Recent Advances in Lipid-based Nanodrug Delivery Systems in Cancer Therapy

Page: [3218 - 3233] Pages: 16

  • * (Excluding Mailing and Handling)

Abstract

Cancer is the second leading cause of death globally, with every sixth death being attributable to cancer. Nevertheless, the efficacy of conventional chemotherapeutic drugs is often limited due to their poor solubility, unfavorable pharmacokinetic profile, and lack of tumor selectivity. The use of nanotechnology provides an opportunity to enhance the efficacy of a chemotherapeutic drug by improving its bioavailability and pharmacokinetic profile while facilitating preferential accumulation at the tumor tissue. To date, a variety of platforms have been investigated as nanocarriers in oncology, which include lipid-based, polymer-based, inorganic materials, and even viruses. Among different nanocarriers, lipid-based delivery systems have been extensively used in oncology because of their biocompatibility, biodegradability, ability to encapsulate diverse drug molecules, high temporal and thermal stability, and offer prolonged and controlled drug release. This review discusses the current status of the lipid-based nanocarriers and their applications in cancer treatment as well as an overview of the different liposomal formulations commercially available for cancer therapy.

Keywords: Cancer, chemotherapeutics, drug delivery, liposomes, nanostructured lipid carriers, solid lipid nanoparticles, targeted drug delivery.

[1]
Mortality GBD. GBD 2015 Mortality and Causes of Death Collaborators. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016; 388(10053): 1459-544.
[http://dx.doi.org/10.1016/S0140-6736(16)31012-1] [PMID: 27733281]
[2]
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68(6): 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[3]
Danhier F, Feron O, Préat V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release 2010; 148(2): 135-46.
[http://dx.doi.org/10.1016/j.jconrel.2010.08.027] [PMID: 20797419]
[4]
Brannon-Peppas L, Blanchette JO. Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev 2004; 56(11): 1649-59.
[http://dx.doi.org/10.1016/j.addr.2004.02.014] [PMID: 15350294]
[5]
Neubert RHH. Potentials of new nanocarriers for dermal and transdermal drug delivery. Eur J Pharm Biopharm 2011; 77(1): 1-2.
[http://dx.doi.org/10.1016/j.ejpb.2010.11.003] [PMID: 21111043]
[6]
Singh R, Lillard JW Jr. Nanoparticle-based targeted drug delivery. Exp Mol Pathol 2009; 86(3): 215-23.
[http://dx.doi.org/10.1016/j.yexmp.2008.12.004] [PMID: 19186176]
[7]
Din FU, Aman W, Ullah I, et al. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomedicine 2017; 12: 7291-309.
[http://dx.doi.org/10.2147/IJN.S146315] [PMID: 29042776]
[8]
How CW, Rasedee A, Manickam S, Rosli R. Tamoxifen-loaded nanostructured lipid carrier as a drug delivery system: characterization, stability assessment and cytotoxicity. Colloids Surf B Biointerfaces 2013; 112: 393-9.
[http://dx.doi.org/10.1016/j.colsurfb.2013.08.009] [PMID: 24036474]
[9]
Mishra B, Patel BB, Tiwari S. Colloidal nanocarriers: a review on formulation technology, types and applications toward targeted drug delivery. Nanomedicine (Lond) 2010; 6(1): 9-24.
[http://dx.doi.org/10.1016/j.nano.2009.04.008] [PMID: 19447208]
[10]
Li Z, Tan S, Li S, Shen Q, Wang K. Cancer drug delivery in the nano era: An overview and perspectives. (Review) Oncol Rep 2017; 38(2): 611-24. [Review]..
[http://dx.doi.org/10.3892/or.2017.5718] [PMID: 28627697]
[11]
Chow EK, Ho D. Cancer nanomedicine: from drug delivery to imaging. Sci Transl Med 2013; 5(216)216rv4
[http://dx.doi.org/10.1126/scitranslmed.3005872]] [PMID: 24353161]
[12]
Iyer AK, Khaled G, Fang J, Maeda H. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov Today 2006; 11(17-18): 812-8.
[http://dx.doi.org/10.1016/j.drudis.2006.07.005] [PMID: 16935749]
[13]
Maeda H. SMANCS and polymer-conjugated macromolecular drugs: advantages in cancer chemotherapy. Adv Drug Deliv Rev 2001; 46(1-3): 169-85.
[http://dx.doi.org/10.1016/S0169-409X(00)00134-4] [PMID: 11259839]
[14]
Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 1986; 46(12 Pt 1): 6387-92.
[PMID: 2946403]
[15]
Greish K, Fang J, Inutsuka T, Nagamitsu A, Maeda H. Macromolecular therapeutics: advantages and prospects with special emphasis on solid tumour targeting. Clin Pharmacokinet 2003; 42(13): 1089-105.
[http://dx.doi.org/10.2165/00003088-200342130-00002] [PMID: 14531722]
[16]
Pombo García K, Zarschler K, Barbaro L, et al. Zwitterionic-coated “stealth” nanoparticles for biomedical applications: recent advances in countering biomolecular corona formation and uptake by the mononuclear phagocyte system. Small 2014; 10(13): 2516-29.
[http://dx.doi.org/10.1002/smll.201303540] [PMID: 24687857]
[17]
Nel AE, Mädler L, Velegol D, et al. Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 2009; 8(7): 543-57.
[http://dx.doi.org/10.1038/nmat2442] [PMID: 19525947]
[18]
Salvati A, Pitek AS, Monopoli MP, et al. Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat Nanotechnol 2013; 8(2): 137-43.
