Synthesis and Reactions of Perimidines and Their Fused Systems

Page: [1669 - 1716] Pages: 48

  • * (Excluding Mailing and Handling)

Abstract

Perimidines are peri-naphtho-fused derivatives of pyrimidine. They are of particular interest as they are a rare example of an azine in which the lone pair of electrons of pyrrole-like nitrogen participates in the π-system of the molecule. Perimidine is an interesting class of heterocyclic compounds. Various synthetic analogs of perimidines have been prepared and evaluated for many pharmacological activities in different models with desired findings. They exhibit biological activities as antitumor, antiulcer, antimicrobial, and antifungal agents. This review is an attempt to organize the synthesis and chemical reactions of perimidine analogs reported to date systematically since 1955. It should be noted that this review is the first one that includes the preparation and reactions of the perimidine ring.

Keywords: Perimidines, fused perimidines, 1, 8-diaminonaphthalene, synthesis, biological activities, pyrimidine.

Graphical Abstract

[1]
Smellie, I.A.S.; Fromm, A.; Moggach, S.A.; Paton, R.M. Synthesis and structure of 2-pyransoylperimidines. Carbohydr. Res., 2011, 346(1), 43-49.
[http://dx.doi.org/10.1016/j.carres.2010.09.028] [PMID: 21078510]
[2]
Pozharskii, A.F.; Dal’nikovskaya, V.V. 2-(2-Hy-droxy-3-meth-oxy-phen-yl)-6H-perimidin-6-one. Russ. Chem. Rev., 1981, 50, 816-835.
[http://dx.doi.org/10.1070/RC1981v050n09ABEH002688]
[3]
Aksenov, A.V.; Aksenova, I.V.; Lyakhovnenko, A.S.; Aksenov, N.A.; Soedin, K.G. Synthesis of 1,3-diazapyrenes and 1,3,7-triazapyrenes by the reaction of 1,8-naphthalenediamine with triazine in the presence of carbonyl compounds or benzonitrile in polyphosphoric acid. Chem. Heterocyclic. Compd., 2008, 44, 1379-1389.
[http://dx.doi.org/10.1007/s10593-009-0192-z]
[4]
Claramunt, R.M.; Elguero, D.J. Structural and mechanistic insights of substituted perimidine- experimental and computational studies. J. Ann. Quim., 1993, 91, 151-183.
[5]
Undheim, K.; Benneche, C. Comprehensive Heterocyclic Chemistry II; Pergamon Press: Oxford, 1986.
[6]
Farghaly, T.A.; Mahmoud, H.K. Site- and regioselectivity of the reaction of hydrazonoyl chlorides with perimidine ketene aminal. antimicrobial evaluation of the products. J. Heterocycl. Chem., 2015, 52, 86-91.
[http://dx.doi.org/10.1002/jhet.1985]
[7]
Lin, Y.; Zhongyan, L.; Guokai, J.; Min, Z.; Xianyo, Y. Synthesis an biological activity of perimidine derivatives. Chines J. App. Chem., 2017, 34, 685-692.
[8]
Zhang, H.J.; Wang, X.Z.; Cao, Q.; Gong, G.H.; Quan, Z.S. Design, synthesis, anti-inflammatory activity, and molecular docking studies of perimidine derivatives containing triazole. Bioorg. Med. Chem. Lett., 2017, 27(18), 4409-4414.
[http://dx.doi.org/10.1016/j.bmcl.2017.08.014] [PMID: 28823493]
[9]
Bran, M.; Garrido, M.; Rodriguez, M.L.; Morcillo, M.; Alvarez, Y.; Valladares, Y. Synthesis, structure and cytostatic activity of a series of 2-substituted perimidines. Eur. J. Med. Chem., 1990, 25, 209-215.
[http://dx.doi.org/10.1016/0223-5234(90)90203-F]
[10]
Wasulko, W.; Noble, A.C.; Popp, F.D. Synthesis of potential antineoplastic agents. XIV. Some 2-substituted 2,3-dihydro-1h-perimidines. J. Med. Chem., 1966, 9(4), 599-601.
[http://dx.doi.org/10.1021/jm00322a035] [PMID: 4165378]
[11]
Arya, K.; Dandia, A. Regioselective synthesis of biologically important scaffold spiro [indole- perimidines]: an antitumor agents. Lett. Org. Chem., 2007, 4, 378-383.
[http://dx.doi.org/10.2174/157017807781212175]
[12]
Farghaly, T.A.; Abdallah, M.A.; Muhammad, Z.A. New 2-heterocyclic perimidines: synthesis and antimicrobial activity. Res. Chem. Intermed., 2015, 41, 3937-3947.
[http://dx.doi.org/10.1007/s11164-013-1501-9]
[13]
Woodgate, P.D.; Herbert, J.M.; Denny, W.A. The preparation of pyrido[4,3,2-de]quinazoline and pyrido[3,4,5-de]quinazoline. Heterocycles, 1987, 26, 1029-1036.
[http://dx.doi.org/10.3987/R-1987-04-1029]
[14]
Alkorta, I.; Blanco, F.; Claramunt, R.M. The azido-tetrazole and diazo-1,2,3-triazole tautomerism in six-membered heteroaromatic rings and their relationships with aromaticity: azines and perimidine. Tetrahedron, 2010, 66, 2863-2868.
[http://dx.doi.org/10.1016/j.tet.2010.02.035]
[15]
Kobrakov, K.I.S.; Zubkova, N.; Stanevich, G.G.; Shestakova, Y.S.; Stroganov, V.S.; Androv, O.I. New aroyleneimidazoles as dyes for thermoplastic polymeric materials. Fibre Chem., 2006, 38, 183-187.
