Biosynthesis, Characterization and Mechanism of Formation of ZnO Nanoparticles Using Petroselinum Crispum Leaf Extract

Page: [558 - 566] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Aim: The study aimed at synthesizing ZnO NPs using Petroselinum crispum extract, commonly known as parsley, as a source of biosynthesis without utilizing chemical agents for reducing, capping and stabilizing agent.

Background: Recently, the biosynthesis of nanoparticles has been widely explored due to the wide range of vital applications in nanotechnology. Biosynthesized zinc oxide nanoparticles, ZnO NPs, have become increasingly important since they have many applications and are environmentally friendly.

Methods: The innovation of this investigation is that the nanosized ZnO NPs can be formed from one-pot reaction without utilizing any external stabilizing and reducing agent which is not plausible via the current procedures.

Results: The biosynthesized ZnO NPs were characterized using UV-Vis spectroscopy, FT-IR spectroscopy, X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), Energy-dispersive X-ray spectroscopy (EDX) to investigate the optical, chemical, structural, and morphological properties.

Conclusion: These techniques exhibited that the property of the biosynthesized ZnO NPs is analogous with the standard NPs prepared from dissimilar methods. Investigating the plausible mechanism of formation and stabilization of ZnO NPs by biomolecules of Petroselinum crispum leaf extract was another vital feature of this study.

Keywords: Biosynthesis method, mechanism of NPs formation, Petroselinum crispum (Parsley) leaf extract, reducing agent, stabilizing agent, ZnO nanoparticle.

Graphical Abstract

[1]
Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem., 2019, 12(7), 908-931.
[http://dx.doi.org/10.1016/j.arabjc.2017.05.011]
[2]
Rizwan, M.; Ali, S.; Qayyum, M.F.; Ok, Y.S.; Adrees, M.; Ibrahim, M.; Zia-Ur-Rehman, M.; Farid, M.; Abbas, F. Effect of metal and metal oxide nanoparticles on growth and physiology of globally important food crops: A critical review J. Hazard. Mater, 2017, 322(Pt-A), 2-16.
[http://dx.doi.org/10.1016/j.jhazmat.2016.05.061] [PMID: 27267650]
[3]
Barzinjy, A.; Mustafa, S.; Ismael, H. Characterization of ZnO NPs prepared from green synthesis using Euphorbia petiolata leaves. EAJSE, 2019, 4, 74-83.
[http://dx.doi.org/10.23918/eajse.v4i3sip74]]
[4]
Barzinjy, Azeez Abdullah Biosynthesis and characterization of zinc oxide nanoparticles from Punica granatum (pomegranate) juice extract and its application in thin films preparation by spin-coating method. Micro & Nano Lett., 2020.
[http://dx.doi.org/10.1049/mnl.2019.0501]
[5]
Barzinjy, A.A.; Azeez, H.H. Green synthesis and characterization of zinc oxide nanoparticles using Eucalyptus globulus Labill. leaf extract and zinc nitrate hexahydrate salt. SN Appl. Sci., 2020, 2(5), 991.
[http://dx.doi.org/10.1007/s42452-020-2813-1]
[6]
Alhadhrami, A. Preparation of semiconductor zinc oxide nanoparticles as a photocatalyst to get rid of organic dyes existing factories in exchange for reuse in suitable purpose. Int. J. Electrochem. Sci., 2018, 13, 6503-6521.
[http://dx.doi.org/10.20964/2018.07.04]
[7]
Moditswe, C.; Muiva, C.M.; Juma, A. Highly conductive and transparent Ga-doped ZnO thin films deposited by chemical spray pyrolysis. Optik (Stuttg.), 2016, 127(20), 8317-8325.
[http://dx.doi.org/10.1016/j.ijleo.2016.06.033]
[8]
Kumar, S.G.; Rao, K.K. Comparison of modification strategies towards enhanced charge carrier separation and photocatalytic degradation activity of metal oxide semiconductors (TiO2, WO3 and ZnO). Appl. Surf. Sci., 2017, 391, 124-148.
[http://dx.doi.org/10.1016/j.apsusc.2016.07.081]
[9]
Arulmani, S.; Anandan, S.; Ashokkumar, M. Introduction to Advanced Nanomaterials.Nanomaterials for Green Energy; Elsevier, 2018, pp. 1-53.
[http://dx.doi.org/10.1016/B978-0-12-813731-4.00001-1]
[10]
Krunks, M. Nanostructured solar cell based on spray pyrolysis deposited ZnO nanorod array. Sol. Energy Mater. Sol. Cells, 2008, 92(9), 1016-1019.