[http://dx.doi.org/10.1038/nnano.2012.237] [PMID: 23334168]
[19]
Fenske DB, Cullis PR. Liposomal nanomedicines. Expert Opin Drug Deliv 2008; 5(1): 25-44.
[http://dx.doi.org/10.1517/17425247.5.1.25] [PMID: 18095927]
[20]
Liu D, Liu Z, Wang L, Zhang C, Zhang N. Nanostructured lipid carriers as novel carrier for parenteral delivery of docetaxel. Colloids Surf B Biointerfaces 2011; 85(2): 262-9.
[http://dx.doi.org/10.1016/j.colsurfb.2011.02.038] [PMID: 21435845]
[21]
García-Pinel B, Porras-Alcalá C, Ortega-Rodríguez A, et al. Lipid-Based Nanoparticles: Application and Recent Advances in Cancer Treatment. Nanomaterials (Basel) 2019; 9(4): 638.
[http://dx.doi.org/10.3390/nano9040638] [PMID: 31010180]
[22]
Ozpolat B, Sood AK, Lopez-Berestein G. Liposomal siRNA nanocarriers for cancer therapy. Adv Drug Deliv Rev 2014; 66: 110-6.
[http://dx.doi.org/10.1016/j.addr.2013.12.008] [PMID: 24384374]
[23]
James ND, Coker RJ, Tomlinson D, et al. Liposomal doxorubicin (Doxil): an effective new treatment for Kaposi’s sarcoma in AIDS. Clin Oncol (R Coll Radiol) 1994; 6(5): 294-6.
[http://dx.doi.org/10.1016/S0936-6555(05)80269-9] [PMID: 7530036]
[24]
Lombardo D, Calandra P, Barreca D, Magazù S, Kiselev MA. Soft Interaction in Liposome Nanocarriers for Therapeutic Drug Delivery. Nanomaterials (Basel) 2016; 6(7): 125.
[http://dx.doi.org/10.3390/nano6070125] [PMID: 28335253]
[25]
Markman M. Pegylated liposomal doxorubicin in the treatment of cancers of the breast and ovary. Expert Opin Pharmacother 2006; 7(11): 1469-74.
[http://dx.doi.org/10.1517/14656566.7.11.1469] [PMID: 16859430]
[26]
Yingchoncharoen P, Kalinowski DS, Richardson DR. Lipid-Based Drug Delivery Systems in Cancer Therapy: What Is Available and What Is Yet to Come. Pharmacol Rev 2016; 68(3): 701-87.
[http://dx.doi.org/10.1124/pr.115.012070] [PMID: 27363439]
[27]
Demel RA, De Kruyff B. The function of sterols in membranes. Biochimica et Biophysica Acta (BBA) -. Rev Biomembranes 1976; 457: 109-32.
[28]
Olusanya TOB, Haj Ahmad RR, Ibegbu DM, Smith JR, Elkordy AA. Liposomal Drug Delivery Systems and Anticancer Drugs. Molecules 2018; 23(4): 907.
[http://dx.doi.org/10.3390/molecules23040907] [PMID: 29662019]
[29]
Kirby C, Gregoriadis G. The effect of the cholesterol content of small unilamellar liposomes on the fate of their lipid components in vitro. Life Sci 1980; 27(23): 2223-30.
[http://dx.doi.org/10.1016/0024-3205(80)90388-4] [PMID: 7207015]
[30]
Sharma A, Sharma US. Liposomes in drug delivery: Progress and limitations. Int J Pharm 1997; 154: 123-40.
[http://dx.doi.org/10.1016/S0378-5173(97)00135-X]
[31]
Vemuri S, Rhodes CT. Preparation and characterization of liposomes as therapeutic delivery systems: a review. Pharm Acta Helv 1995; 70(2): 95-111.
[http://dx.doi.org/10.1016/0031-6865(95)00010-7] [PMID: 7651973]
[32]
Kim C-K, Choi E-J, Choi S-H, Park J-S, Haider KH, Ahn WS. Enhanced p53 gene transfer to human ovarian cancer cells using the cationic nonviral vector, DDC. Gynecol Oncol 2003; 90(2): 265-72.
[http://dx.doi.org/10.1016/S0090-8258(03)00248-8] [PMID: 12893186]
[33]
Sercombe L, Veerati T, Moheimani F, Wu SY, Sood AK, Hua S. Advances and Challenges of Liposome Assisted Drug Delivery. Front Pharmacol 2015; 6: 286.
[http://dx.doi.org/10.3389/fphar.2015.00286] [PMID: 26648870]
[34]
Akbarzadeh A, Rezaei-Sadabady R, Davaran S, et al. Liposome: classification, preparation, and applications. Nanoscale Res Lett 2013; 8(1): 102-2.
[http://dx.doi.org/10.1186/1556-276X-8-102] [PMID: 23432972]
[35]
Etheridge ML, Campbell SA, Erdman AG, Haynes CL, Wolf SM, McCullough J. The big picture on nanomedicine: the state of investigational and approved nanomedicine products. Nanomedicine (Lond) 2013; 9(1): 1-14.
[http://dx.doi.org/10.1016/j.nano.2012.05.013] [PMID: 22684017]
[36]
Immordino ML, Dosio F, Cattel L. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine 2006; 1(3): 297-315.
[PMID: 17717971]
[37]
Suk JS, Xu Q, Kim N, Hanes J, Ensign LM. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery.Adv Drug Deliv Rev 2016; 99(Pt A): 28-51..
[http://dx.doi.org/10.1016/j.addr.2015.09.012] [PMID: 26456916]
[38]
Milla P, Dosio F, Cattel L. PEGylation of proteins and liposomes: a powerful and flexible strategy to improve the drug delivery. Curr Drug Metab 2012; 13(1): 105-19.
