The Role of Nano-ophthalmology in Treating Dry Eye Disease

Page: [258 - 289] Pages: 32

  • * (Excluding Mailing and Handling)

Abstract

Dry eye disease (DED) is a common multifactorial disease linked to the tears/ocular surface leading to eye discomfort, ocular surface damage, and visual disturbance. Antiinflammatory agents (steroids and cyclosporine A), hormonal therapy, antibiotics, nerve growth factors, essential fatty acids are used as treatment options of DED. Current therapies attempt to reduce the ocular discomfort by producing lubrication and stimulating gland/nerve(s) associated with tear production, without providing a permanent cure for dry eye. Nanocarrier systems show a great promise to revolutionize drug delivery in DED, offering many advantages such as site specific and sustained delivery of therapeutic agents. This review presents an overview, pathophysiology, prevalence and etiology of DED, with an emphasis on preclinical and clinical studies involving the use of nanocarrier systems in treating DED.

Lay Summary: Dry eye disease (DED) is a multifactorial disease associated with tear deficiency or excessive tear evaporation. There are several review articles that summarize DED, disease symptoms, causes and treatment approaches. Nanocarrier systems show a great promise to revolutionize drug delivery in DED, offering many advantages such as site specific and sustained delivery of therapeutic agents. Very few review articles summarize the findings on the use of nanotherapeutics in DED. In this review, we have exclusively discussed the preclinical and clinical studies of nanotherapeutics in DED therapy. This information will be attractive to both academic and pharmaceutical industry researchers working in DED therapeutics.

Keywords: Dry eye disease, inflammation, lacrimal gland, nanocarriers, Restasis®, tears.

Graphical Abstract

[1]
Javadi M-A, Feizi S. Dry eye syndrome. J Ophthalmic Vis Res 2011; 6(3): 192-8.
[PMID: 22454735]
[2]
Messmer EM. The pathophysiology, diagnosis, and treatment of dry eye disease. Dtsch Arztebl Int 2015; 112(5): 71-81.
[http://dx.doi.org/10.3238/arztebl.2015.0071] [PMID: 25686388]
[3]
Shimizu E, Ogawa Y, Yazu H, et al. “Smart Eye Camera”: an innovative technique to evaluate tear film breakup time in a murine dry eye disease model. PLoS One 2019; 14(5): e0215130.
[http://dx.doi.org/10.1371/journal.pone.0215130] [PMID: 31071120]
[4]
Fulgêncio GdO, Saliba JB, Fialho SL, Júnior C, da Silva A. Cyclosporine-loaded delivery system for the treatment of keratoconjunctivitis sicca: a pilot study. Rev Bras Oftalmol 2013; 72(4): 232-6.
[5]
Garcia DM, Reis de Oliveira F, Módulo CM, et al. Is Sjögren’s syndrome dry eye similar to dry eye caused by other etiologies? Discriminating different diseases by dry eye tests. PLoS One 2018; 13(12) e0208420
[http://dx.doi.org/10.1371/journal.pone.0208420] [PMID: 30507949]
[6]
Garrigue J-S, Amrane M, Faure M-O, Holopainen JM, Tong L. Relevance of lipid-based products in the management of dry eye disease. J Ocul Pharmacol Ther 2017; 33(9): 647-61.
[http://dx.doi.org/10.1089/jop.2017.0052] [PMID: 28956698]
[7]
Bachu RD, Chowdhury P, Al-Saedi ZHF, Karla PK, Boddu SHS. Ocular drug delivery barriers-role of nanocarriers in the treatment of anterior segment ocular diseases. Pharmaceutics 2018; 10(1): 28.
[http://dx.doi.org/10.3390/pharmaceutics10010028] [PMID: 29495528]
[8]
Vicario-de-la-Torre M, Caballo-González M, Vico E, et al. Novel nano-liposome formulation for dry eyes with components similar to the preocular tear film. Polymers (Basel) 2018; 10(4): 425.
[http://dx.doi.org/10.3390/polym10040425] [PMID: 30966460]
[9]
Moshirfar M, Pierson K, Hanamaikai K, Santiago-Caban L, Muthappan V, Passi SF. Artificial tears potpourri: a literature review. Clin Ophthalmol 2014; 8: 1419-33.
[PMID: 25114502]
[10]
Abidi A, Shukla P, Ahmad A. Lifitegrast: a novel drug for treatment of dry eye disease. J Pharmacol Pharmacother 2016; 7(4): 194-8.
[http://dx.doi.org/10.4103/0976-500X.195920] [PMID: 28163544]
[11]
Perry HD, Solomon R, Donnenfeld ED, et al. Evaluation of topical cyclosporine for the treatment of dry eye disease. Arch Ophthalmol 2008; 126(8): 1046-50.
[http://dx.doi.org/10.1001/archopht.126.8.1046] [PMID: 18695097]
[12]
Vickers LA, Gupta PK. The future of dry eye treatment: a glance into the therapeutic pipeline. Ophthalmol Ther 2015; 4(2): 69-78.
[http://dx.doi.org/10.1007/s40123-015-0038-y] [PMID: 26289997.]
[13]
Dastjerdi MH, Hamrah P, Dana R. High-frequency topical cyclosporine 0.05% in the treatment of severe dry eye refractory to twice-daily regimen. Cornea 2009; 28(10): 1091-6.
[http://dx.doi.org/10.1097/ICO.0b013e3181a16472] [PMID: 19770713]
[14]
Lallemand F, Schmitt M, Bourges J-L, Gurny R, Benita S, Garrigue J-S. Cyclosporine a delivery to the eye: a comprehensive review of academic and industrial efforts. Eur J Pharm Biopharm 2017; 28117: 14-28.
[http://dx.doi.org/10.1016/j.ejpb.2017.03.006]
[15]
Gaudana R, Jwala J, Boddu SHS, Mitra AK. Recent perspectives in ocular drug delivery. Pharm Res 2009; 26(5): 1197-216.
[http://dx.doi.org/10.1007/s11095-008-9694-0] [PMID: 18758924]
[16]
Al-Saedi ZH, Alzhrani RM, Boddu SH. Formulation and in vitro evaluation of cyclosporine-A inserts prepared using hydroxypropyl methylcellulose for treating dry eye disease. J Ocul Pharmacol Ther 2016; 32(7): 451-62.
[http://dx.doi.org/10.1089/jop.2016.0013] [PMID: 27294697]
[17]
Gupta P, Trattler W, Levinson B, Rostov AT. LACRISERT®(hydroxypropyl cellulose ophthalmic insert) in current practice: reflections on a longstanding therapy for moderate to severe dry eye 2019.Available at: https://www.reviewofophthalmology. com/CMSDocuments/2019/10/rp1019_blwhitepaperi.pdf
[18]
Kompella UB, Amrite AC, Pacha Ravi R, Durazo SA. Nanomedicines for back of the eye drug delivery, gene delivery, and imaging. Prog Retin Eye Res 2013; 36: 172-98.