[http://dx.doi.org/10.1007/s10692-006-0066-4]
[16]
Goswami, S.; Sen, D.; Das, N.K. A new highly selective, ratiometric and colorimetric fluorescence sensor for Cu2+ with a remarkable red shift in absorption and emission spectra based on internal charge transfer. Org. Lett., 2010, 12(4), 856-859.
[http://dx.doi.org/10.1021/ol9029066] [PMID: 20104900]
[17]
Roy, D.; Chakraborty, A.; Ghosh, R. Perimidine based selective colorimetric and fluorescent turn-off chemosensor of aqueous Cu2+: studies on its antioxidant property along with its interaction with calf thymus-DNA. Res. Soci. Chem. Adv., 2017, 7, 40563-40570.
[http://dx.doi.org/10.1039/C7RA06687B]
[18]
Wang, W.L.; Yang, D.L.; Gao, L.X.; Tang, C.L.; Ma, W.P.; Ye, H.H.; Zhang, S.Q.; Zhao, Y.N.; Xu, H.J.; Hu, Z.; Chen, X.; Fan, W.H.; Chen, H.J.; Li, J.Y.; Nan, F.J.; Li, J.; Feng, B. 1H-2,3-dihydroperimidine derivatives: a new class of potent protein tyrosine phosphatase 1B inhibitors. Molecules, 2013, 19(1), 102-121.
[http://dx.doi.org/10.3390/molecules19010102] [PMID: 24366088]
[19]
Morita, Y.; Suzuki, S.; Fukui, K.; Nakazawa, S.; Kitagawa, H.; Kishida, H.; Okamoto, H.; Naito, A.; Sekine, A.; Ohashi, Y.; Shiro, M.; Sasaki, K.; Shiomi, D.; Sato, K.; Takui, T.; Nakasuji, K. Thermochromism in an organic crystal based on the coexistence of sigma- and pi-dimers. Nat. Mater., 2008, 7(1), 48-51.
[http://dx.doi.org/10.1038/nmat2067] [PMID: 18059277]
[20]
Morita, Y.; Aoki, T.; Fukui, K.; Nakazawa, S.; Tamaki, K.; Suzuki, S.; Fuyuhiro, A.; Yamamoto, K.; Sato, K.; Shiomi, D.; Naito, A.; Takui, T.; Nakasuji, K. A new trend in phenalenyl chemistry: a persistent neutral radical, 2,5,8-tri-tert-butyl-1,3-diazaphenalenyl, and the excited triplet state of the gable syn-dimer in the crystal of column motif. Angew. Chem. Int. Ed. Engl., 2002, 41(10), 1793-1796.
[http://dx.doi.org/10.1002/1521-3773(20020517)41:10<1793::AIDANIE1793>3.0.CO;2-G] [PMID: 19750720]
[21]
Borovlev, I.V.; Aksenov, A.V.; Aksenova, I.V.; Pisarenko, S.V. 1,3,7-Triazapyrenes: the unexpected products of the reaction of 1,8-diaminonaphthalene with 1,3,5-triazines in polyphosphoric acid. Russ. Chem. Bull. Int. Ed., 2007, 56, 2354-2355.
[http://dx.doi.org/10.1007/s11172-007-0373-9]
[22]
Aksenova, I.V.; Lyakhovnenko, A.S.; Aksenov, A.V.; Borolvlev, I.V. Synthesis of 1,3-diazapyrenes by vinylformylation of perimidines. Russ. J. Gen. Chem., 2007, 77, 1650-1651.
[http://dx.doi.org/10.1134/S1070363207090277]
[23]
Aksenov, A.V.; Borovlev, I.V.; Aksenova, I.V.; Pisarenko, S.V.; Kovalev, D.A. A new method for [c,d]pyridine peri-annelation: synthesis of azapyrenes from phenalenes and their dihydro derivatives. Tetrahedron Lett., 2008, 49, 707-709.
[http://dx.doi.org/10.1016/j.tetlet.2007.11.132]
[24]
Aksenova, I.V.; Lyakhovnenko, A.S.; Aksenov, A.V.; Ndein, O.N. Novel three-component peri-annelation reactions of carbocyclic and pyridine rings with perimidines-synthesis of 1,3-diazapyrenes and 1,3,7-triazapyrenes. Tetrahedron Lett., 2008, 49, 1808-1811.
[http://dx.doi.org/10.1016/j.tetlet.2008.01.064]
[25]
Aksenova, I.V.; Aksenov, A.V.; Lyakhovnenko, A.S. Unexpected result of the reaction of perimidines with 1,3,5-triazine in the presence of sodium nitrite. Chem. Heterocycl. Compd. Eglish Transl., 2008, 44, 765-766.
[http://dx.doi.org/10.1007/s10593-008-0095-4]
[26]
Aksenov, A.V.; Borovlev, I.V.; Aksenova, I.V.; Lobach, D.A.; Lyakhovnenko, A.S. Novel approach to the synthesis of 1,3-diazapyrenes. Chem. Heterocycl. Compd. Eglish Transl., 2009, 45, 66-69.
[http://dx.doi.org/10.1007/s10593-009-0227-5]
[27]
Aksenov, A.V.; Aksenova, I.V.; Lyakhovnenko, A.S.; Lobach, D.A. Synthesis of 1,3-diazapyrenes by the reaction of 1H-perimidines with 1,3-dicarbonyl compounds. Russ. Chem. Bull. Int. Ed., 2009, 5, 859-861.
[http://dx.doi.org/10.1007/s11172-009-0108-1]
[28]
Aksenov, A.V.; Lyakhovnenko, A.S.; Andrienko, A.V.; Levina, I.I. A new method for pyrrole peri-annulation: synthesis of 1H-1,5,7-triazacyclopenta [c,d]phenalenes from 1H-perimidines. Tetrahedron Lett., 2010, 51, 2406-2408.
