Endophytic Fungi in the Fight Against Neglected Tropical Diseases

Page: [1683 - 1693] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Neglected tropical diseases are a serious global public health problem and they are one of the main causes of mortality and morbidity, especially in underdeveloped countries. These diseases have several implications for health and they are considered a priority in global eradication programs for disease control. The aim of this mini-review is to report recent studies on the fight against neglected diseases, namely dengue fever, chikungunya, zika, malaria protozoa, Chagas disease, leishmaniasis, schistosomiasis helminths, filariasis, and tuberculosis bacteria using extracts and isolated substances of endophytic fungi based on their bioactivity profiles in relation to these diseases.

Keywords: Chikungunya, Dengue, Chagas Disease, Filariasis, Leishmaniasis, Malaria, Tuberculosis, Zika.

Graphical Abstract

[1]
Brazil Ministry of Health Neglected diseases: strategies of the Ministry of Health. Department of Science and Technology, Secretariat of Science, Technology and Strategic Inputs, Ministry of Health Ver. Saúde Pública, 2010, 44(1), 200-202.
[2]
Rosário, M.S.; de Oliveira, M.L.; Lima, C.A.; Vieira, M.A.; Carneiro, J.A.; Costa, F.M. Neglected tropical diseases: characteristics of the affected individuals and their spatial distribution Rev. Bras. Pesq. Saúde, 2017, 19(3), 118-127.
[3]
Scotti, L.; Scotti, M.T. Perspectives in medicinal chemistry: Neglected diseases – new compounds and treatments. Curr. Med. Chem., 2019, 26(24), 4501-4503.
[http://dx.doi.org/10.2174/092986732624190927115600] [PMID: 31654564]
[4]
Mishra, Y.; Singh, A.; Batra, A.; Sharma, M.M. Understanding the Biodiversity and Biological Applications of Endophytic Fungi: A Review. J. Microb. Biochem. Technol., 2014.
[http://dx.doi.org/10.4172/1948-5948.S8-004]]
[5]
Sudha, V.; Govindaraj, R.; Baskar, K.; Al-Dhabi, N.A.; Duraipandiyan, V. Biological properties of Endophytic Fungi. Braz. Arch. Biol. Technol., 2016, 59.
[6]
Yamaguchi, K.K.L.; Lamarão, C.V.; Aranha, E.S.P.; Souza, R.O.S.; Oliveira, P.D.A.; Vasconcelos, M.C.; Lima, E.S.; Veiga-Junior, V.F. HPLC-DAD Profile of phenolic compounds, cytotoxicity, antioxidant and anti-inflammatory activities of the amazon fruit Caryocar villosum. Quim. Nova, 2017, 40(5), 483-490.
[http://dx.doi.org/10.21577/0100-4042.20170028]
[7]
Alvin, A.; Miller, K.I.; Neilan, B.A. Exploring the potential of endophytes from medicinal plants as sources of antimycobacterial compounds. Microbiol. Res., 2014, 169(7-8), 483-495.
[http://dx.doi.org/10.1016/j.micres.2013.12.009] [PMID: 24582778]
[8]
Pamphile, J.A.; Costa, A.T.; Rosseto, P.; Polonio, J.C.; Pereira, J.O.; Azevedo, J.L. Biotechnological applications of secondary metabolites extracted from endophytic fungi: The case of Colletotrichum sp. Revista Uningá, 2017, 53(1), 113-119.
[9]
Aly, A.H.; Debbab, A.; Proksch, P. Fungal endophytes: Unique plant inhabitants with great promises. Appl. Microbiol. Biotechnol., 2011, 90(6), 1829-1845.
[http://dx.doi.org/10.1007/s00253-011-3270-y] [PMID: 21523479]
[10]
Jalgaonwala, R.B.; Mohite, B.V.; Mahajan, R.T. A review: Natural products from plant associated endophytic fungi. Intl. J. Appl. Microbiol. Biotechnol. Res., 2011, 1(2), 21-32.
[11]
Esposito, E.; Azevedo, J.L. Fungi an introduction to biology, biochemistry and biotechnology EDUCS; Caxias do Sul, 2010, p. 638.
[12]
Specian, V.; Orlandelli, R.C.; Felber, A.C.; Azevedo, J.L.; Pamphile, J.A. Secondary metabolites of pharmaceutical interest produced by endophytic fungi. UNOPAR Cient. Ciênc. Biol. Saúde, 2014, 16(4), 345-351.
