Challenges and New Therapeutic Approaches in the Management of Chronic Wounds

Page: [1264 - 1275] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Chronic non-healing wounds are estimated to cost the US healthcare $28-$31 billion per year. Diabetic ulcers, arterial and venous ulcers, and pressure ulcers are some of the most common types of chronic wounds. The burden of chronic wounds continues to rise due to the current epidemic of obesity and diabetes and the increase in elderly adults in the population who are more vulnerable to chronic wounds than younger individuals. This patient population is also highly vulnerable to debilitating infections caused by opportunistic and multi-drug resistant pathogens. Reduced microcirculation, decreased availability of cytokines and growth factors that promote wound closure and healing, and infections by multi-drug resistant and biofilm forming microbes are some of the critical factors that contribute to the development of chronic non-healing wounds. This review discusses novel approaches to understand chronic wound pathology and methods to improve chronic wound care, particularly when chronic wounds are infected by multi-drug resistant, biofilm forming microbes.

Keywords: Chronic wounds, infections, epidemic of obesity, biofilm, cytokines, pathogens.

Graphical Abstract

[1]
Nussbaum SR, Carter MJ, Fife CE, et al. an economic evaluation of the impact, cost, and medicare policy implications of chronic nonhealing wounds, value in health The journal of the International Society for Pharmacoeconomics and Outcomes Research 2018; 21(1): 27-32.
[3]
Hales CM, Carroll MD, Fryar CD, Ogden CL. Prevalence of obesity and severe obesity among adults.centers for disease control and prevention.United States. 2020; pp. 2017-8.
[5]
Gould L, Abadir P, Brem H, et al. Chronic wound repair and healing in older adults: current status and future research. J Am Geriatr Soc 2015; 63(3): 427-38.
[http://dx.doi.org/10.1111/jgs.13332] [PMID: 25753048]
[6]
Sen CK. Human Wounds and Its Burden: An Updated Compendium of Estimates. Adv Wound Care (New Rochelle) 2019; 8(2): 39-48.
[http://dx.doi.org/10.1089/wound.2019.0946] [PMID: 30809421]
[7]
Phillips CJ, Humphreys I, Fletcher J, Harding K, Chamberlain G, Macey S. Estimating the costs associated with the management of patients with chronic wounds using linked routine data. Int Wound J 2016; 13(6): 1193-7.
[http://dx.doi.org/10.1111/iwj.12443] [PMID: 25818405]
[8]
Richmond NA, Lamel SA, Davidson JM, et al. US-National Institutes of Health-funded research for cutaneous wounds in 2012, Wound repair and regeneration official publication of the Wound Healing Society [and] the European Tissue Repair Society 2013; 21(6): 789-92.
[9]
Frykberg RG, Banks J. Challenges in the Treatment of Chronic Wounds. Adv Wound Care (New Rochelle) 2015; 4(9): 560-82.
[http://dx.doi.org/10.1089/wound.2015.0635] [PMID: 26339534]
[10]
Lindley LE, Stojadinovic O, Pastar I, Tomic-Canic M. Biology and Biomarkers for Wound Healing. Plast Reconstr Surg 2016; 138(3)(Suppl.): 18S-28S.
[http://dx.doi.org/10.1097/PRS.0000000000002682] [PMID: 27556760]
[11]
Pastar I, Wong LL, Egger AN, Tomic-Canic M. Descriptive vs mechanistic scientific approach to study wound healing and its inhibition: Is there a value of translational research involving human subjects? Exp Dermatol 2018; 27(5): 551-62.
[http://dx.doi.org/10.1111/exd.13663] [PMID: 29660181]
[12]
Patel S, Maheshwari A, Chandra A. Biomarkers for wound healing and their evaluation. J Wound Care 2016; 25(1): 46-55.
[http://dx.doi.org/10.12968/jowc.2016.25.1.46] [PMID: 26762498]
[13]
Bando T, Yokoyama H, Nakamura H. Wound repair, remodeling, and regeneration. Dev Growth Differ 2018; 60(6): 303-5.
[http://dx.doi.org/10.1111/dgd.12566] [PMID: 30133712]
[14]
Ridiandries A, Tan JTM, Bursill CA. The Role of Chemokines in Wound Healing. Int J Mol Sci 2018; 19(10)E3217
[http://dx.doi.org/10.3390/ijms19103217] [PMID: 30340330]
[15]
Bielefeld KA, Amini-Nik S, Alman BA. Cutaneous wound healing: recruiting developmental pathways for regeneration. Cell Mol Life Sci 2013; 70(12): 2059-81.
[http://dx.doi.org/10.1007/s00018-012-1152-9] [PMID: 23052205]
[16]
Guo S, Dipietro LA. Factors affecting wound healing. J Dent Res 2010; 89(3): 219-29.
[http://dx.doi.org/10.1177/0022034509359125] [PMID: 20139336]
[17]
Yamane T, Shimura M, Konno R, Iwatsuki K, Oishi Y. Wound fluid of rats fed protein-free diets delays wound healing through the suppression of the IGF-1/ERK(1/2) signaling pathway. Mol Cell Biochem 2019; 452(1-2): 177-85.
[http://dx.doi.org/10.1007/s11010-018-3423-8] [PMID: 30143989]
[18]
Seah CC, Phillips TJ, Howard CE, et al. Chronic wound fluid suppresses proliferation of dermal fibroblasts through a Ras-mediated signaling pathway. J Invest Dermatol 2005; 124(2): 466-74.
[http://dx.doi.org/10.1111/j.0022-202X.2004.23557.x] [PMID: 15675969]
[19]
Bartkova J, Grøn B, Dabelsteen E, Bartek J. Cell-cycle regulatory proteins in human wound healing. Arch Oral Biol 2003; 48(2): 125-32.
[http://dx.doi.org/10.1016/S0003-9969(02)00202-9] [PMID: 12642231]
[20]
Zehra M. Mushtaq s, ghulam musharraf s, ghani r, ahmed n. association of cyclin dependent kinase 10 and transcription factor 2 during human corneal epithelial wound healing in vitro model. Sci Rep 2019; 9(1): 11802.
[http://dx.doi.org/10.1038/s41598-019-48092-6] [PMID: 31413335]
[21]
Kim PJ, Attinger CE, Steinberg JS, et al. The impact of negative-pressure wound therapy with instillation compared with standard negative-pressure wound therapy: a retrospective, historical, cohort, controlled study. Plast Reconstr Surg 2014; 133(3): 709-16.
[http://dx.doi.org/10.1097/01.prs.0000438060.46290.7a] [PMID: 24572860]
[22]
Andros G, Armstrong DG, Attinger CE, et al. Tucson Expert Consensus Conference. Consensus statement on negative pressure wound therapy (V.A.C. Therapy) for the management of diabetic foot wounds. Ostomy Wound Manage 2006; (Suppl.)1-32.
[PMID: 17007488]
[23]
Morykwas MJ, Argenta LC, Shelton-Brown EI, McGuirt W. Vacuum-assisted closure: a new method for wound control and treatment: animal studies and basic foundation. Ann Plast Surg 1997; 38(6): 553-62.