[http://dx.doi.org/10.1016/j.tetlet.2010.02.129]
[29]
Borovlev, I.V.; Demidov, O.P.; Pozharskii, A.F. Unexpected product of the alkylation of perimidines by chalcones under Michael reaction conditions. Chem. Heterocycl. Compd., 2002, 38, 257-258.
[http://dx.doi.org/10.1023/A:1015368031946]
[30]
Borovlev, I.V.; Demidov, O.P.; Pozharskii, A.F. Heterocyclic analogs of pleiadene. 71. Synthesis of 1,3-diazapyrene. Chem. Heterocycl. Compd., 2002, 38, 968-973.
[http://dx.doi.org/10.1023/A:1020977715188]
[31]
Borovlev, I.V.; Demidov, O.P.; Pozharskii, A.F. Heterocyclic analogs of pleiadene. 73. Intramolecular cyclization of cinnamoyl- and o-chlorobenzo-ylperimidines. Chem. Heterocycl. Compd., 2002, 38, 1091-1095.
[http://dx.doi.org/10.1023/A:1021209416136]
[32]
Bazinet, P.; Yap, G.P.A.; Richeson, D.S. Constructing a stable carbene with a novel topology and electronic framework. J. Am. Chem. Soc., 2003, 125(44), 13314-13315.
[http://dx.doi.org/10.1021/ja0372661] [PMID: 14583000]
[33]
He, X.; Mao, J.; Ma, Q.; Tang, Y. Corrosion inhibition of perimidine derivatives for mild steel in acidic media: electrochemical and computational studies. J. Mol. Liq., 2018, 269, 260-268.
[http://dx.doi.org/10.1016/j.molliq.2018.08.021]
[34]
Khopkar, S. Shankarling, G. Squaric acid: an impressive organocatalyst for the synthesis of biologically relevant 2,3-dihydro-1H-perimidines in water. J. Chem. Sci., 2020, 132(1), 31-41.
[http://dx.doi.org/10.1007/s12039-019-1735-1]
[35]
Harry, N.A.; Radhika, S.; Neetha, M.; Anilkumar, G. A novel catalyst-free mechanochemical protocol for the synthesis of 2,3-dihydro-1H-perimidine. J. Heterocycl. Chem., 2020, 57, 2037-2043.
[http://dx.doi.org/10.1002/jhet.3880]
[36]
Kalhor, M.; Zarnegar, Z.; Janghorban, F.; Mirshokraei, S.A. Fe3O4@zeolite-SO3H as a magnetically bifunctional and retrievable nanocatalyst for green synthesis of perimidines. Res. Chem. Intermed., 2020, 46(1), 821-836.
[http://dx.doi.org/10.1007/s11164-019-03992-0]
[37]
Shelke, P.B.; Mali, S.N.; Chaudhari, H.K.; Pratap, A.P. Chitosan hydrochloride mediated efficient, green catalysis for the synthesis of perimidine derivatives. J. Heterocycl. Chem., 2019, 56(11), 3048-3054.
[http://dx.doi.org/10.1002/jhet.3700]
[38]
Varsha, G.; Arun, V.; Robinson, P.P.; Sebastian, M.; Varghese, D.; Leeju, P.; Jayachandran, V.P.; Yusuff, K.K.M. Two new fluorescent heterocyclic perimidines: first syntheses, crystal structure. Tetrahedron Lett., 2010, 51, 2174-2177.
[http://dx.doi.org/10.1016/j.tetlet.2010.02.077]
[39]
Kalhor, M.; Khodaparast, N. Use of Nano-CuY zeolite as an efficient and eco-friendly nanocatalyst for facile synthesis of perimidine derivatives. Res. Chem. Intermed., 2015, 41, 3235-3242.
[http://dx.doi.org/10.1007/s11164-013-1428-1]
[40]
Saiz, A.L.L.; Foces, C.F.; Sanz, D.; Claramunt, R.M.; Dotor, J.; Elguero, J.; Catalan, J.; Valle, J.C. 2-Arylperimidine derivatives. Part 1. Synthesis, NMR spectroscopy, X-ray crystal and molecular structures. J. Chem. Soc., Perkin Trans. 2, 1995, 1995(7), 1389-1398.
[http://dx.doi.org/10.1039/P29950001389]
[41]
Belmonte, M.M.; Adán, E.C.E.; Buchholz, J.B.; Haak, R.M.; Kleij, A.W. Facile synthesis of substituted mono, di, tri and tetra-2-aryl-2,3-dihydro-1H-perimidines. Eur. J. Org. Chem., 2010, 2010, 4823-4831.
[http://dx.doi.org/10.1002/ejoc.201000670]
[42]
Guo, P.; Xu, X.; Qiu, X.; Zhou, Y.; Yan, S.; Wang, C.; Lu, C.; Ma, W.; Weng, X.; Zhang, X.; Zhou, X. Synthesis and spectroscopic properties of fluorescent 5-benzimidazolyl-2′-deoxyuridines 5-fdU probes obtained from o-phenylenediamine derivatives. Org. Biomol. Chem., 2013, 11(10), 1610-1613.
[http://dx.doi.org/10.1039/c3ob27519a] [PMID: 23364618]
[43]
Bodaghifard, M.A.; Ahadi, N. Sulfamic acid: a green and efficient catalyst for synthesis of mono, bis, and spiro perimidines. Iranian J. Catal., 2016, 6(4), 377-380.
[44]
Farrokhi, A.; Ghodrati, K.; Yavari, I. Fe3O4/SiO2/(CH2)3N+Me3Br3-Core-shell nanoparticles: a novel catalyst for the solvent-free synthesis of five and six-membered heterocycles. Catal. Commun., 2015, 63, 41-46.
[http://dx.doi.org/10.1016/j.catcom.2014.09.046]
[45]
Giani, A.M.; Lamperti, M.; Maspero, A.; Cimino, A.; Negri, R.; Giovenzana, G.B.; Palmisano, G.; Nardo, L. Fluorescence studies on 2-(het)aryl perimidine derivatives. J. Lumin., 2016, 179, 384-392.