[13]
Murali, M.; Mahendra, C.; Hema, P.; Rajashekar, N.; Nataraju, A.; Sudarshana, M.S.; Amruthesh, K.N. Molecular profiling and bioactive potential of an endophytic fungus Aspergillus sulphureus isolated from Sida acuta: A medicinal plant. Pharm. Biol., 2017, 55(1), 1623-1630.
[http://dx.doi.org/10.1080/13880209.2017.1315435] [PMID: 28424024]
[14]
Kusari, S.; Hertweck, C.; Spiteller, M. Chemical ecology of endophytic fungi: Origins of secondary metabolites. Chem. Biol., 2012, 19(7), 792-798.
[http://dx.doi.org/10.1016/j.chembiol.2012.06.004] [PMID: 22840767]
[15]
Soares, D.A.; Pimenta, R.S. Evaluation of the antimicrobial activity of extracellular pigments produced by endophytic fungi. J. Bioenergy Food Sci., 2015, 2(4), 152-155.
[http://dx.doi.org/10.18067/jbfs.v2i4.59]
[16]
Brazil Ministry of Health Epidemiological Bulletin Secretaria de Vigilância em Saúde, 2017, 48(29)
[17]
Boga, J.A.; Alvarez-Arguelles, M.E.; Rojo-Alba, S.; Rodríguez, M.; de Oña, M.; Melón, S. Simultaneous detection of Dengue virus, Chikungunya virus, Zika virus, Yellow fever virus and West Nile virus. J. Virol. Methods, 2019, 268, 53-55.
[http://dx.doi.org/10.1016/j.jviromet.2019.03.014] [PMID: 30930286]
[18]
Costa, I.M.P.; Calado, D.C. Incidence of Dengue cases (2007-2013) and seasonal distribution of Culicidae (2012-2013) em Barreiras, Bahia. Epidemiol. Serv. Saude, 2016, 25(4), 735-744.
[http://dx.doi.org/10.5123/S1679-49742016000400007] [PMID: 27869967]
[19]
Who-World Health Organization World Health Organization: Geneva 2016.http://www.who.int/entity/denguecontrol/en/index. html
[20]
Ministry of Health (BR) Health Surveillance Secretariat. General Coordination for the Development of Epidemiology in Services. Guia de vigilância em saúde. volume 2; Brasília: Ministério da Saúde, 2017, 3
[21]
Teixeira, L. de A.; Lopes, J.S.M.; Martins, A.G.C.; Campos, F.A.B.; Miranzi, Sde.S.; Nascentes, G.A.N. Persistence of dengue symptoms in patients in Uberaba, Minas Gerais State, Brazil. Cad. Saude Publica, 2010, 26(3), 624-630.
[http://dx.doi.org/10.1590/S0102-311X2010000300019] [PMID: 20464080]
[22]
Schwartz, O.; Albert, M.L. Biology and pathogenesis of chikungunya virus. Nat. Rev. Microbiol., 2010, 8(7), 491-500.
[http://dx.doi.org/10.1038/nrmicro2368] [PMID: 20551973]
[23]
Weaver, S.C. Arrival of chikungunya virus in the new world: Prospects for spread and impact on public health. PLoS Negl. Trop. Dis., 2014, 8(6)e2921
[http://dx.doi.org/10.1371/journal.pntd.0002921] [PMID: 24967777]
[24]
Azevedo, R. S.; Oliveira, C.S.; Vasconcelos, P.F.C. Chikungunya risk for Brazil. Rev. Saude Publica, 2015, 49, 58.
[http://dx.doi.org/10.1590/S0034-8910.2015049006219] [PMID: 26398876]
[25]
Brazil Ministry of Health (BR) Health Surveillance Secretariat Health Surveillance in Brazil 2003 | 2019: from the creation of the Health Surveillance Secretariat to the present day Bol. Epidemiol., 2019, 50, 1-154.
[26]
Musso, D.; Gubler, D.J. Zika Virus. Clin. Microbiol. Rev., 2016, 29(3), 487-524.