[http://dx.doi.org/10.1016/j.solmat.2008.03.002]
[11]
Fang, X. ZnO and ZnS nanostructures: ultraviolet-light emitters, lasers, and sensors. Crit. Rev. Solid State Mater. Sci., 2009, 34(3-4), 190-223.
[http://dx.doi.org/10.1080/10408430903245393]
[12]
Fortunato, E. Recent advances in ZnO transparent thin film transistors. Thin Solid Films, 2005, 487(1-2), 205-211.
[http://dx.doi.org/10.1016/j.tsf.2005.01.066]
[13]
Xu, H. A novel method for improving the performance of ZnO gas sensors. Sens. Actuators B Chem., 2006, 114(1), 301-307.
[http://dx.doi.org/10.1016/j.snb.2005.05.020]
[14]
Pasha, M. Zinc oxide (ZnO): an efficient catalyst for the synthesis of 4- arylmethylidene- 2- phenyl 5 (4H)- oxazolones having antimicrobial activity. J. Pharmacol. Toxicol., 2007, 2(3), 264-270.
[http://dx.doi.org/10.3923/jpt.2007.264.270]]
[15]
Król, A.; Pomastowski, P.; Rafińska, K.; Railean-Plugaru, V.; Buszewski, B. Zinc oxide nanoparticles: Synthesis, antiseptic activity and toxicity mechanism. Adv. Colloid Interface Sci., 2017, 249, 37-52.
[http://dx.doi.org/10.1016/j.cis.2017.07.033] [PMID: 28923702]
[16]
Mirzaei, H.; Darroudi, M. Zinc oxide nanoparticles: Biological synthesis and biomedical applications. Ceram. Int., 2017, 43(1), 907-914.
[http://dx.doi.org/10.1016/j.ceramint.2016.10.051]
[17]
Albrecht, M.A.; Evans, C.W.; Raston, C.L. Green chemistry and the health implications of nanoparticles. Green Chem., 2006, 8(5), 417-432.
[http://dx.doi.org/10.1039/b517131h]
[18]
Singh, J.; Dutta, T.; Kim, K.H.; Rawat, M.; Samddar, P.; Kumar, P. ‘Green’ synthesis of metals and their oxide nanoparticles: Applications for environmental remediation. J. Nanobiotechnology, 2018, 16(1), 84.
[http://dx.doi.org/10.1186/s12951-018-0408-4] [PMID: 30373622]
[19]
Elahi, N.; Kamali, M.; Baghersad, M.H. Recent biomedical applications of gold nanoparticles: A review. Talanta, 2018, 184, 537-556.
[http://dx.doi.org/10.1016/j.talanta.2018.02.088] [PMID: 29674080]
[20]
Ovais, M.; Khalil, A.T.; Islam, N.U.; Ahmad, I.; Ayaz, M.; Saravanan, M.; Shinwari, Z.K.; Mukherjee, S. Role of plant phytochemicals and microbial enzymes in biosynthesis of metallic nanoparticles. Appl. Microbiol. Biotechnol., 2018, 102(16), 6799-6814.
[http://dx.doi.org/10.1007/s00253-018-9146-7] [PMID: 29882162]
[21]
Nasrollahzadeh, M. Biosynthesis of the palladium/sodium borosilicate nanocomposite using Euphorbia milii extract and evaluation of its catalytic activity in the reduction of chromium (VI), nitro compounds and organic dyes. Mater. Res. Bull., 2018, 102, 24-35.
[http://dx.doi.org/10.1016/j.materresbull.2018.01.032]
[22]
Sajadi, S.M. Green synthesis of the Ag/bentonite nanocomposite using Euphorbia larica extract: A reusable catalyst for efficient reduction of nitro compounds and organic dyes. ChemistrySelect, 2018, 3(43), 12274-12280.
[http://dx.doi.org/10.1002/slct.201802707]
[23]
Barzinjy, A.A. Green synthesis of the magnetite (Fe3O4) nanoparticle using Rhus coriaria extract: A reusable catalyst for efficient synthesis of some new 2-naphthol bis-Betti bases; Inorganic and Nano-Metal Chemistry, 2020, pp. 1-10.
[http://dx.doi.org/10.1080/24701556.2020.1723027]
[24]
Barzinjy, A.A. Nanostructured device in sensing applications: A review Eurasian J. Sci. Eng, 4, 82-97.
