[2]
Kokel, A.; Schäfer, C.; Török, B. Microwave-assisted reactions in green chemistry. In:Green Chemistry and Chemical Engineering; Springer: New York, 2019.
[5]
Cintas, P.; Veronesi, P.; Leonelli, C.; Keglevich, G.; Mucsi, Z.; Radoiu, M.; Ano, T. Microwave Chemistry; Cravotto, G; Carnaroglio, D., Ed.; DeGruyter: Berlin, 2017, pp. 1-3.
[9]
Anastas, P.T.; Warner, J.C. Green Chemistry, Theory and Practice; Oxford University Press: Oxford, 1998.
[19]
Lambat, T.L.; Deo, S.S. Synthesis of novel benzofluorenone derivatives and their HIV reverse transcriptase inhibitor activity. J. Chin. Adv. Mat. Soc., 2017, 5(1), 20-32.
[36]
Lambat, T.L.; Deo, S.S.; Deshmukh, T.B. Sulphamic acid assisted synthesis of polyhydroquinolines via the Hantzsch multicomponent reaction: a green approach. J. Chem. Pharm. Res., 2014, 6(4), 888-892.
[37]
Deo, S.; Inam, F.; Kadam, N.; Lambat, T.L. Applications of thermal and microwave-assisted synthesis of xanthone derivative: new methodology. IJIER, 2014, 2(4), 88-96.
[38]
Lambat, T.L.; Deo, S.S. Sulphamic acid: an efficient and green synthesis of 2-[3-4-(3-chlorophenyl)-1-piperazinyl propyl]-1, 2, 4-triazolo [4, 3-a] pyridine-3- (2H)-one hydrochloride and its derivatives. Der Phar. Lett., 2014, 6(3), 218-224.
[94]
Qin, J.; Li, Z.; Sun, X.; Jin, Y.; Su, W. Fast, solvent-free, and highly efficient synthesis of pyrazolo[3,4-b]pyridines using microwave irradiation and KHSO4 as a reusable green catalyst. Heterocycles, 2019, 96, 1408-1422.
[95]
Ramírez, J.R.; Caballero, R.; Guerra, J.; Carretero, A.R.; Migallón, A.S.; de la Hoz, A. Solvent-free microwave assisted synthesis of 2,5-dimethoxyphenylaminotriazines. ACS Sustain. Chem.& Eng., 2015, 3, 3405-3411.
[104]
Mohamed, S.S.; Sadawi, I.A.A.; Gbaj, M.A. Microwave assisted synthesis and antimicrobial evaluation of symmetrical 1,2-phenylenediamine Schiff’s base derivatives. Pharm. Pharmacol. Int. J., 2018, 6(5), 344-348.