[http://dx.doi.org/10.1097/00000637-199706000-00001] [PMID: 9188970]
[24]
Falanga V, Brem H, Ennis WJ, Wolcott R, Gould LJ, Ayello EA. Maintenance debridement in the treatment of difficult-to-heal chronic wounds. Recommendations of an expert panel. Ostomy Wound Manage 2008; (Suppl.)2-13.
[PMID: 18980069]
[25]
Cardinal M, Eisenbud DE, Armstrong DG, et al. Serial surgical debridement: a retrospective study on clinical outcomes in chronic lower extremity wounds, Wound repair and regeneration official publication of the Wound Healing Society [and] the European Tissue Repair Society 2009; 17(3): 306-11.
[26]
Serra R, Grande R, Butrico L, et al. Chronic wound infections: the role of Pseudomonas aeruginosa and Staphylococcus aureus. Expert Rev Anti Infect Ther 2015; 13(5): 605-13.
[http://dx.doi.org/10.1586/14787210.2015.1023291] [PMID: 25746414]
[27]
Bowling FL, Jude EB, Boulton AJ. MRSA and diabetic foot wounds: contaminating or infecting organisms? Curr Diab Rep 2009; 9(6): 440-4.
[http://dx.doi.org/10.1007/s11892-009-0072-z] [PMID: 19954689]
[28]
Redel H, Gao Z, Li H, et al. Quantitation and composition of cutaneous microbiota in diabetic and nondiabetic men. J Infect Dis 2013; 207(7): 1105-14.
[http://dx.doi.org/10.1093/infdis/jit005] [PMID: 23300163]
[29]
Campoccia D, Mirzaei R, Montanaro L, Arciola CR. Hijacking of immune defences by biofilms: a multifront strategy. Biofouling 2019; 35(10): 1055-74.
[http://dx.doi.org/10.1080/08927014.2019.1689964] [PMID: 31762334]
[30]
Zhao G, Usui ML, Lippman SI, et al. Biofilms and Inflammation in Chronic Wounds. Adv Wound Care (New Rochelle) 2013; 2(7): 389-99.
[http://dx.doi.org/10.1089/wound.2012.0381] [PMID: 24527355]
[31]
Pastar I, Nusbaum AG, Gil J, et al. Interactions of methicillin resistant Staphylococcus aureus USA300 and Pseudomonas aeruginosa in polymicrobial wound infection. PLoS One 2013; 8(2)e56846
[http://dx.doi.org/10.1371/journal.pone.0056846] [PMID: 23451098]
[32]
Misic AM, Gardner SE, Grice EA. The wound microbiome: modern approaches to examining the role of microorganisms in impaired chronic wound healing. adv Wound Care (New Rochelle) 2014; 3(7): 502-10.
[http://dx.doi.org/10.1089/wound.2012.0397] [PMID: 25032070]
[33]
de Vor L, Rooijakkers SHM, van Strijp JAG. Staphylococci evade the innate immune response by disarming neutrophils and forming biofilms. FEBS Lett 2020.
[http://dx.doi.org/10.1002/1873-3468.13767] [PMID: 32144756]
[34]
Martínez JL, Baquero F. Interactions among strategies associated with bacterial infection: pathogenicity, epidemicity, and antibiotic resistance. Clin Microbiol Rev 2002; 15(4): 647-79.
[http://dx.doi.org/10.1128/CMR.15.4.647-679.2002] [PMID: 12364374]
[35]
Alanis AJ. Resistance to antibiotics: are we in the post-antibiotic era? Arch Med Res 2005; 36(6): 697-705.
[http://dx.doi.org/10.1016/j.arcmed.2005.06.009] [PMID: 16216651]
[36]
Bax R, Mullan N, Verhoef J. The millennium bugs--the need for and development of new antibacterials. Int J Antimicrob Agents 2000; 16(1): 51-9.
[http://dx.doi.org/10.1016/S0924-8579(00)00189-8] [PMID: 11185414]
[37]
Norrby SR, Nord CE, Finch R. European Society of Clinical Microbiology and Infectious Diseases. Lack of development of new antimicrobial drugs: a potential serious threat to public health. Lancet Infect Dis 2005; 5(2): 115-9.
[http://dx.doi.org/10.1016/S1473-3099(05)70086-4] [PMID: 15680781]
[38]
Silver LL. Multi-targeting by monotherapeutic antibacterials. Nat Rev Drug Discov 2007; 6(1): 41-55.
[http://dx.doi.org/10.1038/nrd2202] [PMID: 17159922]
[39]
Spellberg B, Blaser M, Guidos RJ, et al. Infectious Diseases Society of America (IDSA). Combating antimicrobial resistance: policy recommendations to save lives. Clin Infect Dis 2011; 52(Suppl. 5): S397-428.
[http://dx.doi.org/10.1093/cid/cir153] [PMID: 21474585]
[40]
CDC. Antibiotic Resistance Threats in the United States 2019.
[41]
ECDC. Surveillance of antimicrobial resistance in Europe 2018 In: ECDC (Ed) The European Centre for Disease Prevention and Control. 2019.
[42]
O’Neill J. Tackling Drug-Resistant Infections Globally: final report and recommendationsReviews on Antibiotic Resistance, the UK Government in collaboration with the Wellcome Trust 2016.
[43]
Cardona AF, Wilson SE. Skin and soft-tissue infections: a critical review and the role of telavancin in their treatment. Clin Infect Dis 2015; 61(Suppl. 2): S69-78.
[http://dx.doi.org/10.1093/cid/civ528] [PMID: 26316560]
[44]
Grassi L, Maisetta G, Esin S, Batoni G. combination strategies to enhance the efficacy of antimicrobial peptides against bacterial biofilms. Front Microbiol 2017; 8: 2409.
[http://dx.doi.org/10.3389/fmicb.2017.02409] [PMID: 29375486]
[45]
Mistry RD. Skin and soft tissue infections. Pediatr Clin North Am 2013; 60(5): 1063-82.
[http://dx.doi.org/10.1016/j.pcl.2013.06.011] [PMID: 24093896]
[46]
Tognetti L, Martinelli C, Berti S, et al. Bacterial skin and soft tissue infections: review of the epidemiology, microbiology, aetiopathogenesis and treatment: a collaboration between dermatologists and infectivologists. J Eur Acad Dermatol Venereol 2012; 26(8): 931-41.
[http://dx.doi.org/10.1111/j.1468-3083.2011.04416.x] [PMID: 22214317]
[47]
WRAIR. The Multidrug-resistant Organism Repository and Surveillance Network (MRSN) the Walter Reed Army Institute of Research http://www.wrair.army.mil/Documents/MRSN/WRAIR_MRSN_Brochure_V5.pdf
[48]
Pires S, Jacquet R, Parker D. Inducible Costimulator Contributes to Methicillin-Resistant Staphylococcus aureus Pneumonia. J Infect Dis 2018; 218(4): 659-68.
[http://dx.doi.org/10.1093/infdis/jix664] [PMID: 29378030]
[49]
Choe D, Szubin R, Dahesh S, et al. Genome-scale analysis of Methicillin-resistant Staphylococcus aureus USA300 reveals a tradeoff between pathogenesis and drug resistance. Sci Rep 2018; 8(1): 2215.