[http://dx.doi.org/10.1016/j.preteyeres.2013.04.001] [PMID: 23603534.]
[19]
Reimondez-Troitiño S, Csaba N, Alonso MJ, de la Fuente M. Nanotherapies for the treatment of ocular diseases. Eur J Pharm Biopharm 2015; 0195: 279-93.
[http://dx.doi.org/10.1016/j.ejpb.2015.02.019]
[20]
Tsai C-H, Wang P-Y, Lin IC, Huang H, Liu G-S, Tseng C-L. Ocular drug delivery: role of degradable polymeric nanocarriers for ophthalmic application. Int J Mol Sci 2018; 19(9): 2830.
[http://dx.doi.org/10.3390/ijms19092830] [PMID: 30235809]
[21]
Natarajan JV, Darwitan A, Barathi VA, et al. Sustained drug release in nanomedicine: a long-acting nanocarrier-based formulation for glaucoma. ACS Nano 2014; 8(1): 419-29.
[http://dx.doi.org/10.1021/nn4046024] [PMID: 24392729]
[22]
Daull P, Lallemand F, Garrigue JS. Benefits of cetalkonium chloride cationic oil-in-water nanoemulsions for topical ophthalmic drug delivery. J Pharm Pharmacol 2014; 66(4): 531-41.
[http://dx.doi.org/10.1111/jphp.12075] [PMID: 24001405]
[23]
Dukovski BJ, Bračko A, Šare M, Pepić I, Lovrić J. In vitro evaluation of stearylamine cationic nanoemulsions for improved ocular drug delivery. Acta Pharm 2019; 69(4): 621-34.
[http://dx.doi.org/10.2478/acph-2019-0054] [PMID: 31639085]
[24]
Mandal A, Gote V, Pal D, Ogundele A, Mitra AK. Ocular pharmacokinetics of a topical ophthalmic nanomicellar solution of cyclosporine (CEQUA®) for dry eye disease. Pharm Res 2019; 36(2): 36.
[http://dx.doi.org/10.1007/s11095-018-2556-5] [PMID: 30617777]
[25]
Bennett L. Topical versus systemic ocular drug delivery ocular drug delivery: advances, challenges and applications. Germany: Springer 2016; pp. 53-74.
[http://dx.doi.org/10.1007/978-3-319-47691-9_5]
[26]
Georgiev GA, Yokoi N, Nencheva Y, Peev N, Daull P. Surface chemistry interactions of cationorm with films by human meibum and tear film compounds. Int J Mol Sci 2017; 18(7): 1558.
[http://dx.doi.org/10.3390/ijms18071558] [PMID: 28718823]
[27]
Lyseng-Williamson KA. Cationorm®(cationic emulsion eye drops) in dry eye disease: a guide to its use. Drugs Ther Perspect 2016; 32(8): 317-22.
[http://dx.doi.org/10.1007/s40267-016-0319-0]
[28]
Gaudana R, Jwala J, Boddu SH, Mitra AK. Recent perspectives in ocular drug delivery. Pharm Res 2009; 26(5): 1197-216.
[http://dx.doi.org/10.1007/s11095-008-9694-0] [PMID: 18758924]
[29]
Sahoo SK, Dilnawaz F, Krishnakumar S. Nanotechnology in ocular drug delivery. Drug Discov Today 2008; 13(3-4): 144-51.
[http://dx.doi.org/10.1016/j.drudis.2007.10.021] [PMID: 18275912]
[30]
Ahmadi Tehrani A, Omranpoor MM, Vatanara A, Seyedabadi M, Ramezani V. Formation of nanosuspensions in bottom-up approach: theories and optimization. Daru 2019; 27(1): 451-73.
[http://dx.doi.org/10.1007/s40199-018-00235-2] [PMID: 30661188]
[31]
Rabinow BE. Nanosuspensions in drug delivery. Nat Rev Drug Discov 2004; 013(9): 785-96.
[http://dx.doi.org/10.1038/nrd1494]
[32]
Kim JH, Jang SW, Han SD, Hwang HD, Choi H-G. Development of a novel ophthalmic ciclosporin A-loaded nanosuspension using top-down media milling methods. Pharmazie 2011; 66(7): 491-5.
[PMID: 21812323]
[33]
Luschmann C, Tessmar J, Schoeberl S, et al. Developing an in situ nanosuspension: a novel approach towards the efficient administration of poorly soluble drugs at the anterior eye. Eur J Pharm Sci 2013; 50(3-4): 385-92.
[http://dx.doi.org/10.1016/j.ejps.2013.07.002] [PMID: 23880334]
[34]
Kim EC, Choi J-S, Joo C-K. A comparison of vitamin a and cyclosporine a 0.05% eye drops for treatment of dry eye syndrome. Am J of Ophthalmol 2009; 147(2): 206-13.
[35]
Akhgari A, Saremi H, Khodayar MJ. Preparation and evaluation of vitamin A nanosuspension as a novel ocular drug delivery. Nanomed J 2015; 2(4): 283-90.
[36]
Lawrence MJ, Rees GD. Microemulsion-based media as novel drug delivery systems. Adv Drug Deliv Rev 2000; 45(1): 89-121.
[http://dx.doi.org/10.1016/S0169-409X(00)00103-4] [PMID: 11104900]
[37]
Fialho SL, da Silva-Cunha A. New vehicle based on a microemulsion for topical ocular administration of dexamethasone. Clin Exp Ophthalmol 2004; 32(6): 626-32.
[http://dx.doi.org/10.1111/j.1442-9071.2004.00914.x] [PMID: 15575833]
[38]
Vandamme TF. Microemulsions as ocular drug delivery systems: recent developments and future challenges. Prog Retin Eye Res 2002; 21(1): 15-34.
[http://dx.doi.org/10.1016/S1350-9462(01)00017-9] [PMID: 11906809]
[39]
Lidich N, Garti-Levy S, Aserin A, Garti N. Potentiality of microemulsion systems in treatment of ophthalmic disorders: keratoconus and dry eye syndrome - in vivo study. Colloids Surf B Biointerfaces 2019; 02173: 226-32.
[40]
Warouw H, Ekantini R, Widayanti TW. The effectiveness of lipofilm microemulsion eye drops in dry eye syndrome by enhancing the tear film quality. Jurnal Oftalmologi Indonesia (JOI) 2009; 7(2): 57i61
[41]
Coursey TG, Wassel RA, Quiambao AB, Farjo RA. Once-daily cyclosporine-A-MiDROPS for treatment of dry eye disease. Transl Vis Sci Techn 2018; 7(5): 24.
[http://dx.doi.org/10.1167/tvst.7.5.24] [PMID: 30323997.]
