. Carbohydrates as Drugs; Springer International Publishing, 2014.
[http://dx.doi.org/10.1007/978-3-319-08675-0]
[2]
Niederhafner, P.; Reinis, M.; Sebestík, J.; Jezek, J. Glycopeptide dendrimers, part III: a review. Use of glycopeptide dendrimers in immunotherapy and diagnosis of cancer and viral diseases. J. Pept. Sci., 2008, 14(5), 556-587.
[http://dx.doi.org/10.1002/psc.1011] [PMID: 18275089]
[3]
Baum, L.G.; Garner, O.B.; Schaefer, K.; Lee, B. Microbe-host interactions are positively and negatively regulated by galectin-glycan interactions. Front. Immunol., 2014, 5, 284.
[http://dx.doi.org/10.3389/fimmu.2014.00284] [PMID: 24995007]
[4]
Kaur, R. Neetu; Mudgal, R.; Jose, J.; Kumar, P.; Tomar, S. Glycan-dependent chikungunya viral infection divulged by antiviral activity of NAG specific chi-like lectin. Virology, 2019, 526, 91-98.
[http://dx.doi.org/10.1016/j.virol.2018.10.009] [PMID: 30388630]
[5]
Banerjee, N.; Mukhopadhyay, S. Viral glycoproteins: biological role and application in diagnosis. Virusdisease, 2016, 27(1), 1-11.
[http://dx.doi.org/10.1007/s13337-015-0293-5] [PMID: 26925438]
[6]
Brik, A. New strategies for glycopeptide, Neoglycopeptide, and glycoprotein synthesis.Comprehensive Natural Products II; Elsevier Publishing, 2010, Vol. 6, pp. 55-89.
[7]
Ghazarian, H.; Idoni, B.; Oppenheimer, S.B. A glycobiology review: carbohydrates, lectins and implications in cancer therapeutics. Acta Histochem., 2011, 113(3), 236-247.
[http://dx.doi.org/10.1016/j.acthis.2010.02.004] [PMID: 20199800]
[8]
Bhagavan, N.V.; Ha, C.E. Glycoconjugates, glycoproteins, and glycolipids.Essentials of Medical Biochemistry; Academic Press, 2011, pp. 75-83.
[9]
Ielasi, F.S.; Perez, M.A.; Donohue, D.; Claes, S.; Sahli, H.; Schols, D.; Willaert, R.G. Lectin-glycan interaction network-based identification of host receptors of microbial pathogenic adhesins. MBio, 2016, 7(4), 1-17.
[http://dx.doi.org/10.1128/mBio.00584-16] [PMID: 27406561]
[10]
Lis, H.; Sharon, N. Protein glycosylation. Structural and functional aspects. Eur. J. Biochem., 1993, 218(1), 1-27.
[http://dx.doi.org/10.1111/j.1432-1033.1993.tb18347.x] [PMID: 8243456]
[11]
Kornfeld, R.; Kornfeld, S. Assembly of asparagine-linked oligosaccharides. Annu. Rev. Biochem., 1985, 54, 631-664.
[http://dx.doi.org/10.1146/annurev.bi.54.070185.003215] [PMID: 3896128]
[12]
Kunz, H.; Schultz, M. Glycopeptide synthesis in solution and on the solid phase. Carbohyd. Chem. Biol., 2008, 1-4, 267-304.
[13]
Hecht, S. Bioorganic Chemistry Carbohydrates; Oxford University Press, 1999.
[14]
Jones, E.M.; Polt, R. CNS active O-linked glycopeptides. Front Chem., 2015, 3, 40.
[http://dx.doi.org/10.3389/fchem.2015.00040] [PMID: 26157795]
[15]
Zhang, Y.; Wang, F. Carbohydrate drugs: current status and development prospect. Drug Discov. Ther., 2015, 9(2), 79-87.
[http://dx.doi.org/10.5582/ddt.2015.01028] [PMID: 25994058]
[16]
Allen, J.R.; Danishefsky, S.J. New applications of the N-pentenyl glycoside method in the synthesis and immunoconjugation of fucosyl GM1: a highly tumor-specific antigen associated with small cell lung carcinoma. J. Am. Chem. Soc., 1999, 121, 10875-10882.
[http://dx.doi.org/10.1021/ja992594f]
[17]
Xiao, A.; Zheng, X.J.; Song, C.; Gui, Y.; Huo, C.X.; Ye, X.S. Synthesis and immunological evaluation of MUC1 glycopeptide conjugates bearing N-acetyl modified STn derivatives as anticancer vaccines. Org. Biomol. Chem., 2016, 14(30), 7226-7237.
[http://dx.doi.org/10.1039/C6OB01092J] [PMID: 27380866]
[18]
Hossain, M.K.; Wall, K.A. Immunological evaluation of recent MUC1 glycopeptide cancer vaccines. Vaccines , 2016, 4(3), 1-13.
[http://dx.doi.org/10.3390/vaccines4030025] [PMID: 27472370]
[19]
Yin, Z.; Huang, X. Recent development in carbohydrate based anti-cancer vaccines. J. Carbohydr. Chem., 2012, 31(3), 143-186.
[http://dx.doi.org/10.1080/07328303.2012.659364] [PMID: 22468019]
[20]
Danishefsky, S.J.; Allen, J.R. From the laboratory to the clinic: a retrospective on fully synthetic carbohydrate-based anticancer vaccines frequently used abbreviations are listed in the appendix. Angew. Chem. Int. Ed. Engl., 2000, 39(5), 836-863.
[http://dx.doi.org/10.1002/(SICI)1521-3773(20000303)39:5<836:AID-ANIE836>3.0.CO;2-I] [PMID: 10760879]
[21]
Cai, H.; Huang, Z.H.; Shi, L.; Zhao, Y.F.; Kunz, H.; Li, Y.M. Towards a fully synthetic MUC1-based anticancer vaccine: efficient conjugation of glycopeptides with mono-, di-, and tetravalent lipopeptides using click chemistry. Chemistry, 2011, 17(23), 6396-6406.
[http://dx.doi.org/10.1002/chem.201100217] [PMID: 21538615]
[22]
Ofek, I.; Hasty, D.L.; Sharon, N. Anti-adhesion therapy of bacterial diseases: prospects and problems. FEMS Immunol. Med. Microbiol., 2003, 38(3), 181-191.