[http://dx.doi.org/10.23918/eajse.v4i1sip82]
[25]
Sarmanovna, T.Z. (Apium graveolens L.) Grown in the North Caucasus. Pharmacogn. J., 2019, 11(3)
[http://dx.doi.org/10.5530/pj.2019.11.84]]
[26]
Mencherini, T.; Cau, A.; Bianco, G.; Della Loggia, R.; Aquino, R.P.; Autore, G. An extract of Apium graveolens var. dulce leaves: Structure of the major constituent, apiin, and its anti-inflammatory properties. J. Pharm. Pharmacol., 2007, 59(6), 891-897.
[http://dx.doi.org/10.1211/jpp.59.6.0016] [PMID: 17637182]
[27]
Pápay, Z.E.; Kósa, A.; Boldizsár, I.; Ruszkai, A.; Balogh, E.; Klebovich, I.; Antal, I. [Pharmaceutical and formulation aspects of Petroselinum crispumextract] Acta Pharm. Hung., 2012, 82(1), 3-14.
[PMID: 22570982 ]
[28]
Ovais, M.; Khalil, A.T.; Raza, A.; Khan, M.A.; Ahmad, I.; Islam, N.U.; Saravanan, M.; Ubaid, M.F.; Ali, M.; Shinwari, Z.K. Green synthesis of silver nanoparticles via plant extracts: Beginning a new era in cancer theranostics. Nanomedicine (Lond.), 2016, 11(23), 3157-3177.
[http://dx.doi.org/10.2217/nnm-2016-0279] [PMID: 27809668]
[29]
Sameh, B. Antioxidant activity of Apium graveolens extracts. J. Biol. Act. Prod. Nat., 2011, 1(5-6), 340-343.
[http://dx.doi.org/10.1080/22311866.2011.10719102]
[30]
Liu, G.; Zhuang, L.; Song, D.; Lu, C.; Xu, X. Isolation, purification, and identification of the main phenolic compounds from leaves of celery (Apium graveolens L. var. dulce Mill./Pers.). J. Sep. Sci., 2017, 40(2), 472-479.
[http://dx.doi.org/10.1002/jssc.201600995] [PMID: 27862988]
[31]
Makarov, V.V.; Love, A.J.; Sinitsyna, O.V.; Makarova, S.S.; Yaminsky, I.V.; Taliansky, M.E.; Kalinina, N.O. “Green” nanotechnologies: synthesis of metal nanoparticles using plants. Acta Naturae, 2014, 6(1), 35-44.
[http://dx.doi.org/10.32607/20758251-2014-6-1-35-44] [PMID: 24772325]
[32]
Rasheed, T. Biogenic synthesis and characterization of cobalt oxide nanoparticles for catalytic reduction of direct yellow-142 and methyl orange dyes. Biocatal. Agric. Biotechnol., 2019, 19101154
[http://dx.doi.org/10.1016/j.bcab.2019.101154]]
[33]
Khalafi, T.; Buazar, F.; Ghanemi, K. Phycosynthesis and enhanced photocatalytic activity of zinc oxide nanoparticles toward organosulfur pollutants. Sci. Rep., 2019, 9(1), 6866.
[http://dx.doi.org/10.1038/s41598-019-43368-3] [PMID: 31053730]
[34]
Isaac, R.; Sakthivel, G.; Murthy, C. Green synthesis of gold and silver nanoparticles using Averrhoa bilimbi fruit extract J; Nanotec, 2013.
[http://dx.doi.org/10.1155/2013/906592]
[35]
Sathyavathi, R. Biosynthesis of silver nanoparticles using Coriandrum sativum leaf extract and their application in nonlinear optics. Adv. Sci. Lett., 2010, 3(2), 138-143.
[http://dx.doi.org/10.1166/asl.2010.1099]
[36]
Niraimathi, K.L.; Sudha, V.; Lavanya, R.; Brindha, P. Biosynthesis of silver nanoparticles using Alternanthera sessilis (Linn.) extract and their antimicrobial, antioxidant activities. Colloids Surf. B Biointerfaces, 2013, 102, 288-291.
[http://dx.doi.org/10.1016/j.colsurfb.2012.08.041] [PMID: 23006568]
[37]
Pai, S. Photocatalytic zinc oxide nanoparticles synthesis using Peltophorum pterocarpum leaf extract and their characterization. Optik (Stuttg.), 2019, 185, 248-255.
[http://dx.doi.org/10.1016/j.ijleo.2019.03.101]
[38]
Varadavenkatesan, T.; Lyubchik, E.; Pai, S.; Pugazhendhi, A.; Vinayagam, R.; Selvaraj, R. Photocatalytic degradation of Rhodamine B by zinc oxide nanoparticles synthesized using the leaf extract of Cyanometra ramiflora. J. Photochem. Photobiol. B, 2019, 199111621
[http://dx.doi.org/10.1016/j.jphotobiol.2019.111621] [PMID: 31610434]
[39]
Qin, L. Enhanced ultraviolet sensitivity of zinc oxide nanoparticle photoconductors by surface passivation. Opt. Mater., 2011, 33(3), 359-362.