[http://dx.doi.org/10.1016/j.jlumin.2016.07.033]
[46]
Lin, Y.; Yan, L.Z.; Min, Z.; You, Y.X. Synthesis, crystal structure and antifungal activity of 2-(4-chlorophenyl)-1,3-dimethyl-2,3-dihydro-1Hperimidine. Chin. J. Struct. Chem., 2016, 8, 1181-1185.
[http://dx.doi.org/10.14102/j.cnki.0254-5861.2011-1127]
[47]
Harry, N.A.; Cherian, R.M.; Radhika, S.; Anilkumar, G. A novel catalyst free, eco-friendly, on water protocol for the synthesis of 2,3-dihydro-1Hperimidines. Tetrahedron Lett., 2019, 60, 150946-150949.
[http://dx.doi.org/10.1016/j.tetlet.2019.150946]
[48]
Chakraborty, N.; Banik, S.; Chakraborty, A.; Bhattachary, S.K.; Das, S. Synthesis of a novel pyrene derived perimidine and exploration of its aggregation induced emission, aqueous copper ion sensing, effective antioxidant and BSA interaction properties. J. Photochem. Photobiol. Chem., 2019, 377, 236-246.
[http://dx.doi.org/10.1016/j.jphotochem.2019.03.014]
[49]
Chen, C.G.; Vijay, N.; Thirumalaivasan, N.; Velmathi, S.; Wu, S.P. Coumarin-based Hg2+ fluorescent probe: fluorescence turn-on detection for Hg2+ bioimaging in living cells and zebrafish. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019, 219, 135-140.
[http://dx.doi.org/10.1016/j.saa.2019.04.048] [PMID: 31030041]
[50]
Wu, C.; Liou, T.; Wei, H.; Tsai, P.; Yang, D. visible light photoredox catalysis: aerobic oxidation of perimidines to perimidinones. Tetrahedron, 2014, 70, 8219-8225.
[http://dx.doi.org/10.1016/j.tet.2014.09.036]
[51]
Zhang, J.M.; Zhang, S.; Zhang, S.L. Bismuth(III) chloride-promoted efficient synthesis of perimidine derivatives under ambient conditions. Synth. Commun., 2007, 37, 2615-2624.
[http://dx.doi.org/10.1080/00397910701463011]
[52]
Maloshitskaya, O.; Sinkkonen, J.; Ovcharenko, V.V.; Zelenin, K.N.; Pihlaja, K. Chain-ring-chain tautomerism in 2-aryl-substituted hexahydropyrimidines and 1H-2,3-dihydroperimidines. Tetrahedron, 2004, 60, 6913-6921.
[http://dx.doi.org/10.1016/j.tet.2004.05.092]
[53]
Leete, E.; Gregory, H.; Gros, E.G. Biosynthesis of plant steroids. I. The origin of the butenolide ring of digitoxigenin1. J. Am. Chem. Soc., 1965, 87, 3475-3479.
[http://dx.doi.org/10.1021/ja01093a034] [PMID: 14322539]
[54]
Prakash, G.K.S.; Paknia, F.; Narayan, A.; Mathew, T.; Olah, G.A. Synthesis of perimidine and 1,5-benzodiazepine derivatives using tamed Brønsted acid, BF3–H2O. J. Fluor. Chem., 2013, 152, 99-105.
[http://dx.doi.org/10.1016/j.jfluchem.2013.03.023]
[55]
Kima, S.; Kim, J.; Cui, J.; Gal, Y.; Jin, S.; Koh, K. Absorption spectra, aggregation and photofading behavior of near-infrared absorbing squarylium dyes containing perimidine moiety. Dyes Pigments, 2002, 55, 1-7.
[http://dx.doi.org/10.1016/S0143-7208(02)00051-7]
[56]
Lijian, C.; Xiaofeng, J.; Zhigang, Y.; Fan, X.; Qi, S. Efficient synthesis of functionalized benzimidazoles and perimidines: ytterbium chloride catalyzed C-C bond cleavage. Chin. J. Chem., 2011, 29, 1880-1886.
[http://dx.doi.org/10.1002/cjoc.201180328]
[57]
Patil, V.V.; Shankarling, G.S. A metal free, eco-friendly protocol for the synthesis of 2,3-dihydro-1H-perimidines using commercially available amberlyst 15 as a catalyst. Catal. Commun., 2014, 57, 138-142.
[http://dx.doi.org/10.1016/j.catcom.2014.08.024]
[58]
Akita, M.; Seto, H.; Aoyama, R.; Kimura, J.; Kobayashi, K. Novel rearrangements in the reactions directed toward preparation of spiro-N,N-ketals: reactions of naphthalene-1,8-diamine with ninhydrin and isatin. Molecules, 2012, 17(12), 13879-13890.
[http://dx.doi.org/10.3390/molecules171213879] [PMID: 23174903]
[59]
Ungoren, S.H.; Koca, I.; Yilmaz, F. Preparation of perinones via a novel multicomponent synthesis of isoindole scaffold. Tetrahedron, 2011, 67, 5409-5414.
[http://dx.doi.org/10.1016/j.tet.2011.05.078]
[60]
Koca, I.; Ungoren, S.H.; Kibriz, I.; Yilmaz, F. The synthesis of new pyrrolo[1,2-a]perimidin-10-one dyes via two convenient routes and its characterizations. Dyes Pigments, 2012, 95, 421-426.
[http://dx.doi.org/10.1016/j.dyepig.2012.04.016]
[61]
Paragamian, V.; Baker, M.B.; Puma, B.M.; Reale, J. A study of the synthesis and some reactions of perimidines. J. Heterocycl. Chem., 1968, 5, 591-597.