[42]
Günther B, Scherer D, Pettigrew A. Semifluorinated alkane compositions. United States patent US 9,770,508 2017.
[43]
Downie LE, Gad A, Wong CY, et al. Modulating contact lens discomfort with anti-inflammatory approaches: a randomized controlled trial. Invest Ophthalmol Vis Sci 2018; 59(8): 3755-66.
[http://dx.doi.org/10.1167/iovs.18-24758] [PMID: 30046817]
[44]
Vadlapudi AD, Cholkar K, Dasari SR, Mitra AK. Ocular drug delivery. Burlington, Ma: Jones Bartlett Learn 2015; pp. 219-63.
[45]
Kaur IP, Garg A, Singla AK, Aggarwal D. Vesicular systems in ocular drug delivery: an overview. Int J Pharm 2004; 269(1): 1-14.
[http://dx.doi.org/10.1016/j.ijpharm.2003.09.016] [PMID: 14698571]
[46]
McCann LC, Tomlinson A, Pearce EI, Papa V. Effectiveness of artificial tears in the management of evaporative dry eye. Cornea 2012; 31(1): 1-5.
[http://dx.doi.org/10.1097/ICO.0b013e31821b71e6] [PMID: 21968605]
[47]
Acar D, Molina-Martínez IT, Gómez-Ballesteros M, Guzmán-Navarro M, Benítez-Del-Castillo JM, Herrero-Vanrell R. Novel liposome-based and in situ gelling artificial tear formulation for dry eye disease treatment. Cont Lens Anterior Eye 2018; 41(1): 93-6.
[http://dx.doi.org/10.1016/j.clae.2017.11.004] [PMID: 29223649]
[48]
Alghadyan AA, Peyman GA, Khoobehi B, Liu K-R. Liposome-bound cyclosporine: retinal toxicity after intravitreal injection. Int Ophthalmol 1988; 12(2): 105-7.
[http://dx.doi.org/10.1007/BF00137134] [PMID: 3229898]
[49]
Gomaa AI, Martinent C, Hammami R, Fliss I, Subirade M. Dual coating of liposomes as encapsulating matrix of antimicrobial peptides: development and characterization. Front Chem 2017; 5: 103.
[http://dx.doi.org/10.3389/fchem.2017.00103] [PMID: 29204423]
[50]
Garrigue J-S, Amrane M, Faure M-O, Holopainen JM, Tong L. Relevance of lipid-based products in the management of dry eye disease. J Ocul Pharmacol Ther 2017; 33(9): 647-61.
[http://dx.doi.org/10.1089/jop.2017.0052] [PMID: 28956698.]
[51]
Li N, Zhuang C-Y, Wang M, Sui C-G, Pan W-S. Low molecular weight chitosan-coated liposomes for ocular drug delivery: in vitro and in vivo studies. Drug Deliv 2012; 19(1): 28-35.
[http://dx.doi.org/10.3109/10717544.2011.621994] [PMID: 22070752]
[52]
Buech G, Bertelmann E, Pleyer U, Siebenbrodt I, Borchert H-H. Formulation of sirolimus eye drops and corneal permeation studies. J Ocul Pharmacol Ther 2007; 23(3): 292-303.
[http://dx.doi.org/10.1089/jop.2006.130] [PMID: 17593014]
[53]
Thomson AW, Turnquist HR, Raimondi G. Immunoregulatory functions of mTOR inhibition. Nat Rev Immunol 2009; 9(5): 324-37.
[http://dx.doi.org/10.1038/nri2546] [PMID: 19390566]
[54]
Linares-Alba MA, Gómez-Guajardo MB, Fonzar JF, Brooks DE, García-Sánchez GA, Bernad-Bernad MJ. Preformulation studies of a liposomal formulation containing sirolimus for the treatment of dry eye disease. J Ocul Pharmacol Ther 2016; 32(1): 11-22.
[http://dx.doi.org/10.1089/jop.2015.0032] [PMID: 26469946]
[55]
Karn PR, Kim HD, Kang H, Sun BK, Jin S-E, Hwang S-J. Supercritical fluid-mediated liposomes containing cyclosporin A for the treatment of dry eye syndrome in a rabbit model: comparative study with the conventional cyclosporin a emulsion. Int J Nanomedicine 2014; 9: 3791-800.
[PMID: 25143728]
[56]
Kala Pharmaceuticals I. Focus on Eye Care , Available at: http://kalarx.com/technology/focus-on-eye-care/
[57]
Vaishya RD, Khurana V, Patel S, Mitra AK. Controlled ocular drug delivery with nanomicelles. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2014; 6(5): 422-37.
[http://dx.doi.org/10.1002/wnan.1272] [PMID: 24888969]
[58]
Trivedi R, Kompella UB. Nanomicellar formulations for sustained drug delivery: strategies and underlying principles. Nanomedicine (Lond) 2010; 5(3): 485-505.
[http://dx.doi.org/10.2217/nnm.10.10] [PMID: 20394539]
[59]
Torchilin VP. Structure and design of polymeric surfactant-based drug delivery systems. J Control Release 2001; 73(2-3): 137-72.
[http://dx.doi.org/10.1016/S0168-3659(01)00299-1] [PMID: 11516494]
[60]
Rangel-Yagui CO, Pessoa A Jr, Tavares LC. Micellar solubilization of drugs. J Pharm Pharm Sci 2005; 8(2): 147-65.
[PMID: 16124926]
[61]
Cholkar K, Patel A, Vadlapudi AD, Mitra AKK, Mitra A. Novel nanomicellar formulation approaches for anterior and posterior segment ocular drug delivery. Recent Pat Nanomed 2012; 2(2): 82-95.
[http://dx.doi.org/10.2174/1877912311202020082] [PMID: 25400717]
[62]
Chevalier Y, Zemb T. The structure of micelles and microemulsions. Rep Prog Phys 1990; 53(3): 279.
[http://dx.doi.org/10.1088/0034-4885/53/3/002]
[63]
Kuwano M, Ibuki H, Morikawa N, Ota A, Kawashima Y. Cyclosporine A formulation affects its ocular distribution in rabbits. Pharm Res 2002; 19(1): 108-11.
[http://dx.doi.org/10.1023/A:1013671819604] [PMID: 11837694]
[64]
Sammalkorpi M, Karttunen M, Haataja M. Ionic surfactant aggregates in saline solutions: sodium dodecyl sulfate (SDS) in the presence of excess sodium chloride (NaCl) or calcium chloride (CaCl(2)). J Phys Chem B 2009; 113(17): 5863-70.
[http://dx.doi.org/10.1021/jp901228v] [PMID: 19344100]
[65]
Rosen MJ, Kunjappu JT. Surfactants and interfacial phenomena. Hoboken, New Jersey: John Wiley & Sons 2012.