[http://dx.doi.org/10.1016/S0928-8244(03)00228-1] [PMID: 14522453]
[23]
Blaskovich, M.A.T.; Hansford, K.A.; Butler, M.S.; Jia, Z.; Mark, A.E.; Cooper, M.A. Developments in glycopeptide antibiotics. ACS Infect. Dis., 2018, 4(5), 715-735.
[http://dx.doi.org/10.1021/acsinfecdis.7b00258] [PMID: 29363950]
[24]
Moellering, R.C. Vancomycin: a 50-year reassessment. Clin. Infect. Dis., 2006, 42(Suppl. 1), S3-S4.
[http://dx.doi.org/10.1086/491708] [PMID: 16323117]
[25]
Binda, E.; Cappelletti, P.; Marinelli, F.; Marcone, G.L. Specificity of induction of glycopeptide antibiotic resistance in the producing actinomycetes. Antibiotics (Basel), 2018, 7(2), 1-10.
[http://dx.doi.org/10.3390/antibiotics7020036] [PMID: 29693566]
[26]
Mühlberg, E.; Umstätter, F.; Kleist, C.; Domhan, C.; Mier, W.; Uhl, P. Renaissance of vancomycin: approaches for breaking antibiotic resistance in multidrug-resistant bacteria. Can. J. Microbiol., 2020, 66(1), 11-16.
[http://dx.doi.org/10.1139/cjm-2019-0309] [PMID: 31545906]
[27]
Sonawane, A.; Mohanty, S.; Jagannathan, L.; Bekolay, A.; Banerjee, S. Role of glycans and glycoproteins in disease development by Mycobacterium tuberculosis. Crit. Rev. Microbiol., 2012, 38(3), 250-266.
[http://dx.doi.org/10.3109/1040841X.2011.653550] [PMID: 22324751]
[28]
Michaud, G.; Visini, R.; Bergmann, M.; Salerno, G.; Bosco, R.; Gillon, E.; Richichi, B.; Nativi, C.; Imberty, A.; Stocker, A.; Darbre, T.; Reymond, J.L. Overcoming antibiotic resistance in Pseudomonas aeruginosa biofilms using glycopeptide dendrimers. Chem. Sci. (Camb.), 2016, 7(1), 166-182.
[http://dx.doi.org/10.1039/C5SC03635F] [PMID: 29896342]
[29]
Zhou, N.; Pan, T.; Zhang, J.; Li, Q.; Zhang, X.; Bai, C.; Huang, F.; Peng, T.; Zhang, J.; Liu, C.; Tao, L.; Zhang, H. Glycopeptide antibiotics potently inhibit cathepsin L in the late endosome/lysosome and block the entry of ebola virus, Middle East Respiratory Syndrome Coronavirus (MERS-CoV), and Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV). J. Biol. Chem., 2016, 291(17), 9218-9232.
[http://dx.doi.org/10.1074/jbc.M116.716100] [PMID: 26953343]
[30]
Alam, S.M.; Aussedat, B.; Vohra, Y.; Meyerhoff, R.R.; Cale, E.M.; Walkowicz, W.E.; Radakovich, N.A.; Anasti, K.; Armand, L.; Parks, R.; Sutherland, L.; Scearce, R.; Joyce, M.G.; Pancera, M.; Druz, A.; Georgiev, I.S.; Von Holle, T.; Eaton, A.; Fox, C.; Reed, S.G.; Louder, M.; Bailer, R.T.; Morris, L. AbdoolKarim, S.S.; Cohen, M.; Liao, H.X.; Montefiori, D.C.; Park, P.K.; Tejada, A.F.; Wiehe, K.; Santra, S.; Kepler, T.B.; Saunders, K.O.; Sodroski, J.; Kwong, P.D.; Mascola, J.R.; Bonsignori, M.; Moody, M.A.; Danishefsky, S.; Haynes, B.F. Mimicry of an HIV broadly neutralizing antibody epitope with a synthetic glycopeptide. Sci. Transl. Med., 2017, 9(381), 1-10.
[http://dx.doi.org/10.1126/scitranslmed.aai7521] [PMID: 28298421]
[31]
Tan, H.; Guo, H.; Wang, S.; Kong, Q.; Li, W.; Zeng, W. Chemistry and biology of glycopeptides with antibiotic activity. Protein Pept. Lett., 2014, 21(10), 1031-1047.
[http://dx.doi.org/10.2174/0929866521666140626110327] [PMID: 24975667]
[32]
McDonald, D.M.; Byrne, S.N.; Payne, R.J. Synthetic self-adjuvanting glycopeptide cancer vaccines. Front Chem., 2015, 3, 60.
[http://dx.doi.org/10.3389/fchem.2015.00060] [PMID: 26557640]
[33]
Liu, X.H.; Zhu, C.H.; Wu, X.Z. The effects of gekko sulfated glycopeptide and basic fibroblast growth factor on human fibrosarcoma HT1080 cells. Precis. Med. Res., 2019, 1, 109-113.
[http://dx.doi.org/10.12032/PMR201900018]
[34]
Moradi, S.V.; Hussein, W.M.; Varamini, P.; Simerska, P.; Toth, I. Glycosylation, an effective synthetic strategy to improve the bioavailability of therapeutic peptides. Chem. Sci. (Camb.), 2016, 7(4), 2492-2500.
[http://dx.doi.org/10.1039/C5SC04392A] [PMID: 28660018]
[35]
Solá, R.J.; Griebenow, K. Effects of glycosylation on the stability of protein pharmaceuticals. J. Pharm. Sci., 2009, 98(4), 1223-1245.
[http://dx.doi.org/10.1002/jps.21504] [PMID: 18661536]
[36]
Rodríguez, V. Synthesis of N - Glycopeptides derived from LfcinB and Evaluation of their Antibacterial and Antifungal Activity; National University of Columbia Press, 2019.
[37]
Demchenko, A.V. Handbook of Chemical Glycosylation: Advances in Stereoselectivity and Therapeutic Relevance; John Wiley and Sons, 2008.
[38]
Varki, A.; Freeze, H.H.; Manzi, A.E. Overview of glycoconjugate analysis. Curr. Protoc. Protein Sci., 2009, 57(1), 1-10.