[http://dx.doi.org/10.1002/jhet.5570050502]
[62]
Herbert, J.M.; Woodgate, P.D.; Denny, W.A. Potential antitumor agents. 53. Synthesis, DNA binding properties, and biological activity of perimidines designed as “minimal” DNA-intercalating agents. J. Med. Chem., 1987, 30(11), 2081-2086.
[http://dx.doi.org/10.1021/jm00394a025] [PMID: 3669016]
[63]
Mosher, W.A.; Banks, T.E. Reaction of 2-acyl-1,3-indandiones with 1,8-naphthalenediamine. New route to 2-substituted perimidines. J. Org. Chem., 1971, 36, 1477-1480.
[http://dx.doi.org/10.1021/jo00810a008]
[64]
Ried, W.; Knorr, H. Umsetzungen von 4-arylsulfonyl-und4-phenyl-2-hydroxy-3-phenyl-2-cyclobuten-1-onen mitbisnucleophilen. Chem. Ber., 1975, 108, 2750-2757.
[http://dx.doi.org/10.1002/cber.19751080833]
[65]
Garg, K.; Bansal, Y.; Bansal, G.; Goel, R.K. Design, synthesis, and PASSassisted evaluation of novel 2-substituted benzimidazole derivatives as potent anthelmintics. Med. Chem. Res., 2014, 23, 2690-2697.
[http://dx.doi.org/10.1007/s00044-013-0856-1]
[66]
Bekhli, A. F.; Drusvyatskaya, S. K.; Lopatin, B. V.; Naidenova, A. S.; Zelya, O.P. Conversion of perimidine 2-carbamates on acetylation and their anthelmintic properties. Pharm. Chem. J., 1979, 13, 161-163.
[http://dx.doi.org/10.1007/BF00780529]
[67]
Sahana, S.; Mishra, G.; Sivakumar, S.; Bharadwaj, P.K. Highly sensitive and selective “turn-on” chemodosimeter based on Cu2+- promoted hydrolysis for nanomolar detection of Cu2+ and its application in confocal cell imaging. J. Photochem. Photobiol. Chem., 2017, 334, 47-54.
[http://dx.doi.org/10.1016/j.jphotochem.2016.10.035]
[68]
Elwell, C.E.; Neisen, B.D.; Tolman, W.B. Copper complexes of multidentate carboxamide ligands. Inorg. Chim. Acta, 2019, 485, 131-139.
[http://dx.doi.org/10.1016/j.ica.2018.10.011] [PMID: 31105329]
[69]
Jean-Jacques, V.E.; Mayence, A.; Maquestiau, A.; Anders, E. Novel syntheses of heterocycles with N-(1-Haloalkyl) azinium halides. Part 4. An unexpected one-pot preparation of 1H-perimidines. Synth. Commun., 1992, 22(21), 3141-3150.
[http://dx.doi.org/10.1080/00397919209409265]
[70]
Anga, S.; Biswas, S.; Kottalanka, R.K.; Mallik, B.S.; Panda, T.K. Structural and mechanistic insights of substituted perimidine - experimental and computational studies. Can. Chem. Trans., 2014, 2, 72-82.
[http://dx.doi.org/10.13179/canchemtrans.2014.02.01.00]
[71]
Kahveci, B.; Karaali, N.; Mentese, E.; Yilmaz, F. Synthesis of new perimidine derivatives from the reaction of 1,8-diaminonaphthalene with iminoester hydrochlorides. J. Chem. Res., 2013, 37(6), 377-379.
[http://dx.doi.org/10.3184/174751913X13691578103477]
[72]
Mentese, E.; Yιlmaz, F.; Karaali, N. lker, S.; Kahveci, B. Rapid synthesis and lipase inhibition activity of some new benzimidazole and perimidine derivatives. Russ. J. Bioorganic Chem., 2014, 40, 336-342.
[http://dx.doi.org/10.1134/S1068162014030091]
[73]
Zhu, W.; Ding, J.; Jiang, B.; Tu, S. Highly efficient synthesis of tricyclic perimidines under microwave heating. J. Heterocycl. Chem., 2013, 50, E63-E66.
[http://dx.doi.org/10.1002/jhet.1057]
[74]
Morita, N.; Moriyama, S.; Shoji, T.; Nakashima, M.; Watanabe, M.; Kikuchi, S.; Ito, S.; Fujimori, K. Synthesis of azulen-3-ylheterocyclic compounds using 2-(3-methoxycarbonylazulen-1-yl)ethynyltriphenyl-phosphoniumbromide. Heterocycles, 2004, 64, 305-316.
[http://dx.doi.org/10.3987/COM-04-S(P)27]
[75]
Aly, A.A.; El-Shaieb, K.M. Reaction of 1,8-diaminonaphthaline with some selected π-acceptors; prospective optically active non-linear cyanovinylatednaphthalenes as well as synthesis of novel perimidines and pleiadene derivatives. Tetrahedron, 2004, 60, 3797-3802.
[http://dx.doi.org/10.1016/j.tet.2004.03.017]
[76]
Sovic, I.; Pavlovic, G.; Papadopoulos, A.G. kaŠišak, D.; Karminski-Zamola, G. 2-substituted-1H-perimidines: synthesis, crystal structure and DFT calculations. J. Mol. Struct., 2013, 1041, 156-163.
[http://dx.doi.org/10.1016/j.molstruc.2013.03.020]
[77]
Grundmann, E.J.; Kreutzberger, A.J. Triazines. XIII. The ring cleavage of striazine by primary amines. A new method for the synthesis of heterocycles. J. Am. Chem. Soc., 1955, 77, 6559-6562.
[http://dx.doi.org/10.1021/ja01629a041]
[78]
Nohira, H.; Nishikava, Y.; Furuya, Y.; Makaiyama, T. The synthesis and the reactions of 2,4,6-tri-(ω-hydroxyalkyl)-1,3,5-triazines. Bull. Chem. Soc. Jpn., 1965, 38, 897-901.