[http://dx.doi.org/10.1128/CMR.00072-15] [PMID: 27029595]
[27]
Trigueiro, S.A.; Neves, B.F.; Aguiar, M.S.B.; Araújo, J.S.S. Correlation between cephalic circumference at birth and ocular alterations in patients with microcephaly potentially associated with Zika Virus infection. Rev. Assoc. Med. Bras. (1992), 2019, 65(6), 909-913.
[http://dx.doi.org/10.1590/1806-9282.65.6.909] [PMID: 31340324]
[28]
Mao, Z.; Lai, D.; Liu, X.; Fu, X.; Meng, J.; Wang, A.; Wang, X.; Sun, W.; Liu, Z.L.; Zhou, L.; Liu, Y. Dibenzo-α-pyrones: A new class of larvicidal metabolites against Aedes aegypti from the endophytic fungus Hyalodendriella sp. Ponipodef12. Pest Manag. Sci., 2017, 73(7), 1478-1485.
[http://dx.doi.org/10.1002/ps.4481] [PMID: 27862895]
[29]
Victora, C.G.; Schuler-Faccini, L.; Matijasevich, A.; Ribeiro, E.; Pessoa, A.; Barros, F.C. Microcephaly in Brazil: How to interpret reported numbers? Lancet, 2016, 387(10019), 621-624.
[http://dx.doi.org/10.1016/S0140-6736(16)00273-7] [PMID: 26864961]
[30]
Song, B-H.; Yun, S-I.; Woolley, M.; Lee, Y-M. Zika virus: History, epidemiology, transmission, and clinical presentation. J. Neuroimmunol., 2017, 308(308), 50-64.
[http://dx.doi.org/10.1016/j.jneuroim.2017.03.001] [PMID: 28285789]
[31]
Borrero Landazabal, M.A.; Carreño Otero, A.L.; Kouznetsov, V.V.; Duque Luna, J.E.; Mendez-Sanchez, S.C. Alterations of mitochondrial electron transport chain and oxidative stress induced by alkaloid-like α-aminonitriles on Aedes aegypti larvae. Pestic. Biochem. Physiol., 2018, 144, 64-70.
[http://dx.doi.org/10.1016/j.pestbp.2017.11.006] [PMID: 29463410]
[32]
Vivekanandhan, P.; Usha-Raja-Nanthini, A.; Valli, G.; Shivakumar, M.S.; Benelli, G. Synergistic effect of entomopathogenic fungus Fusarium oxysporum extract in combination with temephos against three major mosquito vectors Patógenos e Saúde Global, 2017, 111(8)
[33]
Nael, A.; Ashraf, M.A.M.; Al-Mekhlafi, F.A.; Farooq, M.; Al-shami, M.; Wadaan, M.A. Larvicidal activity of endophytic fungal extract of Cochliobolus spicifer (Pleosporales: Pleosporaceae) on Aedes caspius and Culex pipiens (Diptera: Culicidae). Appl. Entomol. Zool., 2015.
[34]
Bücker, A.; Bücker, N.C.F.; Souza, A.Q.L.; Gama, A.M.; Rodrigues-Filho, E.; Costa, F.M.; Nunez, C.V.; Silva, A.C.; Tadei, W.P. Larvicidal effects of endophytic and basidiomycete fungus extracts on Aedes and Anopheles larvae (Diptera, Culicidae). Rev. Soc. Bras. Med. Trop., 2013, 46(4), 411-419.
[http://dx.doi.org/10.1590/0037-8682-0063-2013] [PMID: 23970310]
[35]
Tian, J.; Liu, X.C.; Liu, Z.L.; Lai, D.; Zhou, L. Larvicidal spirobisnaphthalenes from the endophytic fungus Berkleasmium sp. against Aedes albopictus. Pest Manag. Sci., 2016, 72(5), 961-965.
[http://dx.doi.org/10.1002/ps.4075] [PMID: 26171851]
[36]
Seetharaman, P.K.; Chandrasekarana, J.; Gnanasekar, S.; Chandrakasan, G.; Gupta, M.; Manikandan, D.B.; Sivaperumal, S. Antimicrobial and larvicidal activity of eco-friendly silver nanoparticles synthesized from endophytic fungi Phomopsis liquidambaris. Biocatal. Agric. Biotechnol., 2018, 16, 22-30.