[http://dx.doi.org/10.2174/138920012798356934] [PMID: 21892917]
[39]
Liu Y, Gao D, Zhang X, et al. Antitumor drug effect of betulinic acid mediated by polyethylene glycol modified liposomes. Mater Sci Eng C 2016; 64: 124-32.
[http://dx.doi.org/10.1016/j.msec.2016.03.080] [PMID: 27127036]
[40]
Odeh F, Naffa R, Azzam H, et al. Co-encapsulation of thymoquinone with docetaxel enhances the encapsulation efficiency into PEGylated liposomes and the chemosensitivity of MCF7 breast cancer cells to docetaxel. Heliyon 2019; 5(11)e02919
[http://dx.doi.org/10.1016/j.heliyon.2019.e02919]] [PMID: 31844767]
[41]
Lee J, Cho YJ, Lee J-W, Ahn HJ. KSP siRNA/paclitaxel-loaded PEGylated cationic liposomes for overcoming resistance to KSP inhibitors: Synergistic antitumor effects in drug-resistant ovarian cancer. J Control Release 2020; 321: 184-97.
[http://dx.doi.org/10.1016/j.jconrel.2020.02.013] [PMID: 32035195]
[42]
Shmeeda H, Mak L, Tzemach D, Astrahan P, Tarshish M, Gabizon A. Intracellular uptake and intracavitary targeting of folate-conjugated liposomes in a mouse lymphoma model with up-regulated folate receptors. Mol Cancer Ther 2006; 5(4): 818-24.
[http://dx.doi.org/10.1158/1535-7163.MCT-05-0543] [PMID: 16648551]
[43]
Duarte S, Faneca H, Lima MC. Folate-associated lipoplexes mediate efficient gene delivery and potent antitumoral activity in vitro and in vivo. Int J Pharm 2012; 423(2): 365-77.
[http://dx.doi.org/10.1016/j.ijpharm.2011.12.035] [PMID: 22209825]
[44]
Yang G, Yang T, Zhang W, Lu M, Ma X, Xiang G. In vitro and in vivo antitumor effects of folate-targeted ursolic acid stealth liposome. J Agric Food Chem 2014; 62(10): 2207-15.
[http://dx.doi.org/10.1021/jf405675g] [PMID: 24528163]
[45]
Soe ZC, Thapa RK, Ou W, et al. Folate receptor-mediated celastrol and irinotecan combination delivery using liposomes for effective chemotherapy. Colloids Surf B Biointerfaces 2018; 170: 718-28.
[http://dx.doi.org/10.1016/j.colsurfb.2018.07.013] [PMID: 30005409]
[46]
Handali S, Moghimipour E, Kouchak M, et al. New folate receptor targeted nano liposomes for delivery of 5-fluorouracil to cancer cells: Strong implication for enhanced potency and safety. Life Sci 2019; 227: 39-50.
[http://dx.doi.org/10.1016/j.lfs.2019.04.030] [PMID: 31002921]
[47]
Suzuki R, Takizawa T, Kuwata Y, et al. Effective anti-tumor activity of oxaliplatin encapsulated in transferrin-PEG-liposome. Int J Pharm 2008; 346(1-2): 143-50.
[http://dx.doi.org/10.1016/j.ijpharm.2007.06.010] [PMID: 17640835]
[48]
Lakkadwala S, Dos Santos Rodrigues B, Sun C, Singh J. Dual functionalized liposomes for efficient co-delivery of anti-cancer chemotherapeutics for the treatment of glioblastoma. J Control Release 2019; 307: 247-60.
[http://dx.doi.org/10.1016/j.jconrel.2019.06.033] [PMID: 31252036]
[49]
Mamot C, Drummond DC, Noble CO, et al. Epidermal growth factor receptor-targeted immunoliposomes significantly enhance the efficacy of multiple anticancer drugs in vivo. Cancer Res 2005; 65(24): 11631-8.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-1093] [PMID: 16357174]
[50]
Gao J, Yu Y, Zhang Y, et al. EGFR-specific PEGylated immunoliposomes for active siRNA delivery in hepatocellular carcinoma. Biomaterials 2012; 33(1): 270-82.
[http://dx.doi.org/10.1016/j.biomaterials.2011.09.035] [PMID: 21963149]
[51]
Lu X, Liu S, Han M, et al. Afatinib-loaded immunoliposomes functionalized with cetuximab: A novel strategy targeting the epidermal growth factor receptor for treatment of non-small-cell lung cancer. Int J Pharm 2019; 560: 126-35.
[http://dx.doi.org/10.1016/j.ijpharm.2019.02.001] [PMID: 30742982]
[52]
Eloy JO, Petrilli R, Chesca DL, Saggioro FP, Lee RJ, Marchetti JM. Anti-HER2 immunoliposomes for co-delivery of paclitaxel and rapamycin for breast cancer therapy. Eur J Pharm Biopharm 2017; 115: 159-67.
[http://dx.doi.org/10.1016/j.ejpb.2017.02.020] [PMID: 28257810]
[53]
Dumont N, Merrigan S, Turpin J, et al. Nanoliposome targeting in breast cancer is influenced by the tumor microenvironment. Nanomedicine (Lond) 2019; 17: 71-81.
[http://dx.doi.org/10.1016/j.nano.2018.12.010] [PMID: 30654182]
[54]
Dalla Pozza E, Lerda C, Costanzo C, et al. Targeting gemcitabine containing liposomes to CD44 expressing pancreatic adenocarcinoma cells causes an increase in the antitumoral activity. Biochim Biophys Acta 2013; 1828(5): 1396-404.