[PMID: 19688734]
[39]
Guo, J.; Ye, X.S. Protecting groups in carbohydrate chemistry: influence on stereoselectivity of glycosylations. Molecules, 2010, 15(10), 7235-7265.
[http://dx.doi.org/10.3390/molecules15107235] [PMID: 20966873]
[40]
Zhu, X.; Schmidt, R.R. Efficient synthesis of S-linked glycopeptides in aqueous solution by a convergent strategy. Chemistry, 2004, 10(4), 875-887.
[http://dx.doi.org/10.1002/chem.200305163] [PMID: 14978813]
[41]
Cudic, M.; Burstein, G.D. Preparation of glycosylated amino acids suitable for fmoc solid-phase assembly, 2008.
[42]
Rákosi, K.; Csikós, O.S.; Kalmár, L.; Szurmai, Z.; Kerékgyártó, J.; Tóth, G.K. Synthesis of N-glycopeptides applying glycoamino acid building blocks with a combined fmoc/boc strategy. Protein Pept. Lett., 2011, 18(7), 679-683.
[http://dx.doi.org/10.2174/092986611795446003] [PMID: 21342098]
[43]
Meinjohanns, E.; Meldal, M.; Paulsen, H.; Dwek, R.A.; Bock, K. Novel sequential solid-phase synthesis of N-linked glycopeptides from natural sources. J. Chem. Soc. Perkin Trans., 1998, 1, 549-560.
[http://dx.doi.org/10.1039/a705528e]
[44]
Zhang, Y.; Muthana, S.M.; Farnsworth, D.; Ludek, O.; Adams, K.; Barchi, J.J., Jr; Gildersleeve, J.C. Enhanced epimerization of glycosylated amino acids during solid-phase peptide synthesis. J. Am. Chem. Soc., 2012, 134(14), 6316-6325.
[http://dx.doi.org/10.1021/ja212188r] [PMID: 22390544]
[45]
Zhu, X.; Haag, T.; Schmidt, R.R. Synthesis of an S-linked glycopeptide analog derived from human Tamm-Horsfall glycoprotein. Org. Biomol. Chem., 2004, 2(1), 31-33.
[http://dx.doi.org/10.1039/B311583F] [PMID: 14737656]
[46]
Karch, F.; Hoffmann-Röder, A. Synthesis of glycosylated β3-homo-threonine conjugates for mucin-like glycopeptide antigen analogues. Beilstein J. Org. Chem., 2010, 6, 47.
[http://dx.doi.org/10.3762/bjoc.6.47] [PMID: 20563275]
[47]
Zhao, X.; Wu, H.; Lu, H.; Li, G.; Huang, Q. LAMP: a database linking antimicrobial peptides. PLoS One, 2013, 8(6)e66557
[http://dx.doi.org/10.1371/journal.pone.0066557] [PMID: 23825543]
[48]
Tan, Z.; Shang, S.; Halkina, T.; Yuan, Y.; Danishefsky, S.J. Toward homogeneous erythropoietin: non-NCL-based chemical synthesis of the Gln78-Arg166 glycopeptide domain. J. Am. Chem. Soc., 2009, 131(15), 5424-5431.
[http://dx.doi.org/10.1021/ja808704m] [PMID: 19334683]
[49]
Li, Y.; Tran, A.H.; Danishefsky, S.J.; Tan, Z. Chemical biology of glycoproteins: from chemical synthesis to biological impact. Methods Enzymol., 2019, 621, 213-229.
[http://dx.doi.org/10.1016/bs.mie.2019.02.030] [PMID: 31128780]
[50]
Ibatullin, F.M.; Selivanov, S.I. Reaction of N-Fmoc aspartic anhydride with glycosylamines: a simple entry to N-glycosyl asparagines. Tetrahedron Lett., 2009, 50, 6351-6354.
[http://dx.doi.org/10.1016/j.tetlet.2009.08.106]
[51]
Urge, L.; Kollat, E.; Hollosi, M.; Laczko, I.; Wroblewski, K.; Thurin, J.; Otvos, L. Solid-phase synthesis of glycopeptides: syntehsis of N-alpha-fluorenylmethoxylcarbonyl L-asparagine N-beta-glycosides. Tetrahedron Lett., 1991, 32, 3445-3448.
[http://dx.doi.org/10.1016/0040-4039(91)80802-D]
[52]
Colombo, C.; Bernardi, A. Synthesis of α-N-linked glycopeptides. Eur. J. Org. Chem., 2011, 2011(20-21), 3911-3919.
[http://dx.doi.org/10.1002/ejoc.201100124]
[53]
Xue, J.; Guo, M.; Gu, G.; Guo, Z. A facile synthesis of Nγ-glycosyl asparagine conjugates and short N-linked glycopeptides. J. Carbohydr. Chem., 2012, 31, 105-113.
[http://dx.doi.org/10.1080/07328303.2011.633723]
[54]
Pinzón, S.M.; Fierro, R.; Iregui, C.A.; Rivera, Z.J.; García, J.E. Novel synthesis of N-glycosyl amino acids using T3P®: propylphosphonic acid cyclic anhydride as coupling reagent. Int. J. Pept. Res. Ther., 2017, 24, 291-298.
[http://dx.doi.org/10.1007/s10989-017-9614-4]
[55]
Garcia, J.E.; Fierro, R.; Puentes, A.; Cortés, J.; Bermúdez, A.; Cifuentes, G.; Vanegas, M.; Patarroyo, M.E. Monosaccharides modulate HCV E2 protein-derived peptide biological properties. Biochem. Biophys. Res. Commun., 2007, 355(2), 409-418.
[http://dx.doi.org/10.1016/j.bbrc.2007.01.167] [PMID: 17306766]
[56]
Asahina, Y.; Kanda, M.; Suzuki, A.; Katayama, H.; Nakahara, Y.; Hojo, H. Fast preparation of an N-acetylglucosaminylated peptide segment for the chemoenzymatic synthesis of a glycoprotein. Org. Biomol. Chem., 2013, 11(41), 7199-7207.