[http://dx.doi.org/10.1246/bcsj.38.897]
[79]
Aksenov, A.V.; Borovlev, I.V.; Lyakhovnenko, A.S.; Aksenova, I.V. Acylation of perimidine with 1,3,5-triazines in polyphosphoric acid. Chem. Heterocycl. Compd., 2007, 43, 527-528.
[http://dx.doi.org/10.1007/s10593-007-0085-y]
[80]
Surikova, O.V.; Aliev, Z.G.; Mikhailovskii, A.G. Synthesis of 2-spiro-(1,2-dihydroperimid-2-yl)-5,5-dialkyl-2,3,5,6-tetrahydropyrrolo [2,1-a]-isoquinolin-3-ones. Chem. Heterocycl. Compd., 2008, 44, 1500-1504.
[http://dx.doi.org/10.1007/s10593-009-0207-9]
[81]
Borovlev, I.V.; Pozharskii, A.F.; Filatova, E.A.; Demidov, O.P. Heterocyclic analogs of pleiadiene 76. Synthesis and tautomeric conversions of mono- and disubstituted perimidines with electron-withdrawing substituents in the naphthalene fragment. Chem. Heterocycl. Compd., 2010, 46, 307-315.
[http://dx.doi.org/10.1007/s10593-010-0506-1]
[82]
Li, Z.; Deng, W. Synthesis, characterization, crystal structure and DFT studies on 1′,3′-dihydrospiro. [fluorene-9,2′-perimidine] Spectrochim. Acta A Mol. Biomol. Spectrosc., 2011, 82(1), 56-62.
[http://dx.doi.org/10.1016/j.saa.2011.06.061] [PMID: 21803646]
[83]
Gijon, C.A.F.; Portilla, F.R.; Jara, D.R.; Fomine, S.; Santana, G.; Alexandrova, L. Itaco-perinone as a molecule with potential use in white light emitting materials. The effect of methyl- and methylene groups on the formation of perimidine and perinone structures. Tetrahedron, 2015, 71, 7063.
[http://dx.doi.org/10.1016/j.tet.2015.06.086]
[84]
Moura, N.M.M.; Esteves, M.; Vieira, C.; Rocha, G.M.S.R.O.; Faustino, M.A.F.; Almeida, A.; Cavaleiro, J.A.S.; Lodeiro, C.; Neves, M.G.P.M.S. Novel β-functionalized mono-charged porphyrinic derivatives: synthesis and photoinactivation of Escherichia coli. Dyes Pigments, 2019, 160, 361-371.
[http://dx.doi.org/10.1016/j.dyepig.2018.06.048]
[85]
Borovlev, I.V.; Aksenov, A.V.; Pozharskii, A.F. Synthesis of derivatives of 1,3-diazapyrene. Chem. Heterocycl. Compd., 1997, 33, 1367-1.
[http://dx.doi.org/10.1007/BF02320345]
[86]
Aksenov, A.V.; Magamadova, M.H.; Lobach, D.A.; Aksenov, I.V.; Malikova, I.V.; Rubin, M. Periannelation of perimidines in reactions with 1,3-dicarbonyl compounds. Chem. Heterocycl. Compd., 2014, 50(9), 1298-1304.
[http://dx.doi.org/10.1007/s10593-014-1592-2]
[87]
Watson, H.W.; Chen, T.; Richmond, M.G. Reaction of dichloromaleic anhydride with 1,8-diaminonaphthalene: Synthesis and X-ray diffraction structure of 8,9-dichloropyrrolo[1,2-a]perimidin-10-one. J. Chem. Crystallogr., 2004, 34, 697-703.
[http://dx.doi.org/10.1023/B:JOCC.0000047646.33079.d2]
[88]
Shawali, A.S.; Farghaly, T.A.; Nawar, T.M.S. Chemoselectivity in reactions of hydrazonoyl halides with ethyl 2(3H)-permidinylideneacetate. J. Heterocycl. Chem., 2016, 53, 909-914.
[http://dx.doi.org/10.1002/jhet.2151]
[89]
Alfredo, N.V.; Likhatchev, D.; Ramirez, S.B.; Vazquez, J.R. Highly effective low temperature route to pyrroloperimidines synthesis and their copolymerization with styrene and methylmethacrylate. Polymer , 2008, 49, 3654-3662.
[http://dx.doi.org/10.1016/j.polymer.2008.06.038]
[90]
Aksenov, A.V.; Aksenov, N.A.; Lyakhovnenko, A.S.; Goncharov, I.V. Synthesis of 6H-pyrrolo[2,3,4-gh]perimidines from naphthalene-1,4,8-triamine. Russ. J. Org. Chem., 2013, 49(10), 1555-1556.
[http://dx.doi.org/10.1134/S1070428013100266]
[91]
Lyakhovnenko, A.S.; Aksenov, N.A.; Kolesnikova, A.S.; Goncharov, I.V.; Aksenov, A.V. New one pot synthesis of 1H-1,5,7-triazacyclopenta[c,d] phenalenes. Russ. Chem. Bull., 2013, 62(3), 855-856.
[http://dx.doi.org/10.1007/s11172-013-0117-y]
[92]
Yamamoto, T.; Imagawa, M. T.; Yabe, Y. T.; Suwabe, E. M. Reaction of thiazolidine-2,5-dithiones with amino nucleophiles. Synthesis of imidazolidine-2,4-dithiones,imidazo[5,1-a]-imidazole,-pyrimidine,-perimidine,-[2,1-b][1,3,4] thiadiazines and pyrrole-3(2H)-thiones. J. Chem. Soc. Perkin Trans., 1990, 1990(11), 3003-3009.