[http://dx.doi.org/10.1016/j.bbamem.2013.01.020] [PMID: 23384419]
[55]
Arabi L, Badiee A, Mosaffa F, Jaafari MR. Targeting CD44 expressing cancer cells with anti-CD44 monoclonal antibody improves cellular uptake and antitumor efficacy of liposomal doxorubicin. J Control Release 2015; 220(Pt A): 275-86..
[http://dx.doi.org/10.1016/j.jconrel.2015.10.044] [PMID: 26518722]
[56]
Paliwal SR, Paliwal R, Pal HC, et al. Estrogen-anchored pH-sensitive liposomes as nanomodule designed for site-specific delivery of doxorubicin in breast cancer therapy. Mol Pharm 2012; 9(1): 176-86.
[http://dx.doi.org/10.1021/mp200439z] [PMID: 22091702]
[57]
Tang H, Chen J, Wang L, et al. Co-delivery of epirubicin and paclitaxel using an estrone-targeted PEGylated liposomal nanoparticle for breast cancer. Int J Pharm 2020; 573118806
[http://dx.doi.org/10.1016/j.ijpharm.2019.118806]] [PMID: 31678519]
[58]
Dubey PK, Mishra V, Jain S, Mahor S, Vyas SP. Liposomes modified with cyclic RGD peptide for tumor targeting. J Drug Target 2004; 12(5): 257-64.
[http://dx.doi.org/10.1080/10611860410001728040] [PMID: 15512776]
[59]
Almeida AJ, Souto E. Solid lipid nanoparticles as a drug delivery system for peptides and proteins. Adv Drug Deliv Rev 2007; 59(6): 478-90.
[http://dx.doi.org/10.1016/j.addr.2007.04.007] [PMID: 17543416]
[60]
Lu Y, Qi J, Wu W. Chapter 20 - Lipid nanoparticles: In vitro and in vivo approaches in drug delivery and targetingGrumezescu AM, ed^eds, Drug Targeting and Stimuli Sensitive Drug Delivery Systems.William Andrew Publishing 2018; pp. 749-83.
[61]
Wong HL, Bendayan R, Rauth AM, Li Y, Wu XY. Chemotherapy with anticancer drugs encapsulated in solid lipid nanoparticles. Adv Drug Deliv Rev 2007; 59(6): 491-504.
[http://dx.doi.org/10.1016/j.addr.2007.04.008] [PMID: 17532091]
[62]
Das S, Chaudhury A. Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery. AAPS PharmSciTech 2011; 12(1): 62-76.
[http://dx.doi.org/10.1208/s12249-010-9563-0] [PMID: 21174180]
[63]
Mishra V, Bansal KK, Verma A, et al. Solid Lipid Nanoparticles: Emerging Colloidal Nano Drug Delivery Systems. Pharmaceutics 2018; 10(4): 191.
[http://dx.doi.org/10.3390/pharmaceutics10040191] [PMID: 30340327]
[64]
Cavalli R, Caputo O, Marengo E, Pattarino F, Gasco MR. The effect of the components of microemulsions on both size and crystalline structure of solid lipid nanoparticles (SLN) containing a series of model molecules. Pharmazie 1998; 53: 392-6.
[65]
Jenning V, Lippacher A, Gohla SH. Medium scale production of solid lipid nanoparticles (SLN) by high pressure homogenization. J Microencapsul 2002; 19(1): 1-10.
[http://dx.doi.org/10.1080/713817583] [PMID: 11811751]
[66]
Mehnert W, Mäder K. Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev 2001; 47(2-3): 165-96.
[http://dx.doi.org/10.1016/S0169-409X(01)00105-3] [PMID: 11311991]
[67]
Rodenak-Kladniew B, Islan GA, de Bravo MG, Durán N, Castro GR. Design, characterization and in vitro evaluation of linalool-loaded solid lipid nanoparticles as potent tool in cancer therapy. Colloids Surf B Biointerfaces 2017; 154: 123-32.
[http://dx.doi.org/10.1016/j.colsurfb.2017.03.021] [PMID: 28334689]
[68]
Wang W, Chen T, Xu H, et al. Curcumin-Loaded Solid Lipid Nanoparticles Enhanced Anticancer Efficiency in Breast Cancer. Molecules 2018; 23(7): 1578.
[http://dx.doi.org/10.3390/molecules23071578] [PMID: 29966245]
[69]
Zhuang YG, Xu B, Huang F, Wu JJ, Chen S. Solid lipid nanoparticles of anticancer drugs against MCF-7 cell line and a murine breast cancer model. Pharmazie 2012; 67(11): 925-9.
[PMID: 23210242]
[70]
Wang J-X, Sun X, Zhang Z-R. Enhanced brain targeting by synthesis of 3′,5′-dioctanoyl-5-fluoro-2′-deoxyuridine and incorporation into solid lipid nanoparticles. Eur J Pharm Biopharm 2002; 54(3): 285-90.
[http://dx.doi.org/10.1016/S0939-6411(02)00083-8] [PMID: 12445558]
[71]
Fundarò A, Cavalli R, Bargoni A, Vighetto D, Zara GP, Gasco MR. Non-stealth and stealth solid lipid nanoparticles (SLN) carrying doxorubicin: pharmacokinetics and tissue distribution after i.v. administration to rats. Pharmacol Res 2000; 42(4): 337-43.
[http://dx.doi.org/10.1006/phrs.2000.0695] [PMID: 10987994]
[72]
Chen DB, Yang TZ, Lu WL, Zhang Q. In vitro and in vivo study of two types of long-circulating solid lipid nanoparticles containing paclitaxel. Chem Pharm Bull (Tokyo) 2001; 49(11): 1444-7.