[http://dx.doi.org/10.1038/s41598-018-20661-1] [PMID: 29396540]
[50]
Choo EJ, Chambers HF. Treatment of Methicillin-Resistant Staphylococcus aureus Bacteremia. Infect Chemother 2016; 48(4): 267-73.
[http://dx.doi.org/10.3947/ic.2016.48.4.267] [PMID: 28032484]
[51]
Walsh TL, Chan L, Konopka CI, et al. Appropriateness of antibiotic management of uncomplicated skin and soft tissue infections in hospitalized adult patients. BMC Infect Dis 2016; 16(1): 721.
[http://dx.doi.org/10.1186/s12879-016-2067-0] [PMID: 27899072]
[52]
Wendt JM, Kaul D, Limbago BM, et al. Transmission of methicillin-resistant Staphylococcus aureus infection through solid organ transplantation: confirmation via whole genome sequencing. Am J Transplant 2014; 14(11): 2633-9.
[http://dx.doi.org/10.1111/ajt.12898] [PMID: 25250717]
[53]
de Oliveira LM, van der Heijden IM, Golding GR, et al. Staphylococcus aureus isolates colonizing and infecting cirrhotic and liver-transplantation patients: comparison of molecular typing and virulence factors. BMC Microbiol 2015; 15: 264.
[http://dx.doi.org/10.1186/s12866-015-0598-y] [PMID: 26572493]
[54]
Lavery LA, Fontaine JL, Bhavan K, Kim PJ, Williams JR, Hunt NA. Risk factors for methicillin-resistant Staphylococcus aureus in diabetic foot infections. Diabet Foot Ankle 2014; 5: 5.
[http://dx.doi.org/10.3402/dfa.v5.23575] [PMID: 24765246]
[55]
Popovich KJ, Hota B, Aroutcheva A, et al. Community-associated methicillin-resistant Staphylococcus aureus colonization burden in HIV-infected patients. Clin Infect Dis 2013; 56(8): 1067-74.
[http://dx.doi.org/10.1093/cid/cit010] [PMID: 23325428]
[56]
Rolston KV. Infections in Cancer Patients with Solid Tumors: A Review. Infect Dis Ther 2017; 6(1): 69-83.
[http://dx.doi.org/10.1007/s40121-017-0146-1] [PMID: 28160269]
[57]
Dantes R, Mu Y, Belflower R, et al. Emerging Infections Program–Active Bacterial Core Surveillance MRSA Surveillance Investigators. National burden of invasive methicillin-resistant Staphylococcus aureus infections, United States, 2011. JAMA Intern Med 2013; 173(21): 1970-8.
[PMID: 24043270]
[58]
de Kraker ME, Jarlier V, Monen JC, Heuer OE, van de Sande N, Grundmann H. The changing epidemiology of bacteraemias in Europe: trends from the European Antimicrobial Resistance Surveillance System, Clinical microbiology and infection the official publication of the European Society of Clinical Microbiology and Infectious Diseases 2013; 19(9): 860-88.
[59]
Jenkins TC, Sabel AL, Sarcone EE, Price CS, Mehler PS, Burman WJ. Skin and soft-tissue infections requiring hospitalization at an academic medical center: opportunities for antimicrobial stewardship. Clin Infect Dis 2010; 51(8): 895-903.
[http://dx.doi.org/10.1086/656431] [PMID: 20839951]
[60]
Trajano R, Ondak S, Tancredi D, et al. Emergency department specific antimicrobial stewardship intervention reduces antibiotic duration and selection for discharged adult and pediatric patients with skin and soft-tissue infections. Open Forum Infect Dis 2017; 4(Suppl. 1): S274.
[http://dx.doi.org/10.1093/ofid/ofx163.610]
[61]
Lowy FD. Staphylococcus aureus infections. N Engl J Med 1998; 339(8): 520-32.
[http://dx.doi.org/10.1056/NEJM199808203390806] [PMID: 9709046]
[62]
Burmølle M, Thomsen TR, Fazli M, et al. Biofilms in chronic infections - a matter of opportunity - monospecies biofilms in multispecies infections. FEMS Immunol Med Microbiol 2010; 59(3): 324-36.
[http://dx.doi.org/10.1111/j.1574-695X.2010.00714.x] [PMID: 20602635]
[63]
Esposito S, Bassetti M, Bonnet E, et al. International Society of Chemotherapy (ISC). Hot topics in the diagnosis and management of skin and soft-tissue infections. Int J Antimicrob Agents 2016; 48(1): 19-26.
[http://dx.doi.org/10.1016/j.ijantimicag.2016.04.011] [PMID: 27216380]
[64]
Jenkins A, Diep BA, Mai TT, et al. Differential expression and roles of Staphylococcus aureus virulence determinants during colonization and disease. MBio 2015; 6(1): e02272-14.
[http://dx.doi.org/10.1128/mBio.02272-14] [PMID: 25691592]
[65]
Kong C, Neoh HM, Nathan S. Targeting Staphylococcus aureus Toxins: A Potential form of Anti-Virulence Therapy. Toxins (Basel) 2016; 8(3)E72
[http://dx.doi.org/10.3390/toxins8030072] [PMID: 26999200]
[66]
Laverty G, Gorman SP, Gilmore BF. Biomolecular mechanisms of staphylococcal biofilm formation. Future Microbiol 2013; 8(4): 509-24.
[http://dx.doi.org/10.2217/fmb.13.7] [PMID: 23534362]
[67]
Otto M. Staphylococcus aureus toxins. Curr Opin Microbiol 2014; 17: 32-7.
[http://dx.doi.org/10.1016/j.mib.2013.11.004] [PMID: 24581690]
[68]
Kobayashi SD, DeLeo FR. An update on community-associated MRSA virulence. Curr Opin Pharmacol 2009; 9(5): 545-51.
[http://dx.doi.org/10.1016/j.coph.2009.07.009] [PMID: 19726228]
[69]
Tacconelli E, Magrini N. Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibioticsWHO (Ed) The World Health Organization. 2017.
[70]
Høiby N, Ciofu O, Bjarnsholt T. Pseudomonas aeruginosa biofilms in cystic fibrosis. Future Microbiol 2010; 5(11): 1663-74.
[http://dx.doi.org/10.2217/fmb.10.125] [PMID: 21133688]
[71]
Caldwell CC, Chen Y, Goetzmann HS, et al. Pseudomonas aeruginosa exotoxin pyocyanin causes cystic fibrosis airway pathogenesis. Am J Pathol 2009; 175(6): 2473-88.
[http://dx.doi.org/10.2353/ajpath.2009.090166] [PMID: 19893030]
[72]
Macé C, Seyer D, Chemani C, et al. Identification of biofilm-associated cluster (bac) in Pseudomonas aeruginosa involved in biofilm formation and virulence. PLoS One 2008; 3(12)e3897
[http://dx.doi.org/10.1371/journal.pone.0003897] [PMID: 19065261]
[73]
Kirketerp-Møller K, Jensen PO, Fazli M, et al. Distribution, organization, and ecology of bacteria in chronic wounds. J Clin Microbiol 2008; 46(8): 2717-22.
