Cancer is the second leading cause of death globally, with every sixth death being attributable to cancer. Nevertheless, the efficacy of conventional chemotherapeutic drugs is often limited due to their poor solubility, unfavorable pharmacokinetic profile, and lack of tumor selectivity. The use of nanotechnology provides an opportunity to enhance the efficacy of a chemotherapeutic drug by improving its bioavailability and pharmacokinetic profile while facilitating preferential accumulation at the tumor tissue. To date, a variety of platforms have been investigated as nanocarriers in oncology, which include lipid-based, polymer-based, inorganic materials, and even viruses. Among different nanocarriers, lipid-based delivery systems have been extensively used in oncology because of their biocompatibility, biodegradability, ability to encapsulate diverse drug molecules, high temporal and thermal stability, and offer prolonged and controlled drug release. This review discusses the current status of the lipid-based nanocarriers and their applications in cancer treatment as well as an overview of the different liposomal formulations commercially available for cancer therapy.
Keywords: Cancer, chemotherapeutics, drug delivery, liposomes, nanostructured lipid carriers, solid lipid nanoparticles, targeted drug delivery.