[http://dx.doi.org/10.1002/9781118228920]
[66]
Luschmann C, Tessmar J, Schoeberl S, Strauß O, Luschmann K, Goepferich A. Self-assembling colloidal system for the ocular administration of cyclosporine A. Cornea 2014; 33(1): 77-81.
[http://dx.doi.org/10.1097/ICO.0b013e3182a7f3bf] [PMID: 24162754]
[67]
Kang H, Cha K-H, Cho W, et al. Cyclosporine Amicellar delivery system for dry eyes. Int J Nanomedicine 2016; 11: 2921-33.
[PMID: 27382280]
[68]
Shah M, Edman MC, Reddy Janga S, et al. Rapamycin eye drops suppress lacrimal gland inflammation in a murine model of Sjögren’s Syndrome. Invest Ophthalmol Vis Sci 2017; 58(1): 372-85.
[http://dx.doi.org/10.1167/iovs.16-19159] [PMID: 28122086]
[69]
Velagaleti P, Gilger B, Anglade E, Mitra AA. Clear, mixed nanomicellar formulation of voclosporin (LX214), achieves therapeutic levels in ocular posterior segment after single and multiple topical dosing in rabbits. Invest Ophthalmol Vis Sci 2010; 51(13): 5323.
[70]
Cholkar K, Hariharan S, Gunda S, Mitra AK. Optimization of dexamethasone mixed nanomicellar formulation. AAPS PharmSciTech 2014; 15(6): 1454-67.
[http://dx.doi.org/10.1208/s12249-014-0159-y] [PMID: 24980081]
[71]
Cholkar K, Gunda S, Earla R, Pal D, Mitra AK. Nanomicellar topical aqueous drop formulation of rapamycin for back-of-the-eye delivery. AAPS PharmSciTech 2015; 16(3): 610-22.
[http://dx.doi.org/10.1208/s12249-014-0244-2] [PMID: 25425389]
[72]
Mitra AK, Velagaleti PR, Natesan S. Ophthalmic compositions comprising calcineurin inhibitors or mTOR inhibitors. United States patent US 8,435,544 2013.
[73]
Cholkar K, Gilger BC, Mitra AK. Topical, aqueous, clear cyclosporine formulation design for anterior and posterior ocular delivery. Transl Vis Sci Technol 2015; 4(3): 1.
[http://dx.doi.org/10.1167/tvst.4.3.1] [PMID: 25964868]
[74]
Weiss SL, Kramer W, Velagaleti P, Gilger BC. ocular distribution of cyclosporine following topical administration of OTX-101 in New Zealand white rabbits. Invest Ophthalmol Vis Sci 2018; 59(9): 2677.
[75]
Tauber J, Schechter BA, Bacharach J, et al. A Phase II/III, randomized, double-masked, vehicle-controlled, dose-ranging study of the safety and efficacy of OTX-101 in the treatment of dry eye disease. Clin Ophthalmol 2018; 12: 1921-9.
[http://dx.doi.org/10.2147/OPTH.S175065] [PMID: 30323548]
[76]
Goldberg DF, Malhotra RP, Schechter BA, Justice A, Weiss SL, Sheppard JD. A Phase 3, randomized, double-masked study of OTX-101 ophthalmic solution 0.09% in the treatment of dry eye disease. Ophthalmology 2019; 126(9): 1230-7.
[77]
Cholkar K, Gilger BC, Mitra AK. Topical delivery of aqueous micellar resolvin E1 analog (RX-10045). Int J Pharm 2016; 498(1-2): 326-34.
[PMID: 26706439]
[78]
Kabanov AV, Batrakova EV, Alakhov VY. Pluronic block copolymers as novel polymer therapeutics for drug and gene delivery. J Control Release 2002; 82(2-3): 189-212.
[http://dx.doi.org/10.1016/S0168-3659(02)00009-3] [PMID: 12175737]
[79]
Batrakova EV, Kabanov AV. Pluronic block copolymers: evolution of drug delivery concept from inert nanocarriers to biological response modifiers. J Control Release 2008; 130(2): 98-106.
[http://dx.doi.org/10.1016/j.jconrel.2008.04.013] [PMID: 18534704]
[80]
Boddu SH, Jwala J, Chowdhury MR, Mitra AK. In vitro evaluation of a targeted and sustained release system for retinoblastoma cells using Doxorubicin as a model drug. J Ocul Pharmacol Ther 2010; 26(5): 459-68.
[http://dx.doi.org/10.1089/jop.2010.0048] [PMID: 20874666]
[81]
Di Tommaso C, Torriglia A, Furrer P, Behar-Cohen F, Gurny R, Möller M. Ocular biocompatibility of novel cyclosporin a formulations based on methoxy poly(ethylene glycol)-hexylsubstituted poly(lactide) micelle carriers. Int J Pharm 2011; 416(2): 515-24.
[http://dx.doi.org/10.1016/j.ijpharm.2011.01.004] [PMID: 21219997]
[82]
Di Tommaso C, Valamanesh F, Miller F, et al. A novel cyclosporin a aqueous formulation for dry eye treatment: in vitro and in vivo evaluation. Invest Ophthalmol Vis Sci 2012; 53(4): 2292-9.
[http://dx.doi.org/10.1167/iovs.11-8829] [PMID: 22427552]
[83]
Tsinman O, Tsinman K, Ali S. Excipient update- Soluplus®: an understanding of supersaturation from amorphous solid dispersions. Drug Delivery Technology 2015; 15(1).
[84]
Yu H, Xia D, Zhu Q, Zhu C, Chen D, Gan Y. Supersaturated polymeric micelles for oral cyclosporine A delivery. Eur J Pharm Biopharm 2013; 85(3 Pt B): 1325-36.
[http://dx.doi.org/10.1016/j.ejpb.2013.08.003] [PMID: 23954511]
[85]
Guo C, Zhang Y, Yang Z, et al. Nanomicelle formulation for topical delivery of cyclosporine A into the cornea: in vitro mechanism and in vivo permeation evaluation. Sci Rep 2015; 5: 12968.
[http://dx.doi.org/10.1038/srep12968]
[86]
Alvarez-Rivera F, Fernández-Villanueva D, Concheiro A, Alvarez-Lorenzo C. α-Lipoic acid in soluplus® polymeric nanomicelles for ocular treatment of diabetes-associated corneal diseases. J Pharm Sci 2016; 105(9): 2855-63.
[http://dx.doi.org/10.1016/j.xphs.2016.03.006] [PMID: 27103010]
[87]
Mandal A, Bisht R, Rupenthal ID, Mitra AK. Polymeric micelles for ocular drug delivery: from structural frameworks to recent preclinical studies. J Control Release 2017; 248: 96-116.