[http://dx.doi.org/10.1128/JCM.00501-08] [PMID: 18508940]
[74]
Alhede M, Kragh KN, Qvortrup K, et al. Phenotypes of non-attached Pseudomonas aeruginosa aggregates resemble surface attached biofilm. PLoS One 2011; 6(11)e27943
[http://dx.doi.org/10.1371/journal.pone.0027943] [PMID: 22132176]
[75]
Möker N, Dean CR, Tao J. Pseudomonas aeruginosa increases formation of multidrug-tolerant persister cells in response to quorum-sensing signaling molecules. J Bacteriol 2010; 192(7): 1946-55.
[http://dx.doi.org/10.1128/JB.01231-09] [PMID: 20097861]
[76]
Lewis K. Persister cells. Annu Rev Microbiol 2010; 64: 357-72.
[http://dx.doi.org/10.1146/annurev.micro.112408.134306] [PMID: 20528688]
[77]
Delcaru C, Alexandru I, Podgoreanu P, et al. Microbial biofilms in urinary tract infections and prostatitis: etiology, pathogenicity, and combating strategies. Pathogens 2016; 5(4)E65
[http://dx.doi.org/10.3390/pathogens5040065] [PMID: 27916925]
[78]
Manchanda V, Sanchaita S, Singh N. Multidrug resistant acinetobacter. J Glob Infect Dis 2010; 2(3): 291-304.
[http://dx.doi.org/10.4103/0974-777X.68538] [PMID: 20927292]
[79]
Sunenshine RH, Wright MO, Maragakis LL, et al. Multidrug-resistant Acinetobacter infection mortality rate and length of hospitalization. Emerg Infect Dis 2007; 13(1): 97-103.
[http://dx.doi.org/10.3201/eid1301.060716] [PMID: 17370521]
[80]
Bjarnsholt T. The role of bacterial biofilms in chronic infections APMIS Suppl 2013; 136: 1-51.
[81]
Percival SL, Hill KE, Williams DW, Hooper SJ, Thomas DW, Costerton JW. A review of the scientific evidence for biofilms in wounds, Wound repair and regeneration official publication of the Wound Healing Society [and] the European Tissue Repair Society 2012; 20(5): 647-57.
[82]
Hurlow J, Couch K, Laforet K, Bolton L, Metcalf D, Bowler P. Clinical Biofilms: A Challenging Frontier in Wound Care. Adv Wound Care (New Rochelle) 2015; 4(5): 295-301.
[http://dx.doi.org/10.1089/wound.2014.0567] [PMID: 26005595]
[83]
Davis SC, Ricotti C, Cazzaniga A, Welsh E, Eaglstein WH, Mertz PM. Microscopic and physiologic evidence for biofilm-associated wound colonization in vivo, Wound repair and regeneration official publication of the Wound Healing Society [and] the European Tissue Repair Society 2008; 16(1): 23-9.
[84]
Donlan RM. Biofilms and device-associated infections. Emerg Infect Dis 2001; 7(2): 277-81.
[http://dx.doi.org/10.3201/eid0702.010226] [PMID: 11294723]
[85]
Donlan RM. Biofilms: microbial life on surfaces. Emerg Infect Dis 2002; 8(9): 881-90.
[http://dx.doi.org/10.3201/eid0809.020063] [PMID: 12194761]
[86]
Bjarnsholt T, Alhede M, Alhede M, et al. The in vivo biofilm. Trends Microbiol 2013; 21(9): 466-74.
[http://dx.doi.org/10.1016/j.tim.2013.06.002] [PMID: 23827084]
[87]
Potera C. Forging a link between biofilms and diseaseScience.(New York, NY). 1999; 283: pp. (5409)1837-.
[88]
Hall CW, Mah TF. Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiol Rev 2017; 41(3): 276-301.
[http://dx.doi.org/10.1093/femsre/fux010] [PMID: 28369412]
[89]
Bas S, Kramer M, Stopar D. Biofilm Surface Density Determines Biocide Effectiveness. Front Microbiol 2017; 8: 2443.
[http://dx.doi.org/10.3389/fmicb.2017.02443] [PMID: 29276508]
[90]
Mah TF, O’Toole GA. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 2001; 9(1): 34-9.
[http://dx.doi.org/10.1016/S0966-842X(00)01913-2] [PMID: 11166241]
[91]
Davies D. Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov 2003; 2(2): 114-22.
[http://dx.doi.org/10.1038/nrd1008] [PMID: 12563302]
[92]
Nichols WW, Evans MJ, Slack MP, Walmsley HL. The penetration of antibiotics into aggregates of mucoid and non-mucoid Pseudomonas aeruginosa. J Gen Microbiol 1989; 135(5): 1291-303.
[PMID: 2516117]
[93]
Gordon CA, Hodges NA, Marriott C. Antibiotic interaction and diffusion through alginate and exopolysaccharide of cystic fibrosis-derived Pseudomonas aeruginosa. J Antimicrob Chemother 1988; 22(5): 667-74.
[http://dx.doi.org/10.1093/jac/22.5.667] [PMID: 3145268]
[94]
Anderl JN, Zahller J, Roe F, Stewart PS. Role of nutrient limitation and stationary-phase existence in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob Agents Chemother 2003; 47(4): 1251-6.
[http://dx.doi.org/10.1128/AAC.47.4.1251-1256.2003] [PMID: 12654654]
[95]
McPhee JB, Bains M, Winsor G, et al. Contribution of the PhoP-PhoQ and PmrA-PmrB two-component regulatory systems to Mg2+-induced gene regulation in Pseudomonas aeruginosa. J Bacteriol 2006; 188(11): 3995-4006.
[http://dx.doi.org/10.1128/JB.00053-06] [PMID: 16707691]
[96]
Bae J, Oh E, Jeon B. Enhanced transmission of antibiotic resistance in Campylobacter jejuni biofilms by natural transformation. Antimicrob Agents Chemother 2014; 58(12): 7573-5.
[http://dx.doi.org/10.1128/AAC.04066-14] [PMID: 25267685]
[97]
Walters MC III, Roe F, Bugnicourt A, Franklin MJ, Stewart PS. Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin. Antimicrob Agents Chemother 2003; 47(1): 317-23.
[http://dx.doi.org/10.1128/AAC.47.1.317-323.2003] [PMID: 12499208]
[98]
Werner E, Roe F, Bugnicourt A, et al. Stratified growth in Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 2004; 70(10): 6188-96.
[http://dx.doi.org/10.1128/AEM.70.10.6188-6196.2004] [PMID: 15466566]
[99]
Stewart PS, Zhang T, Xu R, et al. Reaction-diffusion theory explains hypoxia and heterogeneous growth within microbial biofilms associated with chronic infections. NPJ Biofilms Microbiomes 2016; 2: 16012.
[http://dx.doi.org/10.1038/npjbiofilms.2016.12] [PMID: 28721248]
[100]
Foster TJ. Immune evasion by staphylococci. Nat Rev Microbiol 2005; 3(12): 948-58.
[http://dx.doi.org/10.1038/nrmicro1289] [PMID: 16322743]
[101]
Salgado-Pabón W, Breshears L, Spaulding AR, et al. Superantigens are critical for Staphylococcus aureus Infective endocarditis, sepsis, and acute kidney injury. MBio 2013; 4(4): e00494-13.
[http://dx.doi.org/10.1128/mBio.00494-13] [PMID: 23963178]
[102]
Leid JG, Shirtliff ME, Costerton JW, Stoodley P. Human leukocytes adhere to, penetrate, and respond to Staphylococcus aureus biofilms. Infect Immun 2002; 70(11): 6339-45.