[http://dx.doi.org/10.1039/P19900003003]
[93]
Shcherbakov, S.V.; Lobach, D.A.; Aksenov, A.V. Novel method for the periannelation of a thiophene ring to 1H-perimidine and 1,2,3-triazaphenalene derivatives. Chem. Heterocycl. Compd., 2014, 50(2), 300-302.
[http://dx.doi.org/10.1007/s10593-014-1476-5]
[94]
Aksenov, A.V.; Shcherbakov, S.V.; Lobach, D.A.; Letichevskaya, N.N.; Vasileeva, E.A. Synthesis of 1-thia-5,7-diazacyclopenta[c,d]-phenalenes from 6(7)-derivatives of perimidine. Chem. Heterocycl. Compd., 2014, 50(5), 677-684.
[http://dx.doi.org/10.1007/s10593-014-1520-5]
[95]
Lyakhovnenko, A.S.; Aksenov, A.V.; Aksenov, N.A.; Goncharov, V.I.; Aksenova, I.V. New three-component reaction of perimidines with sodium azide and sodium nitrite in poly-phosphoric acid. Chem. Heterocycl. Compd., 2012, 48(4), 677-679.
[http://dx.doi.org/10.1007/s10593-012-1043-x]
[96]
Aksenov, A.V.; Aksenov, N.A.; Tsys, A.E.; Goncharov, V.I.; Ovcharov, S.N. A new one pot reaction of perimidines with nitroethane and sodium nitrite in polyphosphoricacid. Russ. Chem. Bull., 2013, 62(4), 1127-1128.
[http://dx.doi.org/10.1007/s11172-013-0154-6]
[97]
Aksenov, A.V.; Lyakhovnenko, A.S.; Spicin, A.N.; Goncharov, I.V. Three component reaction of acetyl-perimidines with sodium azide and nitrite in polyphosphoricacid. Chem. Heterocycl. Compd., 2011, 47(9), 1180.
[http://dx.doi.org/10.1007/s10593-011-0891-0]
[98]
Ulrich, H.; Sayigh, A.A.R. The reaction of oxalyl chloride with substituted ureas and thioureas. J. Org. Chem., 1965, 30, 2781-2783.
[http://dx.doi.org/10.1021/jo01019a067]
[99]
Omar, M.A.; Frey, W.; Conrad, J.; Beifuss, U. Transition-metal-free synthesis of imidazo[2,1-b]thiazoles and thiazolo[3,2-a]benzimidazoles via an Spropargylation/5-exo-dig cyclization/isomerization sequence using propargyl tosylates as substrates. J. Org. Chem., 2014, 79(21), 10367-10377.
[http://dx.doi.org/10.1021/jo501980w] [PMID: 25320838]
[100]
Burkhardt, U.; Johne, S. Perimidines. II. The reaction of 1, 8 ‐ diaminonaphthalenes with γ ‐ and δ ‐ lactones. J. Prac. Chem., 1986, 328(5-6), 906-910.
[101]
Burkhardt, U.; Johne, S. 8H-[1,2,4]Triazolo[4,3-a]perimidines and their salts. German Patent DD215785A1, November 21, 1984.
[102]
Burkhardt, U.; Johne, S. Methods for producing 10-Mercapto-8H- [1,2,4]triazolo[4,3-a] perimidines and their salts for pharmaceutical and medicinal purposes. German Patent DD218622A1, Febraury 13, 1985.
[103]
Quast, H.; Nüdling, W.; Klemm, G.; Kirschfeld, A.; Neuhaus, P.; Sander, W.; Hrovat, D.A.; Borden, W.T. A perimidine-derived non-kekulé triplet diradical. J. Org. Chem., 2008, 73(13), 4956-4961.
[http://dx.doi.org/10.1021/jo800589y] [PMID: 18547111]
[104]
Tokimizu, Y.; Ohta, Y.; Chiba, H.; Oishi, S.; Fujii, N.; Ohno, H. Direct synthesis of highly fused perimidines by copper(I)-catalyzed hydroamination of 2-ethynylbenzaldehydes. Tetrahedron, 2011, 67, 5168-5175.
[http://dx.doi.org/10.1016/j.tet.2011.05.051]
[105]
Yavari, I.; Adib, M.; Jahani-Moghaddam, F.; Bijanzadeh, H.R. Vinylphosphonium salt mediated simple synthesis of 7-oxo-7H-pyrido[1,2,3-cd]perimidine derivatives. Dynamic NMR spectroscopic study of prototropictautomerism in ethyl 1H-perimidine-2-carboxylate. Tetrahedron, 2002, 58, 6901-6906.
[http://dx.doi.org/10.1016/S0040-4020(02)00759-7]
[106]
Sayed, A.A.R.; El-Shaieb, K.M.; Mourad, A.F. Life span extension of Caenorhabditis elegans by novel pyridoperimidine derivative. Arch. Pharm. Res., 2012, 35(1), 69-76.
[http://dx.doi.org/10.1007/s12272-012-0107-x] [PMID: 22297744]
[107]
Aksenov, A.V.; Aksenov, N.A.; Kumshaeva, A.B.; Smirnov, A.N.; Ovcharov, S.N. A Novel method for the synthesis of 1,8-dihydropyrido[2,3,4-gh]perimidin-7(6H)-ones. Chem. Heterocycl. Compd., 2012, 48(8), 1269-1271.
[http://dx.doi.org/10.1007/s10593-012-1131-y]
[108]
Pozharskii, A.F.; Borovlev, I.V.; Kashparov, I.S. Heterocyclic analogs of pleiadiene. XV. Direct acylation of perimidines in the naphthalene ring. Synthesis of 4 (9)- and 6 (7)-acylperimidines. Chem. Heterocycl. Compd., 1975, 11, 480-485.