[http://dx.doi.org/10.1016/j.jconrel.2017.01.012] [PMID: 28087407]
[88]
Yu Y, Chen D, Li Y, Yang W, Tu J, Shen Y. Improving the topical ocular pharmacokinetics of lyophilized cyclosporine A-loaded micelles: formulation, in vitro and in vivo studies. Drug Deliv 2018; 25(1): 888-99.
[http://dx.doi.org/10.1080/10717544.2018.1458923] [PMID: 29631468]
[89]
Shen Y, Yu Y, Chaurasiya B, et al. Stability, safety, and transcorneal mechanistic studies of ophthalmic lyophilized cyclosporine-loaded polymeric micelles. Int J Nanomedicine 2018; 13: 8281-96.
[http://dx.doi.org/10.2147/IJN.S173691] [PMID: 30584300]
[90]
Zhou Q, Zhang L, Yang T, Wu H. Stimuli-responsive polymeric micelles for drug delivery and cancer therapy. Int J Nanomedicine 2018; 13: 2921-42.
[http://dx.doi.org/10.2147/IJN.S158696] [PMID: 29849457]
[91]
Kataoka K, Harada A, Nagasaki Y. Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev 2001; 47(1): 113-31.
[http://dx.doi.org/10.1016/S0169-409X(00)00124-1] [PMID: 11251249]
[92]
Harada A, Kataoka K. Novel polyion complex micelles entrapping enzyme molecules in the core: preparation of narrowly-distributed micelles from lysozyme and poly (ethylene glycol)-poly (aspartic acid) block copolymer in aqueous medium. Macromolecules 1998; 31(2): 288-94.
[http://dx.doi.org/10.1021/ma971277v]
[93]
Zhang G-D, Harada A, Nishiyama N, et al. Polyion complex micelles entrapping cationic dendrimer porphyrin: effective photosensitizer for photodynamic therapy of cancer. J Control Release 2003; 93(2): 141-50.
[http://dx.doi.org/10.1016/j.jconrel.2003.05.002] [PMID: 14636720]
[94]
Castro E, Taboada P, Mosquera V. Behavior of a styrene oxide-ethylene oxide diblock copolymer/surfac tant system: a thermodynamic and spectroscopy study. J Phys Chem B 2005; 109(12): 5592-9.
[http://dx.doi.org/10.1021/jp044766n] [PMID: 16851602]
[95]
Boddu SH. Polymeric Nanoparticles for ophthalmic drug delivery: an update on research and patenting activity. Recent Pat Nanomed 2012; 2(2): 96-112.
[http://dx.doi.org/10.2174/1877912311202020096]
[96]
Almeida H, Amaral MH, Lobão P, Silva AC, Loboa JMS. Applications of polymeric and lipid nanoparticles in ophthalmic pharmaceutical formulations: present and future considerations. J Pharm Pharm Sci 2014; 17(3): 278-93.
[http://dx.doi.org/10.18433/J3DP43] [PMID: 25224343]
[97]
Bu H-Z, Gukasyan HJ, Goulet L, Lou X-J, Xiang C, Koudriakova T. Ocular disposition, pharmacokinetics, efficacy and safety of nanoparticle-formulated ophthalmic drugs. Curr Drug Metab 2007; 8(2): 91-107.
[http://dx.doi.org/10.2174/138920007779815977] [PMID: 17305490]
[98]
Losa C, Marchal-Heussler L, Orallo F, Vila Jato JL, Alonso MJ. Design of new formulations for topical ocular administration: polymeric nanocapsules containing metipranolol. Pharm Res 1993; 10(1): 80-7.
[http://dx.doi.org/10.1023/A:1018977130559] [PMID: 8094245]
[99]
Losa C, Calvo P, Castro E, Vila-Jato JL, Alonso MJ. Improvement of ocular penetration of amikacin sulphate by association to poly(butylcyanoacrylate) nanoparticles. J Pharm Pharmacol 1991; 43(8): 548-52.
[http://dx.doi.org/10.1111/j.2042-7158.1991.tb03534.x] [PMID: 1681069]
[100]
Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2007; 2(12): 751-60.
[http://dx.doi.org/10.1038/nnano.2007.387] [PMID: 18654426]
[101]
Contreras-Ruiz L, Zorzi GK, Hileeto D, et al. A nanomedicine to treat ocular surface inflammation: performance on an experimental dry eye murine model. Gene Therapy 2012; 20: 467.
[102]
Huang H-Y, Wang M-C, Chen Z-Y, et al. Gelatin-epigallocatechin gallate nanoparticles with hyaluronic acid decoration as eye drops can treat rabbit dry-eye syndrome effectively via inflammatory relief. Int J Nanomedicine 2018; 13: 7251-73.
[http://dx.doi.org/10.2147/IJN.S173198] [PMID: 30510416]
[103]
Li Y-J, Luo L-J, Harroun SG, et al. Synergistically dual-functional nano eye-drops for simultaneous anti inflammatory and anti-oxidative treatment of dry eye disease. Nanoscale 2019; 11(12): 5580-94.
[http://dx.doi.org/10.1039/C9NR00376B] [PMID: 30860532]
[104]
De Campos AM, Sánchez A, Alonso MJ. Chitosan nanoparticles: a new vehicle for the improvement of the delivery of drugs to the ocular surface. Application to cyclosporin A. Int J Pharm 2001; 224(1-2): 159-68.
[http://dx.doi.org/10.1016/S0378-5173(01)00760-8] [PMID: 11472825]
[105]
Basaran E, Yenilmez E, Berkman MS, Buyukkoroglu G, Yazan Y. Chitosan nanoparticles for ocular delivery of cyclosporine A. J Microencapsul 2014; 31(1): 49-57.
[106]
Calvo P, Sánchez A, Martínez J, et al. Polyester nanocapsules as new topical ocular delivery systems for cyclosporin A. Pharm Res 1996; 13(2): 311-5.
[http://dx.doi.org/10.1023/A:1016015803611] [PMID: 8932455]
[107]
Juberías JR, Calonge M, Gómez S, et al. Efficacy of topical cyclosporine-loaded nanocapsules on keratoplasty rejection in the rat. Curr Eye Res 1998; 17(1): 39-46.
[http://dx.doi.org/10.1076/ceyr.17.1.39.5251] [PMID: 9472469]
[108]
Yenice I, Mocan MC, Palaska E, et al. Hyaluronic acid coated poly-epsilon-caprolactone nanospheres deliver high concentrations of cyclosporine A into the cornea. Exp Eye Res 2008; 87(3): 162-7.
[http://dx.doi.org/10.1016/j.exer.2008.04.002] [PMID: 18675411]
[109]
Boddu SHS, Jwala J, Vaishya R, et al. Novel nanoparticulate gel formulations of steroids for the treatment of macular edema. J Ocul Pharmacol Ther 2010; 26(1): 37-48.