[http://dx.doi.org/10.1128/IAI.70.11.6339-6345.2002] [PMID: 12379713]
[103]
Hanke ML, Kielian T. Deciphering mechanisms of staphylococcal biofilm evasion of host immunity. Front Cell Infect Microbiol 2012; 2: 62.
[http://dx.doi.org/10.3389/fcimb.2012.00062] [PMID: 22919653]
[104]
Hanke ML, Heim CE, Angle A, Sanderson SD, Kielian T. Targeting macrophage activation for the prevention and treatment of Staphylococcus aureus biofilm infections. J Immunol 2013; 190(5): 2159-68.
[http://dx.doi.org/10.4049/jimmunol.1202348] [PMID: 23365077]
[105]
Mushtaq MU, Papadas A, Pagenkopf A, et al. Tumor matrix remodeling and novel immunotherapies: the promise of matrix-derived immune biomarkers. J Immunother Cancer 2018; 6(1): 65.
[http://dx.doi.org/10.1186/s40425-018-0376-0] [PMID: 29970158]
[106]
Allard B, Aspeslagh S, Garaud S, et al. Immuno-oncology-101: overview of major concepts and translational perspectives. Semin Cancer Biol 2018; 52(Pt 2): 1-11.
[http://dx.doi.org/10.1016/j.semcancer.2018.02.005] [PMID: 29428479]
[107]
Heacock-Kang Y, Zarzycki-Siek J, Sun Z, et al. Novel dual regulators of Pseudomonas aeruginosa essential for productive biofilms and virulence. Mol Microbiol 2018; 109(3): 401-14.
[http://dx.doi.org/10.1111/mmi.14063] [PMID: 29995308]
[108]
Jesaitis AJ, Franklin MJ, Berglund D, et al. Compromised host defense on Pseudomonas aeruginosa biofilms: characterization of neutrophil and biofilm interactions. J Immunol 2003; 171(8): 4329-39.
[http://dx.doi.org/10.4049/jimmunol.171.8.4329] [PMID: 14530358]
[109]
Kharazmi A, Nielsen H. Inhibition of human monocyte chemotaxis and chemiluminescence by Pseudomonas aeruginosa elastase. APMIS 1991; 99(1): 93-5.
[http://dx.doi.org/10.1111/j.1699-0463.1991.tb05124.x] [PMID: 1899578]
[110]
Jensen ET, Kharazmi A, Høiby N, Costerton JW. Some bacterial parameters influencing the neutrophil oxidative burst response to Pseudomonas aeruginosa biofilms. APMIS 1992; 100(8): 727-33.
[http://dx.doi.org/10.1111/j.1699-0463.1992.tb03991.x] [PMID: 1325804]
[111]
Thurlow LR, Hanke ML, Fritz T, et al. Staphylococcus aureus biofilms prevent macrophage phagocytosis and attenuate inflammation in vivo Journal of immunology (Baltimore, Md : 1950) 2011; 186(11): 6585-96.
[112]
Hansch GM, Brenner-Weiss G, Prior B, Wagner C, Obst U. The extracellular polymer substance of Pseudomonas aeruginosa: too slippery for neutrophils to migrate on? Int J Artif Organs 2008; 31(9): 796-803.
[http://dx.doi.org/10.1177/039139880803100907] [PMID: 18924091]
[113]
Leid JG, Willson CJ, Shirtliff ME, Hassett DJ, Parsek MR, Jeffers AK. The exopolysaccharide alginate protects Pseudomonas aeruginosa biofilm bacteria from IFN-gamma-mediated macrophage killing. J Immunol 2005; 175(11): 7512-8.
[http://dx.doi.org/10.4049/jimmunol.175.11.7512] [PMID: 16301659]
[114]
Vuong C, Kocianova S, Voyich JM, et al. A crucial role for exopolysaccharide modification in bacterial biofilm formation, immune evasion, and virulence. J Biol Chem 2004; 279(52): 54881-6.
[http://dx.doi.org/10.1074/jbc.M411374200] [PMID: 15501828]
[115]
Rodgers J, Phillips F, Olliff C. The effects of extracellular slime from Staphylococcus epidermidis on phagocytic ingestion and killing. FEMS Immunol Med Microbiol 1994; 9(2): 109-15.
[http://dx.doi.org/10.1111/j.1574-695X.1994.tb00481.x] [PMID: 7804161]
[116]
Johnson GM, Lee DA, Regelmann WE, Gray ED, Peters G, Quie PG. Interference with granulocyte function by Staphylococcus epidermidis slime. Infect Immun 1986; 54(1): 13-20.
[http://dx.doi.org/10.1128/IAI.54.1.13-20.1986] [PMID: 3019888]
[117]
Noble MA, Reid PE, Park CM, Chan VY. Inhibition of human neutrophil bacteriocidal activity by extracellular substance from slime-producing Staphylococcus epidermidis. Diagn Microbiol Infect Dis 1986; 4(4): 335-9.
[http://dx.doi.org/10.1016/0732-8893(86)90074-X] [PMID: 3698545]
[118]
Gottrup F, Apelqvist J, Bjarnsholt T, et al. Antimicrobials and Non-Healing Wounds. Evidence, controversies and suggestions-key messages. J Wound Care 2014; 23(10): 477-478, 480, 482.
[http://dx.doi.org/10.12968/jowc.2014.23.10.477] [PMID: 25296348]
[119]
Schultz G, Bjarnsholt T, James GA, et al. Consensus guidelines for the identification and treatment of biofilms in chronic nonhealing wounds, Wound repair and regeneration official publication of the Wound Healing Society [and] the European Tissue Repair Society 2017; 25(5): 744-57.
[120]
Ubbink DT, Santema TB, Stoekenbroek RM. Systemic wound care: a meta-review of cochrane systematic reviews. Surg Technol Int 2014; 24: 99-111.
[PMID: 24700218]
[121]
Stevens DL, Bisno AL, Chambers HF, et al. Infectious Diseases Society of America. Practice guidelines for the diagnosis and management of skin and soft tissue infections: 2014 update by the Infectious Diseases Society of America. Clin Infect Dis 2014; 59(2): e10-52.
[http://dx.doi.org/10.1093/cid/ciu296] [PMID: 24973422]
[122]
Bos JD, Meinardi MM. The 500 Dalton rule for the skin penetration of chemical compounds and drugs. Exp Dermatol 2000; 9(3): 165-9.
[http://dx.doi.org/10.1034/j.1600-0625.2000.009003165.x] [PMID: 10839713]
[123]
Kumar T, Teo I, McCormick BB. Systemic toxicity of intraperitoneal vancomycin. case Rep Nephrol 2016. 20163968690.
[http://dx.doi.org/10.1155/2016/3968690] [PMID: 27840751]
[124]
Cadle RM, Mansouri MD, Darouiche RO. Vancomycin-induced elevation of liver enzyme levels. Ann Pharmacother 2006; 40(6): 1186-9.
[http://dx.doi.org/10.1345/aph.1G668] [PMID: 16720708]
[125]
Choi YC, Saw S, Soliman D, et al. Intravenous vancomycin associated with the development of nephrotoxicity in patients with class iii obesity. Ann Pharmacother 2017; 51(11): 937-44.