[http://dx.doi.org/10.1016/j.optmat.2010.09.020]
[40]
Koch, U. Photochemistry of semiconductor colloids. Preparation of extremely small ZnO particles, fluorescence phenomena and size quantization effects. Chem. Phys. Lett., 1985, 122(5), 507-510.
[http://dx.doi.org/10.1016/0009-2614(85)87255-9]
[41]
Khan, M.M. Potentials of Costus woodsonii leaf extract in producing narrow band gap ZnO nanoparticles. Mater. Sci. Semicond. Process., 2019, 91, 194-200.
[http://dx.doi.org/10.1016/j.mssp.2018.11.030]
[42]
Pantidos, N.; Horsfall, L.E. Biological synthesis of metallic nanoparticles by bacteria, fungi and plants. J. Nanomed. Nanotechnol., 2014, 5(5), 1.
[http://dx.doi.org/10.4172/2157-7439.1000233]
[43]
Jiang, J.; Oberdörster, G.; Elder, A.; Gelein, R.; Mercer, P.; Biswas, P. Does nanoparticle activity depend upon size and crystal phase? Nanotoxicology, 2008, 2(1), 33-42.
[http://dx.doi.org/10.1080/17435390701882478] [PMID: 20827377]
[44]
Rodriguez, J.A. The behavior of mixed-metal oxides: Structural and electronic properties of Ce 1− x Ca x O 2 and Ce 1− x Ca x O 2− x. J. Chem. Phys., 2003, 119(11), 5659-5669.
[http://dx.doi.org/10.1063/1.1601595]
[45]
Singh, D. Synthesis, characterization and application of semiconducting oxide (Cu 2 O and ZnO) nanostructures. Bull. Mater. Sci., 2008, 31(3), 319-325.
[http://dx.doi.org/10.1007/s12034-008-0051-z]
[46]
Balcha, A.; Yadav, O.P.; Dey, T. Photocatalytic degradation of methylene blue dye by zinc oxide nanoparticles obtained from precipitation and sol-gel methods. Environ. Sci. Pollut. Res. Int., 2016, 23(24), 25485-25493.
[http://dx.doi.org/10.1007/s11356-016-7750-6] [PMID: 27704379]
[47]
Yuvakkumar, R.; Suresh, J.; Saravanakumar, B.; Joseph Nathanael, A.; Hong, S.I.; Rajendran, V. Rambutan peels promoted biomimetic synthesis of bioinspired zinc oxide nanochains for biomedical applications. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 137, 250-258.
[http://dx.doi.org/10.1016/j.saa.2014.08.022] [PMID: 25228035]
[48]
Bhuyan, T. Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications. Mater. Sci. Semicond. Process., 2015, 32, 55-61.
[http://dx.doi.org/10.1016/j.mssp.2014.12.053]
[49]
Hu, D.; Si, W.; Qin, W.; Jiao, J.; Li, X.; Gu, X.; Hao, Y. Cucurbita pepo leaf extract induced synthesis of zinc oxide nanoparticles, characterization for the treatment of femoral fracture. J. Photochem. Photobiol. B, 2019, 195, 12-16.
[http://dx.doi.org/10.1016/j.jphotobiol.2019.04.001] [PMID: 31029913]
[50]
Ganesh, M. Hydnocarpus alpina Wt extract mediated green synthesis of ZnO nanoparticle and screening of its anti-microbial, free radical scavenging, and photocatalytic activity. Biocatal. Agric. Biotechnol., 2019, 19101129
[http://dx.doi.org/10.1016/j.bcab.2019.101129]]
[51]
Vijayalakshmi, R.; Rajendran, V. Synthesis and characterization of nano-TiO2 via different methods. Arch. Appl. Sci. Res., 2012, 4(2), 1183-1190.
[52]
S, S.; H, L.J.K.; K, R.; M, S. Antimicrobial and antioxidant potentials of biosynthesized colloidal zinc oxide nanoparticles for a fortified cold cream formulation: A potent nanocosmeceutical application. Mater. Sci. Eng. C, 2017, 79, 581-589.
[http://dx.doi.org/10.1016/j.msec.2017.05.059] [PMID: 28629056]
[53]
Fardood, S.T. Green synthesis of zinc oxide nanoparticles using arabic gum and photocatalytic degradation of direct blue 129 dye under visible light. J. Mater. Sci. Mater. Electron., 2017, 28(18), 13596-13601.