[http://dx.doi.org/10.1089/jop.2009.0074] [PMID: 20148659]
[110]
Wagh VD, Apar DU. Cyclosporine a loaded PLGA nanoparticles for dry eye disease: in vitro characterization studies. J Nanotechnol 2014; 2014: 1-10.
[111]
Aksungur P, Demirbilek M, Denkbaş EB, Vandervoort J, Ludwig A, Unlü N. Development and characterization of cyclosporine a loaded nanoparticles for ocular drug delivery: cellular toxicity, uptake, and kinetic studies. J Control Release 2011; 151(3): 286-94.
[http://dx.doi.org/10.1016/j.jconrel.2011.01.010] [PMID: 21241752]
[112]
Hermans K, Van den Plas D, Everaert A, Weyenberg W, Ludwig A. Full factorial design, physicochemical characterisation and biological assessment of cyclosporine A loaded cationic nanoparticles. Eur J Pharm Biopharm 2012; 82(1): 27-35.
[http://dx.doi.org/10.1016/j.ejpb.2012.05.003] [PMID: 22634236]
[113]
Liu S, Chang CN, Verma MS, et al. Phenylboronic acid modified mucoadhesive nanoparticle drug carriers facilitate weekly treatment of experimentally induced dry eye syndrome. Nano Res 2015; 8(2): 621-35.
[http://dx.doi.org/10.1007/s12274-014-0547-3]
[114]
Le Bourlais CA, Chevanne F, Turlin B, et al. Effect of cyclosporine a formulations on bovine corneal absorption: ex-vivo study. J Microencapsul 1997; 14(4): 457-67.
[http://dx.doi.org/10.3109/02652049709033830] [PMID: 9229345]
[115]
Wen Z, Muratomi N, Huang W, et al. The ocular pharmacokinetics and biodistribution of phospho sulindac (OXT-328) formulated in nanoparticles: enhanced and targeted tissue drug delivery. Int J Pharm 2019; 557: 273-9.
[http://dx.doi.org/10.1016/j.ijpharm.2018.12.057] [PMID: 30597269]
[116]
Sawant KK, Dodiya SS. Recent advances and patents on solid lipid nanoparticles. Recent Pat Drug Deliv Formul 2008; 2(2): 120-35.
[http://dx.doi.org/10.2174/187221108784534081] [PMID: 19075903]
[117]
Mehnert W, Mäder K. Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev 2001; 47(2-3): 165-96.
[http://dx.doi.org/10.1016/S0169-409X(01)00105-3] [PMID: 11311991]
[118]
Niu M, Shi K, Sun Y, Wang J, Cui F. Preparation of CyA-loaded solid lipid nanoparticles and application on ocular preparations. J Drug Deliv Sci Technol 2008; 18(4): 293-7.
[http://dx.doi.org/10.1016/S1773-2247(08)50055-4]
[119]
Kaur IP, Rana C, Singh H. Development of effective ocular preparations of antifungal agents. J Ocul Pharmacol Ther 2008; 24(5): 481-93.
[http://dx.doi.org/10.1089/jop.2008.0031] [PMID: 18788998]
[120]
Mishra V, Bansal KK, Verma A, et al. Solid lipid nanoparticles: emerging colloidal nano drug delivery systems. Pharmaceutics 2018; 10(4): 191.
[http://dx.doi.org/10.3390/pharmaceutics10040191] [PMID: 30340327]
[121]
Khan S, Baboota S, Ali J, Khan S, Narang RS, Narang JK. Nanostructured lipid carriers: an emerging platform for improving oral bioavailability of lipophilic drugs. Int J Pharm Investig 2015; 5(4): 182-91.
[http://dx.doi.org/10.4103/2230-973X.167661] [PMID: 26682188]
[122]
Shen J, Wang Y, Ping Q, Xiao Y, Huang X. Mucoadhesive effect of thiolated PEG stearate and its modified NLC for ocular drug delivery. J Control Release 2009; 137(3): 217-23.
[http://dx.doi.org/10.1016/j.jconrel.2009.04.021] [PMID: 19393270]
[123]
Shen J, Deng Y, Jin X, Ping Q, Su Z, Li L. Thiolated nanostructured lipid carriers as a potential ocular drug delivery system for cyclosporine A: improving in vivo ocular distribution. Int J Pharm 2010; 402(1-2): 248-53.
[http://dx.doi.org/10.1016/j.ijpharm.2010.10.008] [PMID: 20934499]
[124]
Zhang W, Wang Y, Lee BTK, Liu C, Wei G, Lu W. A novel nanoscale-dispersed eye ointment for the treatment of dry eye disease. Nanotechnology 2014; 25(12) 125101
[http://dx.doi.org/10.1088/0957-4484/25/12/125101] [PMID: 24571862]
[125]
Niamprem P, Teapavarapruk P, Srinivas SP, Tiyaboonchai W. Impact of nanostructured lipid carriers as an artificial tear film in a rabbit evaporative dry eye model. Cornea 2019; 38(4): 485-91.
[http://dx.doi.org/10.1097/ICO.0000000000001867] [PMID: 00003226-201904000-00014.]
[126]
Nealon GL, Greget R, Dominguez C, et al. Liquid-crystalline nanoparticles: hybrid design and mesophase structures. Beilstein J Org Chem 2012; 8(1): 349-70.
[http://dx.doi.org/10.3762/bjoc.8.39] [PMID: 22509204]
[127]
Mo J, Milleret G, Nagaraj M. Liquid crystal nanoparticles for commercial drug delivery. Liquid Cryst Rev 2017; 5(2): 69-85.
[http://dx.doi.org/10.1080/21680396.2017.1361874]
[128]
Chen Y, Lu Y, Zhong Y, Wang Q, Wu W, Gao S. Ocular delivery of cyclosporine A based on glyceryl monooleate/poloxamer 407 liquid crystalline nanoparticles: preparation, characterization, in vitro corneal penetration and ocular irritation. J Drug Target 2012; 20(10): 856-63.
[http://dx.doi.org/10.3109/1061186X.2012.723214] [PMID: 23050903]
[129]
Quintana A, Raczka E, Piehler L, et al. Design and function of a dendrimer-based therapeutic nanodevice targeted to tumor cells through the folate receptor. Pharm Res 2002; 19(9): 1310-6.
[http://dx.doi.org/10.1023/A:1020398624602] [PMID: 12403067]
[130]
Ihre HR, Padilla De Jesús OL, Szoka FC Jr, Fréchet JM. Polyester dendritic systems for drug delivery applications: design, synthesis, and characterization. Bioconjug Chem 2002; 13(3): 443-52.
[http://dx.doi.org/10.1021/bc010102u] [PMID: 12009932]
[131]
Patton TF, Robinson JR. Ocular evaluation of polyvinyl alcohol vehicle in rabbits. J Pharm Sci 1975; 64(8): 1312-6.