[http://dx.doi.org/10.1177/1060028017720946] [PMID: 28709394]
[126]
Waldor MK. Disarming pathogens--a new approach for antibiotic development. N Engl J Med 2006; 354(3): 296-7.
[http://dx.doi.org/10.1056/NEJMcibr054591] [PMID: 16421373]
[127]
Hung DT, Shakhnovich EA, Pierson E, Mekalanos JJ. Small-molecule inhibitor of Vibrio cholerae virulence and intestinal colonization. Science 2005; 310(5748): 670-4.
[http://dx.doi.org/10.1126/science.1116739] [PMID: 16223984]
[128]
Liu CI, Liu GY, Song Y, et al. A cholesterol biosynthesis inhibitor blocks Staphylococcus aureus virulence. Science 2008; 319(5868): 1391-4.
[http://dx.doi.org/10.1126/science.1153018] [PMID: 18276850]
[129]
Rasko DA, Moreira CG, Li R, et al. Targeting QseC signaling and virulence for antibiotic development. Science 2008; 321(5892): 1078-80.
[http://dx.doi.org/10.1126/science.1160354] [PMID: 18719281]
[130]
Starkey M, Lepine F, Maura D, et al. Identification of anti-virulence compounds that disrupt quorum-sensing regulated acute and persistent pathogenicity. PLoS Pathog 2014; 10(8)e1004321
[http://dx.doi.org/10.1371/journal.ppat.1004321] [PMID: 25144274]
[131]
Sun H, Xu Y, Sitkiewicz I, et al. Inhibitor of streptokinase gene expression improves survival after group A streptococcus infection in mice. Proc Natl Acad Sci USA 2012; 109(9): 3469-74.
[http://dx.doi.org/10.1073/pnas.1201031109] [PMID: 22331877]
[132]
Sully EK, Malachowa N, Elmore BO, et al. Selective chemical inhibition of agr quorum sensing in Staphylococcus aureus promotes host defense with minimal impact on resistance. PLoS Pathog 2014; 10(6)e1004174
[http://dx.doi.org/10.1371/journal.ppat.1004174] [PMID: 24945495]
[133]
Zhang J, Liu H, Zhu K, et al. Antiinfective therapy with a small molecule inhibitor of Staphylococcus aureus sortase. Proc Natl Acad Sci USA 2014; 111(37): 13517-22.
[http://dx.doi.org/10.1073/pnas.1408601111] [PMID: 25197057]
[134]
Kalia M, Singh PK, Yadav VK, et al. Structure based virtual screening for identification of potential quorum sensing inhibitors against LasR master regulator in Pseudomonas aeruginosa. Microb Pathog 2017; 107: 136-43.
[http://dx.doi.org/10.1016/j.micpath.2017.03.026] [PMID: 28351711]
[135]
Borlee BR, Geske GD, Blackwell HE, Handelsman J. Identification of synthetic inducers and inhibitors of the quorum-sensing regulator LasR in Pseudomonas aeruginosa by high-throughput screening. Appl Environ Microbiol 2010; 76(24): 8255-8.
[http://dx.doi.org/10.1128/AEM.00499-10] [PMID: 20935125]
[136]
O’Brien KT, Noto JG, Nichols-O’Neill L, Perez LJ. Potent irreversible inhibitors of lasr quorum sensing in pseudomonas aeruginosa. ACS Med Chem Lett 2014; 6(2): 162-7.
[http://dx.doi.org/10.1021/ml500459f] [PMID: 25699144]
[137]
Amara N, Mashiach R, Amar D, et al. Covalent inhibition of bacterial quorum sensing. J Am Chem Soc 2009; 131(30): 10610-9.
[http://dx.doi.org/10.1021/ja903292v] [PMID: 19585989]
[138]
O’Loughlin CT, Miller LC, Siryaporn A, Drescher K, Semmelhack MF, Bassler BL. A quorum-sensing inhibitor blocks Pseudomonas aeruginosa virulence and biofilm formation. Proc Natl Acad Sci USA 2013; 110(44): 17981-6.
[http://dx.doi.org/10.1073/pnas.1316981110] [PMID: 24143808]
[139]
Bowlin NO, Williams JD, Knoten CA, et al. Mutations in the Pseudomonas aeruginosa needle protein gene pscF confer resistance to phenoxyacetamide inhibitors of the type III secretion system. Antimicrob Agents Chemother 2014; 58(4): 2211-20.
[http://dx.doi.org/10.1128/AAC.02795-13] [PMID: 24468789]
[140]
Dickey SW, Cheung GYC, Otto M. Different drugs for bad bugs: antivirulence strategies in the age of antibiotic resistance. Nat Rev Drug Discov 2017; 16(7): 457-71.
[http://dx.doi.org/10.1038/nrd.2017.23] [PMID: 28337021]
[141]
Maura D, Ballok AE, Rahme LG. Considerations and caveats in anti-virulence drug development. Curr Opin Microbiol 2016; 33: 41-6.
[http://dx.doi.org/10.1016/j.mib.2016.06.001] [PMID: 27318551]
[142]
Chung PY, Toh YS. Anti-biofilm agents: recent breakthrough against multi-drug resistant Staphylococcus aureus. Pathog Dis 2014; 70(3): 231-9.
[http://dx.doi.org/10.1111/2049-632X.12141] [PMID: 24453168]
[143]
Rajput A, Thakur A, Sharma S, Kumar M. aBiofilm: a resource of anti-biofilm agents and their potential implications in targeting antibiotic drug resistance. Nucleic Acids Res 2018; 46(D1): D894-900.
[http://dx.doi.org/10.1093/nar/gkx1157] [PMID: 29156005]
[144]
Roy R, Tiwari M, Donelli G, Tiwari V. Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action. Virulence 2018; 9(1): 522-54.
[http://dx.doi.org/10.1080/21505594.2017.1313372] [PMID: 28362216]
[145]
Percival SL, McCarty SM. Silver and Alginates: Role in Wound Healing and Biofilm Control. Adv Wound Care (New Rochelle) 2015; 4(7): 407-14.
[http://dx.doi.org/10.1089/wound.2014.0541] [PMID: 26155383]
[146]
Kostenko V, Lyczak J, Turner K, Martinuzzi RJ. Impact of silver-containing wound dressings on bacterial biofilm viability and susceptibility to antibiotics during prolonged treatment. Antimicrob Agents Chemother 2010; 54(12): 5120-31.
[http://dx.doi.org/10.1128/AAC.00825-10] [PMID: 20855737]
[147]
Dharmaprakash A, Thandavarayan R, Joseph I, Thomas S. Development of broad-spectrum antibiofilm drugs: strategies and challenges. Future Microbiol 2015; 10(6): 1035-48.
[http://dx.doi.org/10.2217/fmb.15.14] [PMID: 26059624]
[148]
Chen M, Yu Q, Sun H. Novel strategies for the prevention and treatment of biofilm related infections. Int J Mol Sci 2013; 14(9): 18488-501.