[http://dx.doi.org/10.1007/s10854-017-7199-5]
[54]
Frost, K. Crystallinity and structure of starch using wide angle X-ray scattering. Carbohydr. Polym., 2009, 78(3), 543-548.
[http://dx.doi.org/10.1016/j.carbpol.2009.05.018]
[55]
Agarwal, H.; Kumar, S.V.; Rajeshkumar, S. A review on green synthesis of zinc oxide nanoparticles–An eco-friendly approach. Reffit. Tech., 2017, 3(4), 406-413.
[http://dx.doi.org/10.1016/j.reffit.2017.03.002]
[56]
Vidya, C. Green synthesis of ZnO nanoparticles by Calotropis gigantea. Int J Curr Eng Technol, 2013, 1, 118-120.
[57]
Kumar, S.S. Synthesis, characterization and optical properties of zinc oxide nanoparticles. Int. Nano Lett., 2013, 3(1), 30.
[http://dx.doi.org/10.1186/2228-5326-3-30]
[58]
Shim, Y.J. Zinc oxide nanoparticles synthesized by Suaeda japonica Makino and their photocatalytic degradation of methylene blue. Optik (Stuttg.), 2019, 182, 1015-1020.
[http://dx.doi.org/10.1016/j.ijleo.2018.11.144]
[59]
Hasnidawani, J. Synthesis of ZnO nanostructures using sol-gel method. Procedia Chem., 2016, 19, 211-216.
[http://dx.doi.org/10.1016/j.proche.2016.03.095]
[60]
Mittal, A.K.; Chisti, Y.; Banerjee, U.C. Synthesis of metallic nanoparticles using plant extracts. Biotechnol. Adv., 2013, 31(2), 346-356.
[http://dx.doi.org/10.1016/j.biotechadv.2013.01.003] [PMID: 23318667]
[61]
Ahmed, S. Annu; Chaudhry, S.A.; Ikram, S. A review on biogenic synthesis of ZnO nanoparticles using plant extracts and microbes: A prospect towards green chemistry. J. Photochem. Photobiol. B, 2017, 166, 272-284.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.12.011] [PMID: 28013182]
[62]
Wahab, R. The role of pH variation on the growth of zinc oxide nanostructures. Appl. Surf. Sci., 2009, 255(9), 4891-4896.
[http://dx.doi.org/10.1016/j.apsusc.2008.12.037]
[63]
Alias, S.; Ismail, A.; Mohamad, A. Effect of pH on ZnO nanoparticle properties synthesized by sol–gel centrifugation. J. Alloys Compd., 2010, 499(2), 231-237.
[http://dx.doi.org/10.1016/j.jallcom.2010.03.174]
[64]
Ochieng, P. Green route synthesis and characterization of ZnO nanoparticles using Spathodea campanulata. Int. J. Biochem. Phys, 2015, 23, 53-61.
[65]
Rajeshkumar, S. Anticancer and enhanced antimicrobial activity of biosynthesizd silver nanoparticles against clinical pathogens. J. Mol. Struct., 2016, 1116, 165-173.
[http://dx.doi.org/10.1016/j.molstruc.2016.03.044]
[66]
Farzaei, M.H.; Abbasabadi, Z.; Ardekani, M.R.; Rahimi, R.; Farzaei, F. Parsley: A review of ethnopharmacology, phytochemistry and biological activities. J. Tradit. Chin. Med., 2013, 33(6), 815-826.
[http://dx.doi.org/10.1016/S0254-6272(14)60018-2] [PMID: 24660617]
[67]
Karnan, T.; Selvakumar, S.A.S. Biosynthesis of ZnO nanoparticles using rambutan (Nephelium lappaceum L.) peel extract and their photocatalytic activity on methyl orange dye. J. Mol. Struct., 2016, 1125, 358-365.
[http://dx.doi.org/10.1016/j.molstruc.2016.07.029]
[68]
Jafarirad, S.; Mehrabi, M.; Divband, B.; Kosari-Nasab, M. Biofabrication of zinc oxide nanoparticles using fruit extract of Rosa canina and their toxic potential against bacteria: A mechanistic approach. Mater. Sci. Eng. C, 2016, 59, 296-302.
[http://dx.doi.org/10.1016/j.msec.2015.09.089] [PMID: 26652376]
[69]
Basnet, P.; Inakhunbi Chanu, T.; Samanta, D.; Chatterjee, S. A review on bio-synthesized zinc oxide nanoparticles using plant extracts as reductants and stabilizing agents. J. Photochem. Photobiol. B, 2018, 183, 201-221.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.04.036] [PMID: 29727834]