[http://dx.doi.org/10.1039/c3ob41565a] [PMID: 24057089]
[57]
Premdjee, B.; Adams, A.L.; Macmillan, D. Native N-glycopeptide thioester synthesis through N→S acyl transfer. Bioorg. Med. Chem. Lett., 2011, 21(17), 4973-4975.
[http://dx.doi.org/10.1016/j.bmcl.2011.05.059] [PMID: 21676613]
[58]
Tanaka, T.; Shiraishi, M.; Matsuda, A.; Mizuno, M. Efficient synthesis of N- and O-linked glycopeptides using acid-labile Boc groups for the protection of carbohydrate moieties. Tetrahedron Lett., 2019, 60151106
[http://dx.doi.org/10.1016/j.tetlet.2019.151106]
[59]
Flynn, D.L.; Zelle, R.E.; Grieco, P.A. A mild two-step method for the hydrolysis/methanolysis of secondary amides and lactams. J. Org. Chem., 1983, 48, 2424-2426.
[http://dx.doi.org/10.1021/jo00162a028]
[60]
Loft, K.J.; Bojarová, P.; Slámová, K.; Křen, V.; Williams, S.J. Synthesis of sulfated glucosaminides for profiling substrate specificities of sulfatases and fungal β-N-acetylhexosaminidases. ChemBioChem, 2009, 10(3), 565-576.
[http://dx.doi.org/10.1002/cbic.200800656] [PMID: 19156788]
[61]
Chen, Q.; Cheng, Q.Y.; Zhao, Y.C.; Han, B.H. Glucosamine hydrochloride functionalized water-soluble conjugated polyfluorene: synthesis, characterization, and interactions with DNA. Macromol. Rapid Commun., 2009, 30(19), 1651-1655.
[http://dx.doi.org/10.1002/marc.200900226] [PMID: 21638433]
[62]
Wang, S.; Corcilius, L.; Sharp, P.P.; Payne, R.J. Synthesis of a GlcNAcylated arginine building block for the solid phase synthesis of death domain glycopeptide fragments. Bioorg. Med. Chem., 2017, 25(11), 2895-2900.
[http://dx.doi.org/10.1016/j.bmc.2017.03.012] [PMID: 28320614]
[63]
Li, X.; Krafczyk, R.; Macošek, J.; Li, Y.L.; Zou, Y.; Simon, B.; Pan, X.; Wu, Q.Y.; Yan, F.; Li, S.; Hennig, J.; Jung, K.; Lassak, J.; Hu, H.G. Resolving the α-glycosidic linkage of arginine-rhamnosylated translation elongation factor P triggers generation of the first ArgRha specific antibody. Chem. Sci. (Camb.), 2016, 7(12), 6995-7001.
[http://dx.doi.org/10.1039/C6SC02889F] [PMID: 28451135]
[64]
Wang, S.; Corcilius, L.; Sharp, P.P.; Rajkovic, A.; Ibba, M.; Parker, B.L.; Payne, R.J. Synthesis of rhamnosylated arginine glycopeptides and determination of the glycosidic linkage in bacterial elongation factor P. Chem. Sci. (Camb.), 2017, 8(3), 2296-2302.
[http://dx.doi.org/10.1039/C6SC03847F] [PMID: 28451332]
[65]
Pan, M.; Li, S.; Li, X.; Shao, F.; Liu, L.; Hu, H.G. Synthesis of and specific antibody generation for glycopeptides with arginine N-GlcNAcylation. Angew. Chem. Int. Ed. Engl., 2014, 53(52), 14517-14521.
[http://dx.doi.org/10.1002/anie.201407824] [PMID: 25353391]
[66]
Castro, V.; Rodríguez, H.; Albericio, F. CuAAC: An efficient click chemistry reaction on solid phase. ACS Comb. Sci., 2016, 18(1), 1-14.
[http://dx.doi.org/10.1021/acscombsci.5b00087] [PMID: 26652044]
[67]
Seifried, B.M.; Qi, W.; Yang, Y.J.; Mai, D.J.; Puryear, W.B.; Runstadler, J.A.; Chen, G.; Olsen, B.D. Glycoprotein mimics with tunable functionalization through global amino acid substitution and copper click chemistry. Bioconjug. Chem., 2020, 31(3), 554-566.
[http://dx.doi.org/10.1021/acs.bioconjchem.9b00601] [PMID: 32078297]
[68]
Aarjane, M.; Slassi, S.; Tazi, B.; Maouloua, M.; Amine, A. Synthesis, antibacterial evaluation and molecular docking studies of novel series of acridone- 1,2,3-triazole derivatives. Struct. Chem., 2020, 2020, 1-9.
[http://dx.doi.org/10.1007/s11224-020-01512-0]
[69]
Singhamahapatra, A.; Sahoo, L.; Loganathan, D. Clickable glycopeptoids for synthesis of glycopeptide mimic. J. Org. Chem., 2013, 78(20), 10329-10336.
[http://dx.doi.org/10.1021/jo401720s] [PMID: 24050725]
[70]
Marchiori, M.F.; Souto, D.E.; Bortot, L.O.; Pereira, J.F.; Kubota, L.T.; Cummings, R.D.; Baruffi, M.D.; Carvalho, I.; Campo, V.L. Synthetic 1,2,3-triazole-linked glycoconjugates bind with high affinity to human galectin-3. Bioorg. Med. Chem., 2015, 23(13), 3414-3425.
[http://dx.doi.org/10.1016/j.bmc.2015.04.044] [PMID: 25975642]
[71]
Kolb, H.C.; Finn, M.G.; Sharpless, K.B. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. Engl., 2001, 40(11), 2004-2021.
[http://dx.doi.org/10.1002/1521-3773(20010601)40:11<2004:AID-ANIE2004>3.0.CO;2-5] [PMID: 11433435]
[72]
Wan, Q.; Chen, J.; Chen, G.; Danishefsky, S.J. A potentially valuable advance in the synthesis of carbohydrate-based anticancer vaccines through extended cycloaddition chemistry. J. Org. Chem., 2006, 71(21), 8244-8249.
[http://dx.doi.org/10.1021/jo061406i] [PMID: 17025318]
[73]
Bailey, J.K.; Nguyen, D.N.; Horiya, S.; Krauss, I.J. Synthesis of multivalent glycopeptide conjugates that mimic an HIV epitope. Tetrahedron, 2016, 72(40), 6091-6098.