[http://dx.doi.org/10.3390/ijms140918488] [PMID: 24018891]
[149]
Ma Y, Xu Y, Yestrepsky BD, et al. Novel inhibitors of Staphylococcus aureus virulence gene expression and biofilm formation. PLoS One 2012; 7(10)e47255
[http://dx.doi.org/10.1371/journal.pone.0047255] [PMID: 23077578]
[150]
Brackman G, Coenye T. Quorum sensing inhibitors as anti-biofilm agents. Curr Pharm Des 2015; 21(1): 5-11.
[http://dx.doi.org/10.2174/1381612820666140905114627] [PMID: 25189863]
[151]
Nunan R, Harding KG, Martin P. Clinical challenges of chronic wounds: searching for an optimal animal model to recapitulate their complexity. Dis Model Mech 2014; 7(11): 1205-13.
[http://dx.doi.org/10.1242/dmm.016782] [PMID: 25359790]
[152]
Houschyar KA, Duscher D, Rein S, et al. Wnt signaling during cutaneous wound healingregenerative medicine and plastic surgery: skin and soft tissue, bone, cartilage, muscle, tendon and nerves. Cham: Springer 2019.
[http://dx.doi.org/10.1007/978-3-030-19962-3_11]
[153]
Ghomi ER, Khalili S, Khorasani SN, Neisiany RE, Ramakrishna S. Wound dressings: Current advances and future directions. J Appl Polym Sci 2019; 1-12.
[http://dx.doi.org/10.1002/APP.47738]
[154]
Patil P, Martin JR, Sarett SM, et al. Porcine ischemic wound healing model for preclinical testing of degradable biomaterials. Tissue Eng Part C Methods 2017; 23(11): 754-62.
[http://dx.doi.org/10.1089/ten.tec.2017.0202] [PMID: 28762881]
[155]
Powers JG, Higham C, Broussard K, Phillips TJ. Wound healing and treating wounds: Chronic wound care and management. J Am Acad Dermatol 2016; 74(4): 607-25.
[http://dx.doi.org/10.1016/j.jaad.2015.08.070] [PMID: 26979353]
[156]
Han G, Ceilley R. Chronic Wound Healing: A Review of Current Management and Treatments. Adv Ther 2017; 34(3): 599-610.
[http://dx.doi.org/10.1007/s12325-017-0478-y] [PMID: 28108895]
[157]
Pereira RF, Bártolo PJ. Traditional Therapies for Skin Wound Healing. Adv Wound Care (New Rochelle) 2016; 5(5): 208-29.
[http://dx.doi.org/10.1089/wound.2013.0506] [PMID: 27134765]
[158]
Uçar Ö, Çelik S. Comparison of platelet-rich plasma gel in the care of the pressure ulcers with the dressing with serum physiology in terms of healing process and dressing costs. Int Wound J 2020; 17(3): 831-41.
[http://dx.doi.org/10.1111/iwj.13344] [PMID: 32212258]
[159]
Singh SP, Kumar V, Pandey A, Pandey P, Gupta V, Verma R. Role of platelet-rich plasma in healing diabetic foot ulcers: a prospective study. J Wound Care 2018; 27(9): 550-6.
[http://dx.doi.org/10.12968/jowc.2018.27.9.550] [PMID: 30204574]
[160]
Kim SA, Ryu HW, Lee KS, Cho JW. Application of platelet-rich plasma accelerates the wound healing process in acute and chronic ulcers through rapid migration and upregulation of cyclin A and CDK4 in HaCaT cells. Mol Med Rep 2013; 7(2): 476-80.
[http://dx.doi.org/10.3892/mmr.2012.1230] [PMID: 23242428]
[161]
Driver VR, Hanft J, Fylling CP, Beriou JM. Autologel Diabetic Foot Ulcer Study Group. A prospective, randomized, controlled trial of autologous platelet-rich plasma gel for the treatment of diabetic foot ulcers. Ostomy Wound Manage 2006; 52(6): 68-70, 72, 74 passim.
[PMID: 16799184]
[162]
Ahmed M, Reffat SA, Hassan A, Eskander F. Platelet-Rich Plasma for the Treatment of Clean Diabetic Foot Ulcers. Ann Vasc Surg 2017; 38: 206-11.
[http://dx.doi.org/10.1016/j.avsg.2016.04.023] [PMID: 27522981]
[163]
Badade PS, Mahale SA, Panjwani AA, Vaidya PD, Warang AD. Antimicrobial effect of platelet-rich plasma and platelet-rich fibrin Indian journal of dental research: official publication of Indian Society for Dental Research 2016; 27(3): 300-4.
[164]
Varshney S, Dwivedi A, Pandey V. Antimicrobial effects of various platelet rich concentrates-vibes from in-vitro studies-a systematic review. J Oral Biol Craniofac Res 2019; 9(4): 299-305.
[http://dx.doi.org/10.1016/j.jobcr.2019.06.013] [PMID: 31316893]
[165]
Mariani E, Filardo G, Canella V, et al. Platelet-rich plasma affects bacterial growth in vitro. Cytotherapy 2014; 16(9): 1294-304.
[http://dx.doi.org/10.1016/j.jcyt.2014.06.003] [PMID: 25108654]
[166]
Berberich B, Thriene K, Gretzmeier C, et al. Proteomic profiling of fibroblasts isolated from chronic wounds identifies disease-relevant signaling pathways. J Invest Dermatol 2020.S0022- 202X(20)31376-2.
[PMID: 32305317]
[167]
Goldman R. Growth factors and chronic wound healing: past, present, and future. Adv Skin Wound Care 2004; 17(1): 24-35.
[http://dx.doi.org/10.1097/00129334-200401000-00012] [PMID: 14752324]
[168]
Schreml S, Szeimies RM, Prantl L, Landthaler M, Babilas P. Wound healing in the 21st century. J Am Acad Dermatol 2010; 63(5): 866-81.
[http://dx.doi.org/10.1016/j.jaad.2009.10.048] [PMID: 20576319]
[169]
Waycaster CR, Gilligan AM, Motley TA. Cost-effectiveness of becaplermin gel on diabetic foot ulcer healingchanges in wound surface area. J Am Podiatr Med Assoc 2016; 106(4): 273-82.
[http://dx.doi.org/10.7547/15-004] [PMID: 27049838]
[170]
Gilligan AM, Waycaster CR, Milne CT. Cost effectiveness of becaplermin gel on wound closure for the treatment of pressure injuries. Wounds 2018; 30(6): 197-204.
[PMID: 29809161]
[171]
Ortiz-Urda S, Thyagarajan B, Keene DR, et al. Stable nonviral genetic correction of inherited human skin disease. Nat Med 2002; 8(10): 1166-70.
[http://dx.doi.org/10.1038/nm766] [PMID: 12244305]
[172]
Felgner PL, Rhodes G. Gene therapeutics. Nature 1991; 349(6307): 351-2.
[http://dx.doi.org/10.1038/349351a0] [PMID: 1987492]
[173]
Eming SA, Krieg T, Davidson JM. Gene therapy and wound healing. Clin Dermatol 2007; 25(1): 79-92.
[http://dx.doi.org/10.1016/j.clindermatol.2006.09.011] [PMID: 17276205]
[174]
Laiva AL, O’Brien FJ, Keogh MB. Innovations in gene and growth factor delivery systems for diabetic wound healing. J Tissue Eng Regen Med 2018; 12(1): e296-312.