[http://dx.doi.org/10.1248/cpb.49.1444] [PMID: 11724235]
[73]
Tran TH, Choi JY, Ramasamy T, et al. Hyaluronic acid-coated solid lipid nanoparticles for targeted delivery of vorinostat to CD44 overexpressing cancer cells. Carbohydr Polym 2014; 114: 407-15.
[http://dx.doi.org/10.1016/j.carbpol.2014.08.026] [PMID: 25263908]
[74]
Kadari A, Pooja D, Gora RH, et al. Design of multifunctional peptide collaborated and docetaxel loaded lipid nanoparticles for antiglioma therapy. Eur J Pharm Biopharm 2018; 132: 168-79.
[http://dx.doi.org/10.1016/j.ejpb.2018.09.012] [PMID: 30244167]
[75]
Wang P, Zhang L, Peng H, Li Y, Xiong J, Xu Z. The formulation and delivery of curcumin with solid lipid nanoparticles for the treatment of on non-small cell lung cancer both in vitro and in vivo. Mater Sci Eng C 2013; 33(8): 4802-8.
[http://dx.doi.org/10.1016/j.msec.2013.07.047] [PMID: 24094190]
[76]
Athawale RB, Jain DS, Singh KK, Gude RP. Etoposide loaded solid lipid nanoparticles for curtailing B16F10 melanoma colonization in lung. Biomed Pharmacother 2014; 68(2): 231-40.
[http://dx.doi.org/10.1016/j.biopha.2014.01.004] [PMID: 24560352]
[77]
Garanti T, Stasik A, Burrow AJ, Alhnan MA, Wan K-W. Anti-glioma activity and the mechanism of cellular uptake of asiatic acid-loaded solid lipid nanoparticles. Int J Pharm 2016; 500(1-2): 305-15.
[http://dx.doi.org/10.1016/j.ijpharm.2016.01.018] [PMID: 26775062]
[78]
Soni N, Soni N, Pandey H, Maheshwari R, Kesharwani P, Tekade RK. Augmented delivery of gemcitabine in lung cancer cells exploring mannose anchored solid lipid nanoparticles. J Colloid Interface Sci 2016; 481: 107-16.
[http://dx.doi.org/10.1016/j.jcis.2016.07.020] [PMID: 27459173]
[79]
Guney Eskiler G, Cecener G, Dikmen G, Egeli U, Tunca B. Solid lipid nanoparticles: Reversal of tamoxifen resistance in breast cancer. Eur J Pharm Sci 2018; 120: 73-88.
[http://dx.doi.org/10.1016/j.ejps.2018.04.040] [PMID: 29719240]
[80]
Radhakrishnan R, Pooja D, Kulhari H, et al. Bombesin conjugated solid lipid nanoparticles for improved delivery of epigallocatechin gallate for breast cancer treatment. Chem Phys Lipids 2019; 224104770
[http://dx.doi.org/10.1016/j.chemphyslip.2019.04.005]] [PMID: 30965023]
[81]
Senthil Kumar C, Thangam R, Mary SA, Kannan PR, Arun G, Madhan B. Targeted delivery and apoptosis induction of trans-resveratrol-ferulic acid loaded chitosan coated folic acid conjugate solid lipid nanoparticles in colon cancer cells. Carbohydr Polym 2020; 231115682
[http://dx.doi.org/10.1016/j.carbpol.2019.115682]] [PMID: 31888816]
[82]
Affram KO, Smith T, Ofori E, et al. Cytotoxic effects of gemcitabine-loaded solid lipid nanoparticles in pancreatic cancer cells. J Drug Deliv Sci Technol 2020; 55101374
[http://dx.doi.org/10.1016/j.jddst.2019.101374]] [PMID: 31903101]
[83]
Fang CL, Al-Suwayeh SA, Fang JY. Nanostructured lipid carriers (NLCs) for drug delivery and targeting. Recent Pat Nanotechnol 2013; 7(1): 41-55.
[http://dx.doi.org/10.2174/187221013804484827] [PMID: 22946628]
[84]
Schäfer-Korting M, Mehnert W, Korting H-C. Lipid nanoparticles for improved topical application of drugs for skin diseases. Adv Drug Deliv Rev 2007; 59(6): 427-43.
[http://dx.doi.org/10.1016/j.addr.2007.04.006] [PMID: 17544165]
[85]
Rosenblatt KM, Bunjes H. Poly(vinyl alcohol) as emulsifier stabilizes solid triglyceride drug carrier nanoparticles in the α-modification. Mol Pharm 2009; 6(1): 105-20.
[http://dx.doi.org/10.1021/mp8000759] [PMID: 19049318]
[86]
Gu X, Zhang W, Liu J, et al. Preparation and characterization of a lovastatin-loaded protein-free nanostructured lipid carrier resembling high-density lipoprotein and evaluation of its targeting to foam cells. AAPS PharmSciTech 2011; 12(4): 1200-8.
[http://dx.doi.org/10.1208/s12249-011-9668-0] [PMID: 21927961]
[87]
Iqbal MA, Md S, Sahni JK, Baboota S, Dang S, Ali J. Nanostructured lipid carriers system: recent advances in drug delivery. J Drug Target 2012; 20(10): 813-30.
[http://dx.doi.org/10.3109/1061186X.2012.716845] [PMID: 22931500]
[88]
Fernandes RS, Silva JO, Monteiro LOF, et al. Doxorubicin-loaded nanocarriers: A comparative study of liposome and nanostructured lipid carrier as alternatives for cancer therapy. Biomed Pharmacother 2016; 84: 252-7.