[http://dx.doi.org/10.1007/BF00502441]
[109]
Aksenov, A.V.; Lyakhovnenko, A.S.; Spicin, A.N.; Goncharov, I.V. Khim. Geterotsikl. Soedin. Reaction of acetylperimidines with sodium nitrite in polyphosphoricacid. Chem. Heterocycl. Compd., 2011, 47(9), 1183-1184.
[http://dx.doi.org/10.1007/s10593-011-0892-z]
[110]
Aksenov, A.V.; Aksenova, I.V. Khim. Geterotsikl. Soedin. Use of the ring opening reactions of 1,3,5-triazines in organic synthesis. Chem. Heterocycl. Compd., 2009, 45, 130-150.
[http://dx.doi.org/10.1007/s10593-009-0243-5]
[111]
Aksenov, A.V.; Magamadova, M.Kh.; Lobach, D.A.; Aksenova, I.V.; Ovcharov, S.N. Synthesis of a novel biheterocyclic system, 2,2′-B1-1,3,7-triazapyrenes. Chem. Heterocycl. Compd., 2012, 48(8), 1267-1268.
[http://dx.doi.org/10.1007/s10593-012-1130-z]
[112]
Molina, P.; Alias, A.; Balado, A.; Arques, A. Iminophosphoranemediatedsynthesis of fusedperimidines: prepareation of quinazolino[3,4-a]perimidine derivatives. Liebigs Ann. Chem., 1994, 1994(7), 745-749.
[http://dx.doi.org/10.1002/jlac.199419940717]
[113]
Dutt, S.V.A.; Rao, C. Synthesis of 6-(trifluoromethyl)-8,13,13d-triazadibenzo[def,qr]chrysenes. J. Fluor. Chem., 1996, 79, 7-8.
[http://dx.doi.org/10.1016/0022-1139(96)03464-1]
[114]
Molina, P.; Vidal, A.; Barquero, I. Regiospecific electrocyclization of β-arylvinyl Ketenimines. Formal syntheses of the alkaloid from marine origin aaptamine. Synthesis, 1996, 1199-1202.
[http://dx.doi.org/10.1055/s-1996-4367]
[115]
Aksenov, A.V.; Lyakhovnenko, A.S.; Karaivanov, N.T.S. Sodium azide in PPA – a new reagent system for electrophilic amination: synthesis of 6(7)-aminoperimidines. Khim. Geterotsikl. Soedin. Chem. Heterocycl. Compd., 2009, 45, 871-875.
[http://dx.doi.org/10.1007/s10593-009-0342-3]
[116]
Aksenov, A.V.; Lyakhovnenko, A.S.; Karaivanov, N.T.S.; Levina, I.I. Synthesis and special features of the structure of 6(7)-aminoperimidine derivatives. Chem. Heterocycl. Compd., 2010, 46, 468-472.
[http://dx.doi.org/10.1007/s10593-010-0532-z]
[117]
Lyakhovnenko, A.S.; Kolesnikova, A.S.; Goncharov, I.V.; Aksenov, A.V.; Aksenova, I.V. Unusual reaction of 1H-perimidines with sodium azide and benzoyl hydrazine in polyphosphoric acid. Chem. Heterocycl. Compd., 2012, 48(8), 1275-1279.
[http://dx.doi.org/10.1007/s10593-012-1133-9]
[118]
Milisiunaite, V. kiene, E. A.; kas, A. B.; kaite, G. V.; Sackus, A.; Holzer, W. Synthesis of pyrazolo[4′, 3′:3, 4]pyrido[1,2-a]benzimidazoles and related new ring systems by tandem cyclisation of vic-alkynylpyrazole-4-carbaldehydes with (het)aryl-1,2-diamines and investigation of their optical properties. Tetrahedron, 2015, 71, 3385-3395.
[http://dx.doi.org/10.1016/j.tet.2015.03.092]
[119]
Xi, Z.; Liu, F.; Zhou, Y.; Chen, W. CuI/L (L=pyridine-functionalized 1,3-diketones) catalyzed C–N coupling reactions of aryl halides with NHcontaining heterocycles. Tetrahedron, 2008, 64, 4254-4259.
[http://dx.doi.org/10.1016/j.tet.2008.02.082]
[120]
Suslov, A.N.; Pozharskii, A.F.; Borovlev, I.V. Heterocyclic analogs of pleiadiene 61. 2-cyano-and 2-carbamoylperimidines. Chem. Heterocyl. Comp., 1993, 29(6), 691-693.
[http://dx.doi.org/10.1007/BF00531549]
[121]
Borovlev, I.V.; Demidov, O.P. Synthesis of 2,3-dihydroperimidine ketones. Chem. Heterocycl. Compd., 2009, 45, 721-725.
[http://dx.doi.org/10.1007/s10593-009-0325-4]
[122]
Zhou, D.C.; Lu, Y.T.; Mai, Y.W.; Zhang, C.; Xia, J.; Yao, P.F.; Wang, H.G.; Huang, S.L.; Huang, Z.S. Design, synthesis and biological evaluation of novel perimidine o-quinone derivatives as non-intercalative topoisomerase II catalytic inhibitors. Bioorg. Chem., 2019, 91, 103131-103135.
[http://dx.doi.org/10.1016/j.bioorg.2019.103131] [PMID: 31377387]
[123]
Kolesnikova, A.S.; Zhirov, A.M.; Goncharov, I.V.; Lyakhovnenko, A.S.; Aksenov, A.V. Synthesis of diethyl 1-(1H-perimidin-6(7)-yl)-hydrazine-1,2-dicarboxylates. Chem. Heterocycl. Compd., 2012, 48(9), 1410-1411.
[http://dx.doi.org/10.1007/s10593-012-1150-8]
[124]
Farghaly, T.A.; Mahmoud, H.K. Synthesis, tautomeric structures, and antitumor activity of new perimidines. Arch. Pharm., 2013, 346(5), 392-402.
[http://dx.doi.org/10.1002/ardp.201200486] [PMID: 23553920]