[http://dx.doi.org/10.1016/j.bcab.2018.07.006]
[37]
Monteiro, M.R.C.C.; Fernandes, S.C.; Ribeiro, M.C. Clinical and epidemiological aspects of malaria in a university hospital in the City of Belém, Pará State, Brazil. Rev. Pan-Amaz. Saude, 2013, 4(2), 33-43.
[38]
Abreu-Filho, P.G.; Tagarrô, A.M.; Costa, A.G.; Monteiro, W.M.; Meirelles, A.F.G.; Costa, T.C.C.; Silva, J.S.; Zambuzi, F.A.; Gardinassi, L.G.; Moraes, A.B.; Lacerda, M.V.G.; Sorgi, C.A.; Faccioli, L.H.; Malheiro, A. Plasmodium vivax profile of plasma eicosanoids in malaria: Clinical analysis and impacts of self-medication. Front. Immunol., 2019, 10, 2141.
[http://dx.doi.org/10.3389/fimmu.2019.02141] [PMID: 31620120]
[39]
Gomes, A.P.; Vitorino, R.R. Costa, Ade.P.; Mendonça, E.G.; Oliveira, M.G.A.; Siqueira-Batista, R. Malária grave por Plasmodium falciparum. Rev. Bras. Ter. Intensiva, 2011, 23(3), 358-369.
[http://dx.doi.org/10.1590/S0103-507X2011000300015] [PMID: 23949409]
[40]
Toghueo, R.M.K.; Kemgne, E.A.M.; Eke, P.; Kanko, M.I.M.; Dize, D.; Sahal, D.; Boyom, F.F. Antiplasmodial potential and GC-MS fingerprint of endophytic fungal extracts derived from Cameroonian Annona muricata. J. Ethnopharmacol., 2019, 235, 111-121.
[http://dx.doi.org/10.1016/j.jep.2019.02.010] [PMID: 30738118]
[41]
Ferreira, M.C.; Cantrell, C.L.; Wedge, D.E.; Gonçalves, V.N.; Jacob, M.R.; Khan, S.; Rosa, C.A.; Rosa, L.H. Antimycobacterial and antimalarial activities of endophytic fungi associated with the ancient and narrowly endemic neotropical plant Vellozia gigantea from Brazil. Mem. Inst. Oswaldo Cruz, 2017, 112(10), 692-697.
[http://dx.doi.org/10.1590/0074-02760170144] [PMID: 28953997]
[42]
Ateba, J.E.T.; Toghueo, R.M.K.; Awantu, A.F.; Mba’ning, B.M.; Gohlke, S.; Sahal, D.; Rodrigues-Filho, E.; Tsamo, E.; Boyom, F.F.; Sewald, N.; Lenta, B.N. Antiplasmodial properties and cytotoxicity of endophytic fungi of Symphonia globulifera (Clusiaceae). J. Fungi (Basel), 2018, 4(2), 70.
[http://dx.doi.org/10.3390/jof4020070] [PMID: 29895768]
[43]
Kaushik, N.K.; Murali, T.S.; Sahal, D.; Suryanarayanan, T.S. A search for antiplasmodial metabolites among fungal endophytes of terrestrial and marine plants of southern India. Acta Parasitol., 2014, 59(4), 745-757.
[http://dx.doi.org/10.2478/s11686-014-0307-2] [PMID: 25236288]
[44]
Dias, J.C.P.; Ramos-Junior, A.N. II Brazilian Consensus on Chagas Disease. Epidemiol. Serv. Saude, 2015, 25.
[45]
Zingales, B. Trypanosoma cruzi: one parasite, two parasites or several parasites of chagas disease? Revista da Biologia, 2011, 6b, 44-48.
[http://dx.doi.org/10.7594/revbio.6b.09]
[46]
Newton-Sánchez, O.A.; Espinoza-Gómez, F.; Melnikov, V.; Delgado-Enciso, I.; Rojas-Larios, F.; Dumonteil, E.; Trujillo-Hernández, B.; de la Cruz-Ruiz, M. Seroprevalence of Trypanosoma cruzi (TC) and risk factors in Colima, Mexico. Gac. Med. Mex., 2017, 153(2), 179-184.
[PMID: 28474704]
[47]
Torrico, F.; Gascon, J.; Ortiz, L.; Alonso-Vega, C.; Pinazo, M-J.; Schijman, A.; Almeida, I.C.; Alves, F.; Strub-Wourgaft, N.; Ribeiro, I. E1224 Study Group. Treatment of adult chronic indeterminate Chagas disease with benznidazole and three E1224 dosing regimens: a proof-of-concept, randomised, placebo-controlled trial. Lancet Infect. Dis., 2018, 18(4), 419-430.