[http://dx.doi.org/10.1002/jps.2600640811] [PMID: 1151703]
[132]
Milhem OM, Myles C, McKeown NB, Attwood D, D’Emanuele A. Polyamidoamine Starburst dendrimers as solubility enhancers. Int J Pharm 2000; 197(1-2): 239-41.
[http://dx.doi.org/10.1016/S0378-5173(99)00463-9] [PMID: 10704811]
[133]
Bhadra D, Bhadra S, Jain S, Jain NK. A PEGylated dendritic nanoparticulate carrier of fluorouracil. Int J Pharm 2003; 257(1-2): 111-24.
[http://dx.doi.org/10.1016/S0378-5173(03)00132-7] [PMID: 12711167]
[134]
Ooya T, Lee J, Park K. Effects of ethylene glycol-based graft, star-shaped, and dendritic polymers on solubilization and controlled release of paclitaxel. J Control Release 2003; 93(2): 121-7.
[http://dx.doi.org/10.1016/j.jconrel.2003.07.001] [PMID: 14636718]
[135]
Richichi B, Baldoneschi V, Burgalassi S, et al. A divalent PAMAM-based matrix metalloproteinase/carbonic anhydrase inhibitor for the treatment of dry eye syndrome. Chemistry 2016; 22(5): 1714-21.
[http://dx.doi.org/10.1002/chem.201504355] [PMID: 26692423]
[136]
Lin H, Liu Y, Kambhampati SP, Hsu C-C, Kannan RM, Yiu SC. Subconjunctival dendrimer-drug therapy for the treatment of dry eye in a rabbit model of induced autoimmune dacryoadenitis. Ocul Surf 2018; 16(4): 415-23.
[http://dx.doi.org/10.1016/j.jtos.2018.05.004]
[137]
Lancina MG 3rd, Yang H. Dendrimers for ocular drug delivery. Can J Chem 2017; 95(9): 897-902.
[http://dx.doi.org/10.1139/cjc-2017-0193] [PMID: 29147035.]
[138]
Mehra NK, Cai D, Kuo L, Hein T, Palakurthi S. Safety and toxicity of nanomaterials for ocular drug delivery applications. Nanotoxicology 2016; 10(7): 836-60.
[http://dx.doi.org/10.3109/17435390.2016.1153165] [PMID: 27027670]
[139]
Coursey TG, Henriksson JT, Marcano DC, et al. Dexamethasone nanowafer as an effective therapy for dry eye disease. J Control Release 2015; 213: 168-74.
[http://dx.doi.org/10.1016/j.jconrel.2015.07.007] [PMID: 26184051]
[140]
Yuan X, Marcano DC, Shin CS, et al. Ocular drug delivery nanowafer with enhanced therapeutic efficacy. ACS Nano 2015; 9(2): 1749-58.
[http://dx.doi.org/10.1021/nn506599f] [PMID: 25585134]
[141]
John M, Gacche RN. Nano-formulations for ophthalmic treatments. Arch Pharm Pharma Sci 2017; 1: 028-035.
[142]
Pflugfelder SC, de Paiva CS. The pathophysiology of dry eye disease: what we know and future directions for research. Ophthalmology 2017; 124(11S): S4-S13.
[http://dx.doi.org/10.1016/j.ophtha.2017.07.010] [PMID: 29055361]
[143]
Rangarajan R, Ketelson H. Preclinical evaluation of a new hydroxypropyl guar phospholipid nanoemulsion based artificial tear formulation in models of corneal epithelium. J Ocul Pharmacol Ther 2019; 35(1): 32-7.
[http://dx.doi.org/10.1089/jop.2018.0031] [PMID: 30489200]
[144]
Kim HS, Kim TI, Kim JH, et al. Evaluation of clinical efficacy and safety of a novel Cyclosporin a Nanoemulsion in the treatment of dry eye syndrome. J Ocul Pharmacol Ther 2017; 33(7): 530-8.
[http://dx.doi.org/10.1089/jop.2016.0164] [PMID: 28759302]
[145]
Akhter S, Anwar M, Siddiqui MA, et al. Improving the topical ocular pharmacokinetics of an immunosuppressant agent with mucoadhesive nanoemulsions: formulation development, in-vitro and in-vivo studies. Colloids Surf B Biointerfaces 2016; 148: 19-29.
[146]
Lidich N, Garti-Levy S, Aserin A, Garti N. Potentiality of microemulsion systems in treatment of ophthalmic disorders: keratoconus and dry eye syndrome - in vivo study. Colloids Surf B Biointerfaces 2019; 173: 226-32.
[http://dx.doi.org/10.1016/j.colsurfb.2018.09.063] [PMID: 30300828]
[147]
Lidich N, Aserin A, Garti N. Structural characteristics of oil-poor dilutable fish oil omega-3 microemulsions for ophthalmic applications. J Colloid Interface Sci 2016; 463: 83-92.
[http://dx.doi.org/10.1016/j.jcis.2015.10.024] [PMID: 26520814]
[148]
Rahman Z, Xu X, Katragadda U, Krishnaiah YSR, Yu L, Khan MA. Quality by design approach for understanding the critical quality attributes of cyclosporine ophthalmic emulsion. Mol Pharm 2014; 11(3): 787-99.
[http://dx.doi.org/10.1021/mp400484g]
[149]
Ohigashi H, Hashimoto D, Hayase E, et al. Ocular instillation of vitamin A-coupled liposomes containing HSP47 siRNA ameliorates dry eye syndrome in chronic GVHD. Blood Adv 2019; 3(7): 1003-10.
[http://dx.doi.org/10.1182/bloodadvances.2018028431] [PMID: 30940635]
[150]
Shimokawa T, Yoshida M, Fukuta T, Tanaka T, Inagi T, Kogure K. Efficacy of high-affinity liposomal astaxanthin on up-regulation of age-related markers induced by oxidative stress in human corneal epithelial cells. J Clin Biochem Nutr 2018; 64(1): 18-27.
[PMID: 30705509]
[151]
Ren T, Lin X, Zhang Q, et al. Encapsulation of azithromycin ion pair in liposome for enhancing ocular delivery and therapeutic efficacy on dry eye. Molecular pharmaceutics 2018; 15(11): 4862-71.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00516]
[152]
Acar D, Molina-Martínez IT, Gómez-Ballesteros M, Guzmán-Navarro M, Benítez-del-Castillo JM, Herrero-Vanrell R. Novel liposome-based and in situ gelling artificial tear formulation for dry eye disease treatment. Cont Lens Anterior Eye 2018; 41(1): 93-6.
[http://dx.doi.org/10.1016/j.clae.2017.11.004]
[153]
Soriano-Romaní L, Vicario-de-la-Torre M, Crespo-Moral M, et al. Novel anti-inflammatory liposomal formulation for the pre-ocular tear film: in vitro and ex vivo functionality studies in corneal epithelial cells. Experim Eye Res 2017; 154: 79-87.