[http://dx.doi.org/10.1016/j.biopha.2016.09.032] [PMID: 27664949]
[89]
Taymouri S, Alem M, Varshosaz J, Rostami M, Akbari V, Firoozpour L. Biotin decorated sunitinib loaded nanostructured lipid carriers for tumor targeted chemotherapy of lung cancer. J Drug Deliv Sci Technol 2019; 50: 237-47.
[http://dx.doi.org/10.1016/j.jddst.2019.01.024]
[90]
Qu CY, Zhou M, Chen YW, Chen MM, Shen F, Xu LM. Engineering of lipid prodrug-based, hyaluronic acid-decorated nanostructured lipid carriers platform for 5-fluorouracil and cisplatin combination gastric cancer therapy. Int J Nanomedicine 2015; 10: 3911-20.
[PMID: 26089667]
[91]
Guo S, Zhang Y, Wu Z, et al. Synergistic combination therapy of lung cancer: Cetuximab functionalized nanostructured lipid carriers for the co-delivery of paclitaxel and 5-Demethylnobiletin. Biomed Pharmacother 2019; 118109225
[http://dx.doi.org/10.1016/j.biopha.2019.109225]] [PMID: 31325705]
[92]
Zhang XY, Qiao H, Ni JM, Shi YB, Qiang Y. Preparation of isoliquiritigenin-loaded nanostructured lipid carrier and the in vivo evaluation in tumor-bearing mice. Eur J Pharm Sci 2013; 49(3): 411-22.
[http://dx.doi.org/10.1016/j.ejps.2013.04.020] [PMID: 23624327]
[93]
Negi LM, Talegaonkar S, Jaggi M, et al. Surface engineered nanostructured lipid carriers for targeting MDR tumor: Part I. Synthesis, characterization and in vitro investigation. Colloids Surf B Biointerfaces 2014; 123: 600-9.
[http://dx.doi.org/10.1016/j.colsurfb.2014.09.062] [PMID: 25454761]
[94]
Zhao X, Tang D, Yang T, Wang C. Facile preparation of biocompatible nanostructured lipid carrier with ultra-small size as a tumor-penetration delivery system. Colloids Surf B Biointerfaces 2018; 170: 355-63.
[http://dx.doi.org/10.1016/j.colsurfb.2018.06.017] [PMID: 29940502]
[95]
Pedro IDR, Almeida OP, Martins HR. Lemos JdA, Branco de Barros AL, Leite EA, Carneiro G. Optimization and in vitro/in vivo performance of paclitaxel-loaded nanostructured lipid carriers for breast cancer treatment. J Drug Deliv Sci Technol 2019; 54101370
[http://dx.doi.org/10.1016/j.jddst.2019.101370]]
[96]
Poonia N, Kaur Narang J, Lather V, et al. Resveratrol loaded functionalized nanostructured lipid carriers for breast cancer targeting: Systematic development, characterization and pharmacokinetic evaluation. Colloids Surf B Biointerfaces 2019; 181: 756-66.
[http://dx.doi.org/10.1016/j.colsurfb.2019.06.004] [PMID: 31234063]
[97]
Zhang Q, Zhao J, Hu H, et al. Construction and in vitro and in vivo evaluation of folic acid-modified nanostructured lipid carriers loaded with paclitaxel and chlorin e6. Int J Pharm 2019; 569118595
[http://dx.doi.org/10.1016/j.ijpharm.2019.118595]] [PMID: 31394189]
[98]
Banerjee P, Geng T, Mahanty A, Li T, Zong L, Wang B. Integrating the drug, disulfiram into the vitamin E-TPGS-modified PEGylated nanostructured lipid carriers to synergize its repurposing for anti-cancer therapy of solid tumors. Int J Pharm 2019; 557: 374-89.
[http://dx.doi.org/10.1016/j.ijpharm.2018.12.051] [PMID: 30610896]
[99]
Kharkar PB, Talkar SS, Patravale VB. An industrially viable technique for fabrication of docetaxel NLCs for oncotherapy. Int J Pharm 2020; 577119082
[http://dx.doi.org/10.1016/j.ijpharm.2020.119082]] [PMID: 31988031]
[100]
Arcamone F, Cassinelli G, Fantini G, et al. Adriamycin, 14-hydroxydaunomycin, a new antitumor antibiotic from S. peucetius var. caesius. Biotechnol Bioeng 1969; 11(6): 1101-10.
[http://dx.doi.org/10.1002/bit.260110607] [PMID: 5365804]
[101]
Weber-Schöndorfer C, Schaefer C. Antineoplastic drugsSchaefer C,Peters P, Miller RK, ed^eds,. Drugs During Pregnancy and Lactation (Second Edition). Academic Press: Oxford. 2007; pp. 335-67.
[102]
Thorn CF, Oshiro C, Marsh S, et al. Doxorubicin pathways: pharmacodynamics and adverse effects. Pharmacogenet Genomics 2011; 21(7): 440-6.
[http://dx.doi.org/10.1097/FPC.0b013e32833ffb56] [PMID: 21048526]
[103]
Gewirtz DA. A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem Pharmacol 1999; 57(7): 727-41.
[http://dx.doi.org/10.1016/S0006-2952(98)00307-4] [PMID: 10075079]
[104]
Volkova M, Russell R III. Anthracycline cardiotoxicity: prevalence, pathogenesis and treatment. Curr Cardiol Rev 2011; 7(4): 214-20.
[http://dx.doi.org/10.2174/157340311799960645] [PMID: 22758622]
[105]
Weiss AJ, Manthel RW. Experience with the use of adriamycin in combination with other anticancer agents using a weekly schedule, with particular reference to lack of cardiac toxicity. Cancer 1977; 40(5): 2046-52.