[http://dx.doi.org/10.1016/S1473-3099(17)30538-8] [PMID: 29352704]
[48]
Molina, I.; Salvador, F.; Sánchez-Montalvá, A.; Artaza, M.A.; Moreno, R.; Perin, L.; Esquisabel, A.; Pinto, L.; Pedraz, J.L. Pharmacokinetics of benznidazole in healthy volunteers and implications for future clinical trials. Antimicrob. Agents Chemother., 2017, 61(4), e01912-1916.
[http://dx.doi.org/10.1128/AAC.01912-16] [PMID: 28167552]
[49]
Campos, F.F.; Sales, , Junior P.A.; Romanha, A.J.; Araújo, M.S.S.; Siqueira, E.P.; Resende, J.M.; Alves, T.M.A.; Martins-Filho, O.A.; Santos, V.L.; Rosa, C.A.; Zani, C.L.; Cota, B.B. Bioactive endophytic fungi isolated from Caesalpinia echinata Lam. (Brazilwood) and identification of beauvericin as a trypanocidal metabolite from Fusarium sp. Mem. Inst. Oswaldo Cruz, 2015, 110(1), 65-74.
[http://dx.doi.org/10.1590/0074-02760140243] [PMID: 25742265]
[50]
Carvalho, C.R.; Vieira, M.L.A.; Cantrell, C.L.; Wedge, D.E.; Alves, T.M.A.; Zani, C.L.; Pimenta, R.S.; Sales, P.A. Junior; Murta,S.M.F.; Romanha, A.J.; Rosa, C.A.; Rosa, L.H. Biological activitiesof ophiobolin K and 6-epi-ophiobolin K produced by the endophyticfungus Aspergillus calidoustus. Nat. Prod. Res.: FormerlyNat. Prod. Lett. 2015.
[51]
Rosa, L.H.; Gonçalves, V.N.; Caligiorne, R.B.; Alves, T.M.A.; Rabello, A.; Sales, P.A.; Romanha, A.J.; Sobral, M.E.G.; Rosa, C.A.; Zani, C.L. Leishmanicidal, trypanocidal, and cytotoxic activities of endophytic fungi associated with bioactive plants in brazil. Brazil. J. Microbiol., 2010, 41.
[http://dx.doi.org/10.1590/S1517-83822010000200024]
[52]
Adema, C.M.; Hillier, L.W.; Wilson, R.K. Whole genome analysis of a schistosomiasis-transmitting freshwater snail. Nat. Commun., 2017.
[http://dx.doi.org/10.1038/ncomms15451]
[53]
Mari, L.; Ciddio, M.; Casagrandi, R.; Perez-Saez, J.; Bertuzzo, E.; Rinaldo, A. Heterogeneity in schistosomiasis transmission dynamics. J. Theor. Biol., 2017, 432, 87-99.
[http://dx.doi.org/10.1016/j.jtbi.2017.08.015] [PMID: 28823529]
[54]
Rollinson, D.; Knopp, S.; Levitz, S.; Stothard, J.R.; Tchuem Tchuenté, L.A.; Garba, A.; Mohammed, K.A.; Schur, N.; Person, B.; Colley, D.G.; Utzinger, J. Time to set the agenda for schistosomiasis elimination. Acta Trop., 2013, 128(2), 423-440.
[http://dx.doi.org/10.1016/j.actatropica.2012.04.013] [PMID: 22580511]
[55]
Ramos, H.P.; Simão, M.R.; de Souza, J.M.; Magalhães, L.G.; Rodrigues, V.; Ambrósio, S.R.; Said, S. Evaluation of dihydroisocoumarins produced by the endophytic fungus Arthrinium state of Apiospora montagnei against Schistosoma mansoni. Nat. Prod. Res., 2013, 27(23), 2240-2243.
[http://dx.doi.org/10.1080/14786419.2013.811659] [PMID: 23805902]
[56]
da Silva, I.P.; Brissow, E.; Kellner Filho, L.C.; Senabio, J.; de Siqueira, K.A.; Vandresen Filho, S.; Damasceno, J.L.; Mendes, S.A.; Tavares, D.C.; Magalhães, L.G.; Junior, P.A.; Januário, A.H.; Soares, M.A. Bioactive compounds of Aspergillus terreus-F7, an endophytic fungus from Hyptis suaveolens (L.). Poit. World J. Microbiol. Biotechnol., 2017, 33(3), 62.