[http://dx.doi.org/10.1016/j.tet.2016.07.062] [PMID: 28190897]
[74]
Chen, P.; Hu, H.; Sun, Z.; Li, Q.; Zhang, B.; Wu, J.; Li, W.; Zhao, Y.; Chen, Y.; Li, Y. Fully synthetic invariant NKT cell-dependent self-adjuvanting antitumor vaccines eliciting potent immune response in mice fully synthetic invariant NKT cell-dependent self-adjuvanting antitumor. Mol. Pharm., 2019, 17(2), 417-425.
[http://dx.doi.org/10.1021/acs.molpharmaceut.9b00720]
[75]
Kuijpers, B.H.M.; Groothuys, S. Keereweer, a B.R.; Quaedflieg, P.J.L.M.; Blaauw, R.H.; Delft, F.L. Van; Rutjes, F.P.J.T. Expedient synthesis of triazole-linked glycosylamino acids and peptides. Org. Lett., 2004, 6, 3123-3126.
[http://dx.doi.org/10.1021/ol048841o] [PMID: 15330603]
[76]
Tomabechi, Y. Synthesis of glycopeptides by click chemistry. Trends Glycosci. Glycotechnol., 2015, 27, 63-65.
[http://dx.doi.org/10.4052/tigg.1437.6]
[77]
Maschauer, S.; Einsiedel, J.; Haubner, R.; Hocke, C.; Ocker, M.; Hübner, H.; Kuwert, T.; Gmeiner, P.; Prante, O. Labeling and glycosylation of peptides using click chemistry: a general approach to 18F-glycopeptides as effective imaging probes for positron emission tomography. Angew. Chem. Int. Ed. Engl., 2010, 49(5), 976-979.
[http://dx.doi.org/10.1002/anie.200904137] [PMID: 20029856]
[78]
Lim, D.; Brimble, M.A.; Kowalczyk, R.; Watson, A.J.A.; Fairbanks, A.J. Protecting-group-free one-pot synthesis of glycoconjugates directly from reducing sugars. Angew. Chem. Int. Ed. Engl., 2014, 53(44), 11907-11911.
[http://dx.doi.org/10.1002/anie.201406694] [PMID: 25199905]
[79]
Marchiori, M.F.; Iossi, G.P.; Bortot, L.O.; Dias-Baruffi, M.; Campo, V.L. Synthesis of novel triazole-derived glycopeptides as analogs of α-dystroglycan mucins. Carbohydr. Res., 2019, 472, 23-32.
[http://dx.doi.org/10.1016/j.carres.2018.11.004] [PMID: 30453095]
[80]
Ngoje, G.; Li, Z. Study of the stereoselectivity of 2-azido-2-deoxyglucosyl donors: protecting group effects. Org. Biomol. Chem., 2013, 11(11), 1879-1886.
[http://dx.doi.org/10.1039/c3ob26994a] [PMID: 23380832]
[81]
Kaeothip, S.; Demchenko, A.V. Expeditious oligosaccharide synthesis via selective, semi-orthogonal, and orthogonal activation. Carbohydr. Res., 2011, 346(12), 1371-1388.
[http://dx.doi.org/10.1016/j.carres.2011.05.004] [PMID: 21663897]
[82]
Marchiori, M.F.; Riul, T.B.; Oliveira Bortot, L.; Andrade, P.; Junqueira, G.G.; Foca, G.; Doti, N.; Ruvo, M.; Dias-Baruffi, M.; Carvalho, I.; Campo, V.L. Binding of triazole-linked galactosyl arylsulfonamides to galectin-3 affects Trypanosoma cruzi cell invasion. Bioorg. Med. Chem., 2017, 25(21), 6049-6059.
[http://dx.doi.org/10.1016/j.bmc.2017.09.042] [PMID: 29032929]
[83]
Breukink, E.; de Kruijff, B. Lipid II as a target for antibiotics. Nat. Rev. Drug Discov., 2006, 5(4), 321-332.
[http://dx.doi.org/10.1038/nrd2004] [PMID: 16531990]
[84]
Álvarez, R.; Cortés, L.E.L.; Molina, J.; Cisneros, J.M.; Pachón, J. Optimizing the clinical use of vancomycin. Antimicrob. Agents Chemother., 2016, 60(5), 2601-2609.
[http://dx.doi.org/10.1128/AAC.03147-14] [PMID: 26856841]
[85]
Ashford, P.A.; Bew, S.P. Recent advances in the synthesis of new glycopeptide antibiotics. Chem. Soc. Rev., 2012, 41(3), 957-978.
[http://dx.doi.org/10.1039/C1CS15125H] [PMID: 21829829]
[86]
Arnusch, C.J.; Bonvin, A.M.J.J.; Verel, A.M.; Jansen, W.T.M.; Liskamp, R.M.J.; de Kruijff, B.; Pieters, R.J.; Breukink, E. The vancomycin-nisin(1-12) hybrid restores activity against vancomycin resistant Enterococci. Biochemistry, 2008, 47(48), 12661-12663.
[http://dx.doi.org/10.1021/bi801597b] [PMID: 18989934]
[87]
Scherer, K.M.; Spille, J.H.; Sahl, H.G.; Grein, F.; Kubitscheck, U. The lantibiotic nisin induces lipid II aggregation, causing membrane instability and vesicle budding. Biophys. J., 2015, 108(5), 1114-1124.
[http://dx.doi.org/10.1016/j.bpj.2015.01.020] [PMID: 25762323]
[88]
Godoy-Santos, F.; Pitts, B.; Stewart, P.S.; Mantovani, H.C. Nisin penetration and efficacy against Staphylococcus aureus biofilms under continuous-flow conditions. Microbiology, 2019, 165(7), 761-771.
[http://dx.doi.org/10.1099/mic.0.000804] [PMID: 31088602]
[89]
Garzone, P.; Lyon, J.; Yu, V.L. Third-generation and investigational cephalosporins: I. Structure-activity relationships and pharmacokinetic review. Drug Intell. Clin. Pharm., 1983, 17(7-8), 507-515.