[http://dx.doi.org/10.1002/1097-0142(197711)40:5<2046:AID-CNCR2820400508>3.0.CO;2-5] [PMID: 336177]
[106]
Geisberg CA, Sawyer DB. Mechanisms of anthracycline cardiotoxicity and strategies to decrease cardiac damage. Curr Hypertens Rep 2010; 12(6): 404-10.
[http://dx.doi.org/10.1007/s11906-010-0146-y] [PMID: 20842465]
[107]
Barenholz Y. Doxil®-the first FDA-approved nano-drug: lessons learned. J Control Release 2012; 160(2): 117-34.
[http://dx.doi.org/10.1016/j.jconrel.2012.03.020] [PMID: 22484195]
[108]
Soundararajan A, Bao A, Phillips WT, Perez R III, Goins BA. [(186)Re]Liposomal doxorubicin (Doxil): in vitro stability, pharmacokinetics, imaging and biodistribution in a head and neck squamous cell carcinoma xenograft model. Nucl Med Biol 2009; 36(5): 515-24.
[http://dx.doi.org/10.1016/j.nucmedbio.2009.02.004] [PMID: 19520292]
[109]
Wang R, Billone PS, Mullett WM. Nanomedicine in Action: An Overview of Cancer Nanomedicine on the Market and in Clinical Trials. J Nanomater 2013; 2013: 12.
[http://dx.doi.org/10.1155/2013/629681]
[110]
Bulbake U, Doppalapudi S, Kommineni N, Khan W. Liposomal Formulations in Clinical Use: An Updated Review. Pharmaceutics 2017; 9(2): 12.
[http://dx.doi.org/10.3390/pharmaceutics9020012] [PMID: 28346375]
[111]
Gabizon A, Catane R, Uziely B, et al. Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes. Cancer Res 1994; 54(4): 987-92.
[PMID: 8313389]
[112]
Chou H, Lin H, Liu JM. A tale of the two PEGylated liposomal doxorubicins. OncoTargets Ther 2015; 8: 1719-20.
[PMID: 26203262]
[113]
Burade V, Bhowmick S, Maiti K, Zalawadia R, Ruan H, Thennati R. Lipodox® (generic doxorubicin hydrochloride liposome injection): in vivo efficacy and bioequivalence versus Caelyx® (doxorubicin hydrochloride liposome injection) in human mammary carcinoma (MX-1) xenograft and syngeneic fibrosarcoma (WEHI 164) mouse models. BMC Cancer 2017; 17(1): 405-5.
[http://dx.doi.org/10.1186/s12885-017-3377-3] [PMID: 28587612]
[114]
Pillai G, Ceballos-Coronel ML. Science and technology of the emerging nanomedicines in cancer therapy: A primer for physicians and pharmacists. SAGE Open Med 2013; 1 2050312113513759
[http://dx.doi.org/10.1177/2050312113513759] [PMID: 26770691]
[115]
Batist G, Ramakrishnan G, Rao CS, et al. Reduced cardiotoxicity and preserved antitumor efficacy of liposome-encapsulated doxorubicin and cyclophosphamide compared with conventional doxorubicin and cyclophosphamide in a randomized, multicenter trial of metastatic breast cancer. J Clin Oncol 2001; 19(5): 1444-54.
[http://dx.doi.org/10.1200/JCO.2001.19.5.1444] [PMID: 11230490]
[116]
Chan S, Davidson N, Juozaityte E, et al. Phase III trial of liposomal doxorubicin and cyclophosphamide compared with epirubicin and cyclophosphamide as first-line therapy for metastatic breast cancer. Ann Oncol 2004; 15(10): 1527-34.
[http://dx.doi.org/10.1093/annonc/mdh393] [PMID: 15367414]
[117]
Praça FSG, Marinho HS, Martins MBF, Gaspar R, Corvo ML, Medina WSG. Chapter 27 - Current aspects of breast cancer therapy and diagnosis based on a nanocarrier approach Ficai A, Grumezescu AM, ed^eds,; Nanostructures for Cancer Therapy Elsevier. 2017. 749-74
[118]
Swenson CE, Perkins WR, Roberts P, Janoff AS. Liposome technology and the development of Myocet™ (liposomal doxorubicin citrate). Breast 2001; 10: 1-7.
[http://dx.doi.org/10.1016/S0960-9776(01)80001-1]
[119]
Mross K, Niemann B, Massing U, et al. Pharmacokinetics of liposomal doxorubicin (TLC-D99; Myocet) in patients with solid tumors: an open-label, single-dose study. Cancer Chemother Pharmacol 2004; 54(6): 514-24.
[http://dx.doi.org/10.1007/s00280-004-0825-y] [PMID: 15322827]
[120]
Hofheinz RD, Gnad-Vogt SU, Beyer U, Hochhaus A. Liposomal encapsulated anti-cancer drugs. Anticancer Drugs 2005; 16(7): 691-707.
[http://dx.doi.org/10.1097/01.cad.0000167902.53039.5a] [PMID: 16027517]
[121]
Bĕhal V. Bioactive products from Streptomyces. Adv Appl Microbiol 2000; 47: 113-56.
[http://dx.doi.org/10.1016/S0065-2164(00)47003-6] [PMID: 12876796]
[122]
Simůnek T, Stérba M, Popelová O, Adamcová M, Hrdina R, Geršl V. Anthracycline-induced cardiotoxicity: overview of studies examining the roles of oxidative stress and free cellular iron. Pharmacol Rep 2009; 61(1): 154-71.
[http://dx.doi.org/10.1016/S1734-1140(09)70018-0] [PMID: 19307704]
[123]
O’Byrne KJ, Thomas AL, Sharma RA, et al. A phase I dose-escalating study of DaunoXome, liposomal daunorubicin, in metastatic breast cancer. Br J Cancer 2002; 87(1): 15-20.