[http://dx.doi.org/10.1007/s11274-017-2228-3] [PMID: 28243983]
[57]
Brissow, E.; Silva, I.P.; Siqueira, K.A.; Senabio, J.; Pimenta, L.P.; Januário, A.H.; Magalhães, L.G.; Furtado, R.A.; Tavares, D.C.; Sales, P.A. Junior; Santos, J.L.; Soares, M.A. 18-Des-hydroxy Cytochalasin: an antiparasitic compound of Diaporthe phaseolorum-92C, an endophytic fungus isolated from Combretum lanceolatum Pohl ex Eichler. Parasitol Res; Springer-Verlag: Berlin, Heidelberg, 2017.
[58]
do Nascimento, A.M.; Soares, M.G.; da Silva Torchelsen, F.K.; de Araujo, J.A.; Lage, P.S.; Duarte, M.C.; Andrade, P.H.R.; Ribeiro, T.G.; Coelho, E.A.F.; do Nascimento, A.M. Antileishmanial activity of compounds produced by endophytic fungi derived from medicinal plant Vernonia polyanthes and their potential as source of bioactive substances. World J. Microbiol. Biotechnol., 2015, 31(11), 1793-1800.
[http://dx.doi.org/10.1007/s11274-015-1932-0] [PMID: 26318306]
[59]
Gillespie, P.M.; Beaumier, C.M.; Strych, U.; Hayward, T.; Hotez, P.J.; Bottazzi, M.E. Status of vaccine research and development of vaccines for leishmaniasis Vacina, 3 de junho de 2016, 34(26), 2992-2995.
[http://dx.doi.org/10.1016/j.vaccine.2015.12.071]
[60]
Ghorbani, M.; Farhoudi, R. Leishmaniasis in humans: Drug or vaccine therapy? Drug Des. Devel. Ther., 2017, 12, 25-40.
[http://dx.doi.org/10.2147/DDDT.S146521] [PMID: 29317800]
[61]
Martínez-Luis, S.; Cherigo, L.; Arnold, E.; Spadafora, C.; Gerwick, W.H.; Cubilla-Rios, L. Antiparasitic and anticancer constituents of the endophytic fungus Aspergillus sp. strain F1544. Nat. Prod. Commun., 2012, 7(2), 165-168.
[http://dx.doi.org/10.1177/1934578X1200700207] [PMID: 22474943]
[62]
King, C.L.; Suamani, J.; Sanuku, N.; Cheng, Y-C.; Satofan, S.; Mancuso, B.; Robinson, L.J.; Siba, P.M.; Weil, G.J.; Kazura, J.W. Randomized study of a new triple drug treatment for lymphatic filariasis. N. Engl. J. Med., 2018.
[http://dx.doi.org/10.1056/NEJMoa1706854]
[63]
Brady, M. Global Alliance to Eliminate Lymphatic Filariasis. Seventh meeting of the Global Alliance to Eliminate Lymphatic Filariasis: reaching the vision by scaling up, scaling down, and reaching out. Parasit. Vectors, 2014, 7(1), 46.
[http://dx.doi.org/10.1186/1756-3305-7-46] [PMID: 24450283]
[64]
489 Global programme to eliminate lymphatic filariasis: Progress report, 2014. Wkly. Epidemiol. Rec., 2015, 90(38), 489-504.
[PMID: 26387149]
[65]
de Souza, D.K.; Ahorlu, C.S.; Adu-Amankwah, S.; Otchere, J.; Mensah, S.K.; Larbi, I.A.; Mensah, G.E.; Biritwum, N-K.; Boakye, D.A. Community-based trial of annual versus biannual single-dose ivermectin plus albendazole against Wuchereria bancrofti infection in human and mosquito populations: Study protocol for a cluster randomised controlled trial. Trials, 2017, 18(1), 448.