[154]
Vicario-de-la-Torre M, Benítez-del-Castillo JM, Vico E, et al. Design and characterization of an ocular topical liposomal preparation to replenish the lipids of the tear film. Invest Ophthalmol Vis Sci 2014; 55(12): 7839-47.
[http://dx.doi.org/10.1167/iovs.14-14700] [PMID: 25377221]
[155]
Pult H, Gill F, Riede-Pult BH. Effect of three different liposomal eye sprays on ocular comfort and tear film. Cont Lens Anterior Eye 2012; 35(5): 203-7.
[http://dx.doi.org/10.1016/j.clae.2012.05.003] [PMID: 22705318]
[156]
Shafaa MW, El Shazly LH, El Shazly AH. El gohary AA, El hossary GG. Efficacy of topically applied liposome-bound tetracycline in the treatment of dry eye model. Vet Ophthalmol 2011; 14(1): 18-25.
[http://dx.doi.org/10.1111/j.1463-5224.2010.00834.x] [PMID: 21199276]
[157]
Craig JP, Purslow C, Murphy PJ, Wolffsohn JSW. Effect of a liposomal spray on the pre-ocular tear film. Contact Lens Anterior Eye 2010; 33(2): 83-7.
[http://dx.doi.org/10.1016/j.clae.2009.12.007]
[158]
Soiberman U, Kambhampati SP, Wu T, et al. Subconjunctival injectable dendrimer-dexamethasone gel for the treatment of corneal inflammation. Biomaterials 2017; 125: 38-53.
[http://dx.doi.org/10.1016/j.biomaterials.2017.02.016]
[159]
Yingfang F, Zhuang B, Wang C, Xu X, Xu W, Lv Z. Pimecrolimus micelle exhibits excellent therapeutic effect for Keratoconjunctivitis Sicca. Colloids Surf B Biointerfaces 2016; 140: 1-10.
[http://dx.doi.org/10.1016/j.colsurfb.2015.11.059]
[160]
Grimaudo MA, Pescina S, Padula C, et al. Poloxamer 407/tpgs mixed micelles as promising carriers for cyclosporine ocular delivery. Mol Pharmaceutics 2018; 15(2): 571-84.
[161]
Prosperi-Porta G, Kedzior S, Muirhead B, Sheardown H. Phenylboronic-acid-based polymeric micelles for mucoadhesive anterior segment ocular drug delivery. Biomacromolecules 2016; 17(4): 1449-57. 2016/04/11.
[http://dx.doi.org/10.1021/acs.biomac.6b00054]
[162]
Luschmann C, Herrmann W, Strauß O, Luschmann K, Goepferich A. Ocular delivery systems for poorly soluble drugs: an in-vivo evaluation. Int J Pharmaceutics 2013; 455(1): 331-7.
[163]
Ribeiro A, Sandez-Macho I, Casas M, Alvarez-Pérez S, Alvarez-Lorenzo C, Concheiro A. Poloxamine micellar solubilization of α-tocopherol for topical ocular treatment. Colloids Surf B Biointerfaces 2013; 103: 550-7.
[http://dx.doi.org/10.1016/j.colsurfb.2012.10.055] [PMID: 23261579]
[164]
Di Tommaso C, Torriglia A, Furrer P, Behar-Cohen F, Gurny R, Möller M. Ocular biocompatibility of novel cyclosporin a formulations based on methoxy poly(ethylene glycol)-hexylsubstituted poly(lactide) micelle carriers. Int J Pharm 2011; 416(2): 515-24.
[165]
Li Y-J, Luo L-J, Harroun SG, et al. Synergistically dual-functional nano eye-drops for simultaneously anti-inflammatory and anti-oxidative treatment of dry eye disease. Nanoscale 2019; 12: 5580-94.
[166]
Jóhannsdóttir S, Kristinsson JK, Fülöp Z, Ásgrímsdóttir G, Stefánsson E, Loftsson T. Formulations and toxicologic in vivo studies of aqueous cyclosporin a eye drops with cyclodextrin nanoparticles. Int J Pharmaceutics 2017; 529(1): 486-90.
[http://dx.doi.org/10.1016/j.ijpharm.2017.07.044]
[167]
Maulvi FA, Choksi HH, Desai AR, et al. pH triggered controlled drug delivery from contact lenses: addressing the challenges of drug leaching during sterilization and storage. Colloids Surf B Biointerfaces 2017; 157: 72-82.
[168]
Lee H, Shim W, Kim CE, Choi SY, Lee H, Yang J. Therapeutic efficacy of nanocomplex of poly (ethylene glycol) and catechin for dry eye disease in a mouse model. Invest Ophthalmol Vis Sci 2017; 58(3): 1682-91.
[http://dx.doi.org/10.1167/iovs.16-20843] [PMID: 28319642]
[169]
Liu S, Dozois MD, Chang CN, et al. Prolonged ocular retention of mucoadhesive nanoparticle eye drop formulation enables treatment of eye diseases using significantly reduced dosage. Mol Pharm 2016; 13(9): 2897-905.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00445] [PMID: 27482595]
[170]
Yavuz B, Bozdağ Pehlivan S, Kaffashi A, et al. In vivo tissue distribution and efficacy studies for cyclosporin A loaded nano-decorated subconjunctival implants. Drug Deliv 2016; 23(9): 3279-84.
[http://dx.doi.org/10.3109/10717544.2016.1172368] [PMID: 27027148]
[171]
Hsueh P-Y, Edman MC, Sun G, Shi P, Xu S, Lin Y-a, et al. Tear-mediated delivery of nanoparticles through transcytosis of the lacrimal gland. J Control Release 2015; 208: 2-13.
[http://dx.doi.org/10.1016/j.jconrel.2014.12.017]
[172]
Hermans K, Van Den Plas D, Schreurs E, Weyenberg W, Ludwig A. Cytotoxicity and anti-inflammatory activity of cyclosporine a loaded PLGA nanoparticles for ocular use. Pharmazie 2014; 69(1): 32-7.
[PMID: 24601220]
[173]
Shah M, Edman MC, Janga SR, et al. A rapamycinbinding protein polymer nanoparticle shows potent therapeutic activity in suppressing autoimmune dacryoadenitis in a mouse model of Sjögren's syndrome. J Control Release 2013; 171(3): 269-79.2013/11/10/.
[http://dx.doi.org/10.1016/j.jconrel.2013.07.016]
[174]
Khan W, Aldouby YH, Avramoff A, Domb AJ. Cyclosporin nanosphere formulation for ophthalmic administration. Int J Pharmaceutics 2012; 437(1): 275-6.
[http://dx.doi.org/10.1016/j.ijpharm.2012.08.016]