[http://dx.doi.org/10.1177/106002808301700703] [PMID: 6347596]
[90]
Long, D.D.; Aggen, J.B.; Chinn, J.; Choi, S.K.; Christensen, B.G.; Fatheree, P.R.; Green, D.; Hegde, S.S.; Judice, J.K.; Kaniga, K.; Krause, K.M.; Leadbetter, M.; Linsell, M.S.; Marquess, D.G.; Moran, E.J.; Nodwell, M.B.; Pace, J.L.; Trapp, S.G.; Turner, S.D. Exploring the positional attachment of glycopeptide/β-lactam heterodimers. J. Antibiot. (Tokyo), 2008, 61(10), 603-614.
[http://dx.doi.org/10.1038/ja.2008.80] [PMID: 19168974]
[91]
Tevyashova, A.N.; Bychkova, E.N.; Korolev, A.M.; Isakova, E.B.; Mirchink, E.P.; Osterman, I.A.; Erdei, R.; Szücs, Z.; Batta, G. Synthesis and evaluation of biological activity for dual-acting antibiotics on the basis of azithromycin and glycopeptides. Bioorg. Med. Chem. Lett., 2019, 29(2), 276-280.
[http://dx.doi.org/10.1016/j.bmcl.2018.11.038] [PMID: 30473176]
[92]
Parnham, M.J.; Erakovic Haber, V.; Giamarellos-Bourboulis, E.J.; Perletti, G.; Verleden, G.M.; Vos, R. Azithromycin: mechanisms of action and their relevance for clinical applications. Pharmacol. Ther., 2014, 143(2), 225-245.
[http://dx.doi.org/10.1016/j.pharmthera.2014.03.003] [PMID: 24631273]
[93]
Olsufyeva, E.N.; Shchekotikhin, A.E.; Bychkova, E.N.; Pereverzeva, E.R.; Treshalin, I.D.; Mirchink, E.P.; Isakova, E.B.; Chernobrovkin, M.G.; Kozlov, R.S.; Dekhnich, A.V.; Preobrazhenskaya, M.N. Eremomycin pyrrolidide: a novel semisynthetic glycopeptide with improved chemotherapeutic properties. Drug Des. Devel. Ther., 2018, 12, 2875-2885.
[http://dx.doi.org/10.2147/DDDT.S173923] [PMID: 30237697]
[94]
Neville, L.O.; Brumfitt, W.; Hamilton-Miller, J.M.T.; Harding, I. Teicoplanin vs. vancomycin for the treatment of serious infections: a randomised trial. Int. J. Antimicrob. Agents, 1995, 5(3), 187-193.
[http://dx.doi.org/10.1016/0924-8579(95)00002-P] [PMID: 18611667]
[95]
Van den Steen, P.; Rudd, P.M.; Dwek, R.A.; Opdenakker, G. Concepts and principles of O-linked glycosylation. Crit. Rev. Biochem. Mol. Biol., 1998, 33(3), 151-208.
[http://dx.doi.org/10.1080/10409239891204198] [PMID: 9673446]
[96]
Sun, L.; Wu, X.; Xiong, D-C.; Ye, X-S. Stereoselective Koenigs-Knorr glycosylation catalyzed by urea. Angew. Chem. Int. Ed. Engl., 2016, 55(28), 8041-8044.
[http://dx.doi.org/10.1002/anie.201600142] [PMID: 27244701]
[97]
Singh, Y.; Demchenko, A.V. Koenigs-Knorr glycosylation reaction catalyzed by trimethylsilyl trifluoromethanesulfonate. Chemistry, 2019, 25(6), 1461-1465.
[http://dx.doi.org/10.1002/chem.201805527] [PMID: 30407673]
[98]
Baumann, K.; Kowalczyk, D.; Kunz, H. Total synthesis of the glycopeptide recognition domain of the P-selectin glycoprotein ligand 1. Angew. Chem. Int. Ed. Engl., 2008, 47(18), 3445-3449.
[http://dx.doi.org/10.1002/anie.200705762] [PMID: 18357595]
[99]
Lefever, M.R.; Szabò, L.Z.; Anglin, B.; Ferracane, M.; Hogan, J.; Cooney, L.; Polt, R. Glycosylation of α-amino acids by sugar acetate donors with InBr3. Minimally competent Lewis acids. Carbohydr. Res., 2012, 351, 121-125.
[http://dx.doi.org/10.1016/j.carres.2012.01.008] [PMID: 22342206]
[100]
Sardar, M.Y.R.; Krishnamurthy, V.R.; Park, S.; Mandhapati, A.R.; Wever, W.J.; Park, D.; Cummings, R.D.; Chaikof, E.L. Synthesis of LewisX-O-core-1 threonine: a building block for O-linked LewisX glycopeptides. Carbohydr. Res., 2017, 452, 47-53.
[http://dx.doi.org/10.1016/j.carres.2017.10.002] [PMID: 29065342]
[101]
Crich, D.; Smith, M. 1-Benzenesulfinyl piperidine/trifluoromethanesulfonic anhydride: a potent combination of shelf-stable reagents for the low-temperature conversion of thioglycosides to glycosyl triflates and for the formation of diverse glycosidic linkages. J. Am. Chem. Soc., 2001, 123(37), 9015-9020.
[http://dx.doi.org/10.1021/ja0111481] [PMID: 11552809]
[102]
Hasegawa, A.; Ogawa, H.; Ishida, H.; Kiso, M. Synthesis of an S-(α-sialosyl)-(2----9)-O-(α-sialosyl)-(2----3′)-β-lactos ylceramide. Carbohydr. Res., 1992, 224, 175-184.
[http://dx.doi.org/10.1016/0008-6215(92)84103-Y] [PMID: 1591759]
[103]
Konradsson, P.; Mootoo, D.R.; Mcdevitt, R.E.; Fraser-reid, B. Iodonium ion generated in situ from N-iodosuccinimide and trifluoromethanesulphonic acid promotes direct linkage of ‘disarmed’ pent-4-enyl glycosides. J. Chem. Soc. Chem. Commun., 1990, 3, 270-272.
[http://dx.doi.org/10.1039/C39900000270]
[104]
Sliedregt, L.A.J.M.; van der Marel, G.A.; van Boom, J.H. Trimethylsilyl triflate mediated chemoselective condensation of arylsulfenyl glycosides. Tetrahedron Lett., 1994, 35, 4015-4018.