[http://dx.doi.org/10.1186/s13063-017-2196-9] [PMID: 28969715]
[66]
Seetharaman, P.; Gnanasekar, S.; Chandrasekaran, R.; Chandrakasan, G.; Syed, A.; Hodhod, M.S.; Ameen, F.; Sivaperumal, S. Isolation of limonoid compound (Hamisonine) from endophytic fungi Penicillium oxalicum LA-1 (KX622790) of Limonia acidissima L. for its larvicidal efficacy against LF vector, Culex quinquefasciatus (Diptera: Culicidae). Environ. Sci. Pollut. Res. Int., 2017, 24(26), 21272-21282.
[http://dx.doi.org/10.1007/s11356-017-9770-2] [PMID: 28741206]
[67]
Tanvir, R.; Sajid, I.; Hasnain, S. Larvicidal potential of Asteraceae family endophytic actinomycetes against Culex quinquefasciatus mosquito larvae. Nat. Prod. Res., 2014, 28(22), 2048-2052.
[http://dx.doi.org/10.1080/14786419.2014.919579] [PMID: 24865275]
[68]
Fry, D.E. extra-pulmonary tuberculosis and its surgical treatment. Surg. Infect. (Larchmt.), 2016, 17(4), 394-401.
[http://dx.doi.org/10.1089/sur.2016.046] [PMID: 27058682]
[69]
Furin, J. Cox, H.; Pai, M. Tuberculosis. Lancet, 2019.
[http://dx.doi.org/10.1016/S0140-6736(19)30308-3]]
[70]
Tiberi, S.; du Plessis, N.; Walzl, G.; Vjecha, M.J.; Rao, M.; Ntoumi, F.; Mfinanga, S.; Kapata, N.; Mwaba, P.; McHugh, T.D.; Ippolito, G.; Migliori, G.B.; Maeurer, M.J.; Zumla, A. Tuberculosis: Progress and advances in development of new drugs, treatment regimens, and host-directed therapies. Lancet Infect. Dis., 2018, 18(7), e183-e198.
[http://dx.doi.org/10.1016/S1473-3099(18)30110-5] [PMID: 29580819]
[71]
Cannas, A.; Butera, O.; Gualano, G.; Parracino, M.P.; Venditti, C.; Mazzarelli, A.; Palmieri, F.; Girardi, E.; Di Caro, A. Multidrug-resistant tuberculosis in a referral center In Rome: 2011- 2016. Infect. Drug Resist., 2019, 12, 3275-3281.
[http://dx.doi.org/10.2147/IDR.S218744] [PMID: 31695446]
[72]
Hatherill, H.; Tait, D.; Mcshane, H. Tuberculosis Vaccine Candidate Clinical Test Microbiol Spectr. Out, 2016, 4(5)
[73]
Tang, J.; Yam, W.C.; Chen, Z. Mycobacterium tuberculosis infection and vaccine development. Tuberculosis (Edinb.), 2016, 98, 30-41.
[http://dx.doi.org/10.1016/j.tube.2016.02.005] [PMID: 27156616]
[74]
Rehberg, N.; Akone, H.S.; Ioerger, T.R.; Erlenkamp, G.; Daletos, G.; Gohlke, H.; Proksch, P.; Kalscheuer, R. Chlorflavonin targets acetohydroxyacid synthase catalytic subunit IlvB1 for synergistic killing of mycobacterium tuberculosis. ACS Infect. Dis., 2018, 4(2), 123-134.
[http://dx.doi.org/10.1021/acsinfecdis.7b00055] [PMID: 29108416]
[75]
Cai, R.; Wu, Y.; Chen, S.; Cui, H.; Liu, Z.; Li, C.; She, Z. Peniisocoumarins A-J: Isocoumarins from Penicillium commune QQF-3, an Endophytic Fungus of the Mangrove Plant Kandelia candel. J. Nat. Prod., 2018, 81(6), 1376-1383.
[http://dx.doi.org/10.1021/acs.jnatprod.7b01018] [PMID: 29792702]
[76]
Harwoko, H.; Daletos, G.; Stuhldreier, F.; Lee, J.; Wesselborg, S.; Feldbrügge, M.; Müller, W.E.G.; Kalscheuer, R.; Ancheeva, E.; Proksch, P. Dithiodiketopiperazine derivatives from endophytic fungi Trichoderma harzianum and Epicoccum nigrum. Nat. Prod. Res., 2019, 1-9.
[http://dx.doi.org/10.1080/14786419.2019.1627348] [PMID: 31210064]