[http://dx.doi.org/10.1038/sj.bjc.6600344] [PMID: 12085249]
[124]
Sparano JA, Winer EP. Liposomal anthracyclines for breast cancer. Semin Oncol 2001; 28(4)(Suppl. 12): 32-40.
[http://dx.doi.org/10.1053/sonc.2001.26436] [PMID: 11552228]
[125]
Forssen EA, Coulter DM, Proffitt RT. Selective in vivo localization of daunorubicin small unilamellar vesicles in solid tumors. Cancer Res 1992; 52(12): 3255-61.
[PMID: 1596882]
[126]
Fumagalli L, Zucchetti M, Parisi I, et al. The pharmacokinetics of liposomal encapsulated daunorubicin are not modified by HAART in patients with HIV-associated Kaposi’s sarcoma. Cancer Chemother Pharmacol 2000; 45(6): 495-501.
[http://dx.doi.org/10.1007/s002800051025] [PMID: 10854138]
[127]
Kwok KK, Vincent EC, Gibson JN. 6 - Antineoplastic DrugsDowd FJ, Johnson BS, Mariotti AJ, ed^eds,. Pharmacology and Therapeutics for Dentistry (Seventh Edition) Mosby. 2017; pp. 530-62.
[128]
Murry DJ, Blaney SM. Clinical pharmacology of encapsulated sustained-release cytarabine. Ann Pharmacother 2000; 34(10): 1173-8.
[http://dx.doi.org/10.1345/aph.19347] [PMID: 11054987]
[129]
Angst MS, Drover DR. Pharmacology of drugs formulated with DepoFoam: a sustained release drug delivery system for parenteral administration using multivesicular liposome technology. Clin Pharmacokinet 2006; 45(12): 1153-76.
[http://dx.doi.org/10.2165/00003088-200645120-00002] [PMID: 17112293]
[130]
Kim S, Chatelut E, Kim JC, et al. Extended CSF cytarabine exposure following intrathecal administration of DTC 101. J Clin Oncol 1993; 11(11): 2186-93.
[http://dx.doi.org/10.1200/JCO.1993.11.11.2186] [PMID: 8229133]
[131]
Glantz MJ, Jaeckle KA, Chamberlain MC, et al. A randomized controlled trial comparing intrathecal sustained-release cytarabine (DepoCyt) to intrathecal methotrexate in patients with neoplastic meningitis from solid tumors. Clin Cancer Res 1999; 5(11): 3394-402.
[PMID: 10589750]
[132]
Silverman JA, Deitcher SR. Marqibo® (vincristine sulfate liposome injection) improves the pharmacokinetics and pharmacodynamics of vincristine. Cancer Chemother Pharmacol 2013; 71(3): 555-64.
[http://dx.doi.org/10.1007/s00280-012-2042-4] [PMID: 23212117]
[133]
Bates D, Eastman A. Microtubule destabilising agents: far more than just antimitotic anticancer drugs. Br J Clin Pharmacol 2017; 83(2): 255-68.
[http://dx.doi.org/10.1111/bcp.13126] [PMID: 27620987]
[134]
Martino E, Casamassima G, Castiglione S, et al. Vinca alkaloids and analogues as anti-cancer agents: Looking back, peering ahead. Bioorg Med Chem Lett 2018; 28(17): 2816-26.
[http://dx.doi.org/10.1016/j.bmcl.2018.06.044] [PMID: 30122223]
[135]
Johnston MJW, Semple SC, Klimuk SK, et al. Therapeutically optimized rates of drug release can be achieved by varying the drug-to-lipid ratio in liposomal vincristine formulations. Biochim Biophys Acta 2006; 1758(1): 55-64.
[http://dx.doi.org/10.1016/j.bbamem.2006.01.009] [PMID: 16487476]
[136]
Zhigaltsev IV, Maurer N, Akhong Q-F, et al. Liposome-encapsulated vincristine, vinblastine and vinorelbine: a comparative study of drug loading and retention. J Control Release 2005; 104(1): 103-11.
[http://dx.doi.org/10.1016/j.jconrel.2005.01.010] [PMID: 15866338]
[137]
Rodriguez MA, Pytlik R, Kozak T, et al. Marqibo Investigators. Vincristine sulfate liposomes injection (Marqibo) in heavily pretreated patients with refractory aggressive non-Hodgkin lymphoma: report of the pivotal phase 2 study. Cancer 2009; 115(15): 3475-82.
[http://dx.doi.org/10.1002/cncr.24359] [PMID: 19536896]
[138]
Fujita K, Kubota Y, Ishida H, Sasaki Y. Irinotecan, a key chemotherapeutic drug for metastatic colorectal cancer. World J Gastroenterol 2015; 21(43): 12234-48.
[http://dx.doi.org/10.3748/wjg.v21.i43.12234] [PMID: 26604633]
[139]
Drummond DC, Noble CO, Guo Z, Hong K, Park JW, Kirpotin DB. Development of a highly active nanoliposomal irinotecan using a novel intraliposomal stabilization strategy. Cancer Res 2006; 66(6): 3271-7.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-4007] [PMID: 16540680]
[140]
Wang-Gillam A, Li C-P, Bodoky G, et al. NAPOLI-1 Study Group. Nanoliposomal irinotecan with fluorouracil and folinic acid in metastatic pancreatic cancer after previous gemcitabine-based therapy (NAPOLI-1): a global, randomised, open-label, phase 3 trial. Lancet 2016; 387(10018): 545-57.
[http://dx.doi.org/10.1016/S0140-6736(15)00986-1] [PMID: 26615328]