[http://dx.doi.org/10.1016/S0040-4039(00)76728-1]
[105]
Zheng, X.J.; Yang, F.; Zheng, M.; Huo, C.X.; Zhang, Y.; Ye, X.S. Improvement of the immune efficacy of carbohydrate vaccines by chemical modification on the GM3 antigen. Org. Biomol. Chem., 2015, 13(22), 6399-6406.
[http://dx.doi.org/10.1039/C5OB00405E] [PMID: 25982227]
[106]
Yang, F.; Zheng, X.J.; Huo, C.X.; Wang, Y.; Zhang, Y.; Ye, X.S. Enhancement of the immunogenicity of synthetic carbohydrate vaccines by chemical modifications of STn antigen. ACS Chem. Biol., 2011, 6(3), 252-259.
[http://dx.doi.org/10.1021/cb100287q] [PMID: 21121644]
[107]
Keyari, C.M.; Polt, R. Serine and threonine schiff base esters react with β-anomeric peracetates in the presence of BF3‧Et2O to produce β-glycosides. J. Carbohydr. Chem., 2010, 29, 181-206.
[http://dx.doi.org/10.1080/07328303.2010.508295]
[108]
Daum, M.; Broszeit, F.; Röder, A.H. Synthesis of a fluorinated sialophorin hexasaccharide-threonine conjugate for fmoc solid-phase glycopeptide synthesis. Eur. J. Org. Chem., 2016, 2016, 3709-3720.
[http://dx.doi.org/10.1002/ejoc.201600523]
[109]
Röder, A.H.; Johannes, M. Synthesis of a MUC1-glycopeptide-BSA conjugate vaccine bearing the 3′-deoxy-3′-fluoro-Thomsen-Friedenreich antigen. Chem. Commun. (Camb.), 2011, 47(35), 9903-9905.
[http://dx.doi.org/10.1039/c1cc13184b] [PMID: 21818465]
[110]
Mitchell, S.A.; Pratt, M.R.; Hruby, V.J.; Polt, R. Solid-phase synthesis of O-linked glycopeptide analogues of enkephalin. J. Org. Chem., 2001, 66(7), 2327-2342.
[http://dx.doi.org/10.1021/jo005712m] [PMID: 11281773]
[111]
Oberbillig, T.; Mersch, C.; Wagner, S.; Hoffmann-Röder, A. Antibody recognition of fluorinated MUC1 glycopeptide antigens. Chem. Commun. (Camb.), 2012, 48(10), 1487-1489.
[http://dx.doi.org/10.1039/C1CC15139H] [PMID: 21986937]
[112]
Johannes, M.; Reindl, M.; Gerlitzki, B.; Schmitt, E.; Röder, A.H. Synthesis and biological evaluation of a novel MUC1 glycopeptide conjugate vaccine candidate comprising a 4′-deoxy-4′-fluoro-Thomsen-Friedenreich epitope. Beilstein J. Org. Chem., 2015, 11, 155-161.
[http://dx.doi.org/10.3762/bjoc.11.15] [PMID: 25670999]
[113]
Garner, J.; Harding, M.M. Design and synthesis of antifreeze glycoproteins and mimics. ChemBioChem, 2010, 11(18), 2489-2498.
[http://dx.doi.org/10.1002/cbic.201000509] [PMID: 21108270]
[114]
Peltier, R.; Brimble, M.A.; Wojnar, J.M.; Williams, D.E.; Evans, C.W.; DeVries, A.L. Synthesis and antifreeze activity of fish antifreeze glycoproteins and their analogues. Chem. Sci. (Camb.), 2010, 1, 538-551.
[http://dx.doi.org/10.1039/c0sc00194e]
[115]
Corcilius, L.; Santhakumar, G.; Stone, R.S.; Capicciotti, C.J.; Joseph, S.; Matthews, J.M.; Ben, R.N.; Payne, R.J. Synthesis of peptides and glycopeptides with polyproline II helical topology as potential antifreeze molecules. Bioorg. Med. Chem., 2013, 21(12), 3569-3581.
[http://dx.doi.org/10.1016/j.bmc.2013.02.025] [PMID: 23523384]
[116]
Arsequell, G.; Sàrries, N.; Valencia, G. Synthesis of glycosylated hydroxyproline building blocks. Tetrahedron Lett., 1995, 36, 7323-7326.
[http://dx.doi.org/10.1016/0040-4039(95)01509-G]
[117]
Shinohara, H.; Matsubayashi, Y. Chemical synthesis of Arabidopsis CLV3 glycopeptide reveals the impact of hydroxyproline arabinosylation on peptide conformation and activity. Plant Cell Physiol., 2013, 54(3), 369-374.
[http://dx.doi.org/10.1093/pcp/pcs174] [PMID: 23256149]
[118]
Harding, M.M.; Anderberg, P.I.; Haymet, A.D.J. ‘Antifreeze’ glycoproteins from polar fish. Eur. J. Biochem., 2003, 270(7), 1381-1392.
[http://dx.doi.org/10.1046/j.1432-1033.2003.03488.x] [PMID: 12653993]
[119]
Urbańczyk, M.; Jewgiński, M.; Krzciuk-Gula, J.; Góra, J.; Latajka, R.; Sewald, N. Synthesis and conformational preferences of short analogues of antifreeze glycopeptides (AFGP). Beilstein J. Org. Chem., 2019, 15, 1581-1591.
[http://dx.doi.org/10.3762/bjoc.15.162] [PMID: 31435440]
[120]
Heggemann, C.; Budke, C.; Schomburg, B.; Majer, Z.; Wissbrock, M.; Koop, T.; Sewald, N. Antifreeze glycopeptide analogues: microwave-enhanced synthesis and functional studies. Amino Acids, 2010, 38(1), 213-222.
[http://dx.doi.org/10.1007/s00726-008-0229-0] [PMID: 19165574]
[121]
Nagel, L.; Plattner, C.; Budke, C.; Majer, Z.; DeVries, A.L.; Berkemeier, T.; Koop, T.; Sewald, N. Synthesis and characterization of natural and modified antifreeze glycopeptides: glycosylated foldamers. Amino Acids, 2011, 41(3), 719-732.