[http://dx.doi.org/10.1002/term.2443] [PMID: 28482114]
[175]
Nayerossadat N, Maedeh T, Ali PA. Viral and nonviral delivery systems for gene delivery. Adv Biomed Res 2012; 1: 27.
[http://dx.doi.org/10.4103/2277-9175.98152] [PMID: 23210086]
[176]
Melo SP, Lisowski L, Bashkirova E, et al. Somatic correction of junctional epidermolysis bullosa by a highly recombinogenic AAV variant Molecular therapy: the journal of the American Society of Gene Therapy 2014; 22(4): 725-33.
[177]
Mavilio F, Pellegrini G, Ferrari S, et al. Correction of junctional epidermolysis bullosa by transplantation of genetically modified epidermal stem cells. Nat Med 2006; 12(12): 1397-402.
[http://dx.doi.org/10.1038/nm1504] [PMID: 17115047]
[178]
Wong T, Gammon L, Liu L, et al. Potential of fibroblast cell therapy for recessive dystrophic epidermolysis bullosa. J Invest Dermatol 2008; 128(9): 2179-89.
[http://dx.doi.org/10.1038/jid.2008.78] [PMID: 18385758]
[179]
Robbins PB, Lin Q, Goodnough JB, Tian H, Chen X, Khavari PA. In vivo restoration of laminin 5 beta 3 expression and function in junctional epidermolysis bullosa. Proc Natl Acad Sci USA 2001; 98(9): 5193-8.
[http://dx.doi.org/10.1073/pnas.091484998] [PMID: 11296269]
[180]
Osborn MJ, Starker CG, McElroy AN, et al. TALEN-based gene correction for epidermolysis bullosa Molecular therapy: the journal of the American Society of Gene Therapy 2013; 21(6): 1151-9.
[181]
Wagner JE, Ishida-Yamamoto A, McGrath JA, et al. Bone marrow transplantation for recessive dystrophic epidermolysis bullosa. N Engl J Med 2010; 363(7): 629-39.
[http://dx.doi.org/10.1056/NEJMoa0910501] [PMID: 20818854]
[182]
Woodley DT, Keene DR, Atha T, et al. Injection of recombinant human type VII collagen restores collagen function in dystrophic epidermolysis bullosa. Nat Med 2004; 10(7): 693-5.
[http://dx.doi.org/10.1038/nm1063] [PMID: 15195089]
[183]
Petrova A, Ilic D, McGrath JA. Stem cell therapies for recessive dystrophic epidermolysis bullosa. Br J Dermatol 2010; 163(6): 1149-56.
[http://dx.doi.org/10.1111/j.1365-2133.2010.09981.x] [PMID: 20716209]
[184]
Pfalzgraff A, Brandenburg K, Weindl G. Antimicrobial peptides and their therapeutic potential for bacterial skin infections and wounds. Front Pharmacol 2018; 9: 281.
[http://dx.doi.org/10.3389/fphar.2018.00281] [PMID: 29643807]
[185]
Mangoni ML, McDermott AM, Zasloff M. Antimicrobial peptides and wound healing: biological and therapeutic considerations. Exp Dermatol 2016; 25(3): 167-73.
[http://dx.doi.org/10.1111/exd.12929] [PMID: 26738772]
[186]
Niyonsaba F, Ushio H, Nakano N, et al. Antimicrobial peptides human beta-defensins stimulate epidermal keratinocyte migration, proliferation and production of proinflammatory cytokines and chemokines. J Invest Dermatol 2007; 127(3): 594-604.
[http://dx.doi.org/10.1038/sj.jid.5700599] [PMID: 17068477]
[187]
Semple F, MacPherson H, Webb S, et al. Human β-defensin 3 affects the activity of pro-inflammatory pathways associated with MyD88 and TRIF. Eur J Immunol 2011; 41(11): 3291-300.
[http://dx.doi.org/10.1002/eji.201141648] [PMID: 21809339]
[188]
Semple F, Webb S, Li HN, et al. Human beta-defensin 3 has immunosuppressive activity in vitro and in vivo. Eur J Immunol 2010; 40(4): 1073-8.
[http://dx.doi.org/10.1002/eji.200940041] [PMID: 20104491]
[189]
Koczulla R, von Degenfeld G, Kupatt C, et al. An angiogenic role for the human peptide antibiotic LL-37/hCAP-18. J Clin Invest 2003; 111(11): 1665-72.
[http://dx.doi.org/10.1172/JCI17545] [PMID: 12782669]
[190]
Gronberg A, Mahlapuu M, Stahle M, Whately-Smith C, Rollman O. Treatment with LL-37 is safe and effective in enhancing healing of hard-to-heal venous leg ulcers: a randomized, placebo-controlled clinical trial Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society 2014; 22(5): 613-21.
[191]
Chow L, Johnson V, Impastato R, Coy J, Strumpf A, Dow S. Antibacterial activity of human mesenchymal stem cells mediated directly by constitutively secreted factors and indirectly by activation of innate immune effector cells. Stem Cells Transl Med 2020; 9(2): 235-49.
[http://dx.doi.org/10.1002/sctm.19-0092] [PMID: 31702119]
[192]
Hanson SE, Bentz ML, Hematti P. Mesenchymal stem cell therapy for nonhealing cutaneous wounds. Plast Reconstr Surg 2010; 125(2): 510-6.
[http://dx.doi.org/10.1097/PRS.0b013e3181c722bb] [PMID: 20124836]
[193]
Li M, Qiu L, Hu W, et al. Genetically-modified bone mesenchymal stem cells with TGF-β3 improve wound healing and reduce scar tissue formation in a rabbit model. Exp Cell Res 2018; 367(1): 24-9.
[http://dx.doi.org/10.1016/j.yexcr.2018.02.006] [PMID: 29453974]
[194]
Ojeh N, Pastar I, Tomic-Canic M, Stojadinovic O. Stem cells in skin regeneration, wound healing, and their clinical applications. Int J Mol Sci 2015; 16(10): 25476-501.
[http://dx.doi.org/10.3390/ijms161025476] [PMID: 26512657]
[195]
Kanji S, Das H. Advances of stem cell therapeutics in cutaneous wound healing and regeneration. Mediators Inflamm 2017., 20175217967.
[http://dx.doi.org/10.1155/2017/5217967] [PMID: 29213192]
[196]
Lukic J, Chen V, Strahinic I, et al. Probiotics or pro-healers: the role of beneficial bacteria in tissue repair Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society 2017; 25(6): 912-22.
[197]
Bartow-McKenney C, Hannigan GD, Horwinski J, et al. The microbiota of traumatic, open fracture wounds is associated with mechanism of injury, Wound repair and regeneration official publication of the Wound Healing Society [and] the European Tissue Repair Society 2018; 26(2): 127-35.
[198]
Johnson TR, Gómez BI, McIntyre MK, et al. The cutaneous microbiome and wounds: new molecular targets to promote wound healing. Int J Mol Sci 2018; 19(9)E2699
[http://dx.doi.org/10.3390/ijms19092699] [PMID: 30208569]
[199]
Kalan LR, Brennan MB. The role of the microbiome in nonhealing diabetic wounds. Ann N Y Acad Sci 2019; 1435(1): 79-92.
[http://dx.doi.org/10.1111/nyas.13926] [PMID: 30003536]