[http://dx.doi.org/10.1007/s00726-011-0937-8] [PMID: 21603949]
[122]
Christensen, M.K.; Meldal, M.; Bock, K. Synthesis of mannose 6-phosphate-containing disaccharide threonine building blocks and their use in solid-phase glycopeptide synthesis. J. Chem. Soc., Perkin Trans. 1, 1993, 1993(13), 1453-1460.
[http://dx.doi.org/10.1039/p19930001453]
[123]
Tsuda, T.; Nishimura, S.I. Synthesis of an antifreeze glycoprotein analogue: efficient preparation of sequential glycopeptide polymers. Chem. Commun. (Camb.), 1996, 1996(24), 2779-2780.
[http://dx.doi.org/10.1039/cc9960002779]
[124]
Jensen, K.J.; Meldal, M.; Bock, K. Glycosylation of phenols: preparation of 1,2-cis and 1,2-trans glycosylated tyrosine derivatives to be used in solid-phase glycopeptide synthesis. J. Chem. Soc., Perkin Trans. 1, 1993, 1993(17), 2119-2129.
[http://dx.doi.org/10.1039/p19930002119]
[125]
Ren, L.; Liu, Y.; Yu, G.H.; Hao, J.Z.; Cheng, M.S. I2-Mediated α-selective ferrier glycosylation approach to synthesis of o-glycosyl amino acids. Chem. Pap., 2014, 68, 525-530.
[http://dx.doi.org/10.2478/s11696-013-0482-x]
[126]
Tejada, A.F.; Brailsford, J.; Zhang, Q.; Shieh, J.H.; Moore, M.A.S.; Danishefsky, S.J. Total synthesis of glycosylated proteins BT - Protein Ligation and Total Synthesis I; Liu, L., Ed.; Springer International Publishing: Cham, 2015, pp. 1-26.
[127]
Chaffey, P.K.; Guan, X.; Li, Y.; Tan, Z. Using chemical synthesis to study and apply protein glycosylation. Biochemistry, 2018, 57(4), 413-428.
[http://dx.doi.org/10.1021/acs.biochem.7b01055] [PMID: 29309128]
[128]
Dong, S.; Shang, S.; Tan, Z.; Danishefsky, S.J. Toward homogeneous erythropoietin: application of metal free dethiylation in the chemical synthesis of the Ala79-Arg166 glycopeptide domain. Isr. J. Chem., 2011, 51(8-9), 968-976.
[http://dx.doi.org/10.1002/ijch.201100077] [PMID: 23585694]
[129]
Asahina, Y.; Kawakami, T.; Hojo, H. Glycopeptide synthesis based on a TFA-labile protection strategy and one-pot four-segment ligation for the synthesis of O-glycosylated histone H2A. Eur. J. Org. Chem., 2019, 2019, 1915-1920.
[http://dx.doi.org/10.1002/ejoc.201801885]
[130]
Huo, C.X.; Zheng, X.J.; Xiao, A.; Liu, C.C.; Sun, S.; Lv, Z.; Ye, X.S. Synthetic and immunological studies of N-acyl modified S-linked STn derivatives as anticancer vaccine candidates. Org. Biomol. Chem., 2015, 13(12), 3677-3690.
[http://dx.doi.org/10.1039/C4OB02424A] [PMID: 25679360]
[131]
Rojas, V.; Carreras, J.; Corzana, F.; Avenoza, A.; Busto, J.H.; Peregrina, J.M. Synthesis and conformational analysis of neoglycoconjugates derived from O- and S-glucose. Carbohydr. Res., 2013, 373, 1-8.
[http://dx.doi.org/10.1016/j.carres.2013.02.013] [PMID: 23545325]
[132]
Thiem, J.; Laupichler, L. Ferrier glycosylation for synthesis of O- and S-glycopeptides. J. Carbohydr. Chem., 2018, 37, 442-460.
[http://dx.doi.org/10.1080/07328303.2019.1567755]
[133]
Calce, E.; Digilio, G.; Menchise, V.; Saviano, M.; De Luca, S. Chemoselective glycosylation of peptides through s-alkylation reaction. Chemistry, 2018, 24(23), 6231-6238.
[http://dx.doi.org/10.1002/chem.201800265] [PMID: 29457654]
[134]
Hsieh, Y.S.Y.; Wilkinson, B.L.; O’Connell, M.R.; Mackay, J.P.; Matthews, J.M.; Payne, R.J. Synthesis of the bacteriocin glycopeptide sublancin 168 and S-glycosylated variants. Org. Lett., 2012, 14(7), 1910-1913.
[http://dx.doi.org/10.1021/ol300557g] [PMID: 22455748]
[135]
Brimble, M.A.; Edwards, P.J.; Harris, P.W.R.; Norris, G.E.; Patchett, M.L.; Wright, T.H.; Yang, S-H.; Carley, S.E. Synthesis of the antimicrobial S-linked glycopeptide, glycocin F. Chemistry, 2015, 21(9), 3556-3561.
[http://dx.doi.org/10.1002/chem.201405692] [PMID: 25607533]
[136]
Bertozzi, C.R.; Hoeprich, P.D.; Bednarski, M.D. Synthesis of carbon-linked glycopeptides as stable glycopeptide models. J. Org. Chem., 1992, 57, 6092-6094.
[http://dx.doi.org/10.1021/jo00049a005]
[137]
Ihara, Y. Glycoscience: Biology and Medicine; Taniguchi, N.; Endo, T.; Hart, G.W.; Seeberger, P.H; Wong, C.H., Ed.; Springer, 2015.
[138]
Manabe, S.; Marui, Y.; Ito, Y. Total synthesis of mannosyl tryptophan and its derivatives. Chemistry, 2003, 9(6), 1435-1447.
[http://dx.doi.org/10.1002/chem.200390163] [PMID: 12645033]
[139]
Wu, J.; Kaplaneris, N.; Ni, S.; Kaltenhäuser, F.; Ackermann, L. Late-stage, C(Sp2)–H and C(Sp3)–H glycosylation of c -aryl/alkyl glycopeptides: mechanistic insights and fluorescence labeling. Chem. Sci. (Camb.), 2020, 2020, 6521-6526.
[http://dx.doi.org/10.1039/D0SC01260B]