A Review on Expedient Assets of Polymers Employed in Novel Topical Formulation for Successful Treatment of Arthritis

Page: [15 - 30] Pages: 16

  • * (Excluding Mailing and Handling)

Abstract

Background: Rheumatoid arthritis (RA) is an autoimmune ailment where the body's defense system is violated by damaging its joints. In RA treatment strategies, attempts have been made for oral, topical, and parenteral formulations with different drugs, but none of the formulations could be regarded as the perfect dosage form. In the current review, the meticulous discussion has been made on the suitability of novel topical formulations in the treatment of RA. Moreover, the emphasis has been made on activities of biodegradable polymers such as hyaluronic acid, lecithin, pluronic acid, chitosan, human serum albumin (HSA), and polylactide glycolic acid (PLGA) as well as their role in the management of RA.

Objective: The study aimed to apprehend the role of polymeric materials in developing an ideal topical drug delivery system that can bestow targeted delivery, enhanced penetration of drugs, improved stability of the formulation, and improved PKPD profile of the drugs.

These polymers possess twofold functions, primarily by increasing skin penetration and secondarily by improving joint mobility and cartilage regeneration. Furthermore, biocompatibility and biodegradability are features that increase the use of the aforementioned polymers.

Results: The significant role of all the polymers in improving the conditions of bones and joints suffering from rheumatoid arthritis has been demonstrated by various studies.

Keywords: Polymer, topical, biocompatible, biodegradable, cartilage regeneration, rheumatoid Arthritis.

Graphical Abstract

[1]
Perricone C, Shoenfeld Y. Mosaic of autoimmunity: The novel factors of autoimmune diseases. Academic Press 2019; pp. 7-11. [Acessed March 12, 2020
[http://dx.doi.org/10.1016/B978-0-12-814307-0.00002-5]
[2]
Arnett FC, Edworthy SM, Bloch DA, et al. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum 1988; 31(3): 315-24.
[http://dx.doi.org/10.1002/art.1780310302] [PMID: 3358796]
[3]
Janakiraman K, Krishnaswami V, Rajendran V, Natesan S, Kandasamy R. Novel nano therapeutic materials for the effective treatment of rheumatoid arthritis-recent insights. Mater Today Commun 2018; 17: 200-13.
[http://dx.doi.org/10.1016/j.mtcomm.2018.09.011] [PMID: 32289062]
[4]
Rubinstein I, Weinberg GL. Nanomedicines for chronic non-infectious arthritis: The clinician’s perspective. Nanomedicine (Lond) 2012; 8(Suppl. 1): S77-82.
[http://dx.doi.org/10.1016/j.nano.2012.05.004] [PMID: 22640912]
[5]
Thakur S, Riyaz B, Patil A, Kaur A, Kapoor B, Mishra V. Novel drug delivery systems for NSAIDs in management of rheumatoid arthritis: An overview. Biomed Pharmacother 2018; 106: 1011-23.
[http://dx.doi.org/10.1016/j.biopha.2018.07.027] [PMID: 30119166]
[6]
Lee P, Baxter A, Dick WC, Webb J. An assessment of grip strength measurement in rheumatoid arthritis. Scand J Rheumatol 1974; 3(1): 17-23.
[http://dx.doi.org/10.3109/03009747409165124] [PMID: 4609126]
[7]
Deane KD, El-Gabalawy H. Pathogenesis and prevention of rheumatic disease: Focus on preclinical RA and SLE. Nat Rev Rheumatol 2014; 10(4): 212-28.
[http://dx.doi.org/10.1038/nrrheum.2014.6] [PMID: 24514912]
[8]
Byram K, Chinratanalab S, Sergent J. Rheumatoid arthritis.Essentials of physical medicine and rehabilitation, musculoskeletal disorders pain, and rehabilitation. Netherlands: Elsevier 2020; pp. 876-81. [Accessed March 12, 2020
[http://dx.doi.org/10.1016/B978-0-323-54947-9.00152-8]
[9]
Raza K, Holers VM, Gerlag D. Nomenclature for the phases of the development of rheumatoid arthritis. Clin Ther 2019; 41(7): 1279-85.
[http://dx.doi.org/10.1016/j.clinthera.2019.04.013] [PMID: 31196657]
[10]
Conigliaro P, Triggianese P, De Martino E, et al. Challenges in the treatment of rheumatoid arthritis. Autoimmun Rev 2019; 18(7): 706-13.
[http://dx.doi.org/10.1016/j.autrev.2019.05.007] [PMID: 31059844]
[11]
Yang M, Feng X, Ding J, Chang F, Chen X. Nanotherapeutics relieve rheumatoid arthritis. J Control Release 2017; 252: 108-24.
[http://dx.doi.org/10.1016/j.jconrel.2017.02.032] [PMID: 28257989]
[12]
Mohanty S, Panda S, Bhanja A, Pal A, Chandra SS. Novel drug delivery systems for rheumatoid arthritis: An approach to better patient compliance. Biomed Pharmacol J 2019; 12(1): 157-70.
[http://dx.doi.org/10.13005/bpj/1624]
[13]
O’Shea JJ, Kontzias A, Yamaoka K, Tanaka Y, Laurence A. Janus kinase inhibitors in autoimmune diseases. Ann Rheum Dis 2013; 72(Suppl. 2): ii111-5.
[http://dx.doi.org/10.1136/annrheumdis-2012-202576] [PMID: 23532440]
[14]
Mahajan A, Tandon VR. Antioxidants and rheumatoid arthritis. J Indian Rheumatol Assoc 2004; 12: 139-42.
[15]
Jaswal S, Mehta HC, Sood AK, Kaur J. Antioxidant status in rheumatoid arthritis and role of antioxidant therapy. Clin Chim Acta 2003; 338(1-2): 123-9.
[http://dx.doi.org/10.1016/j.cccn.2003.08.011] [PMID: 14637276]
[16]
Choy YB, Prausnitz MR. The rule of five for non-oral routes of drug delivery: Ophthalmic, inhalation and transdermal. Pharm Res 2011; 28(5): 943-8.
[http://dx.doi.org/10.1007/s11095-010-0292-6] [PMID: 20967491]
[17]
Jain KK. Drug delivery systems-an overview. Drug Deliv Sys 2008; 1-50 2008; 1-50.
[http://dx.doi.org/10.1007/978-1-59745-210-6_1]
[18]
Jorge LL, Feres CC, Teles VE. Topical preparations for pain relief: Efficacy and patient adherence. J Pain Res 2010; 4: 11-24.
[http://dx.doi.org/10.2147/JPR.S9492] [PMID: 21386951]
[19]
Klinge SA, Sawyer GA. Effectiveness and safety of topical versus oral nonsteroidal anti-inflammatory drugs: A comprehensive review. Phys Sportsmed 2013; 41(2): 64-74.
[http://dx.doi.org/10.3810/psm.2013.05.2016] [PMID: 23703519]
[20]
Altman R, Barkin RL. Topical therapy for osteoarthritis: Clinical and pharmacologic perspectives. Postgrad Med 2009; 121(2): 139-47.
[http://dx.doi.org/10.3810/pgm.2009.03.1986] [PMID: 19332972]
[21]
Miller JE, Korn D, Ross JS. Clinical trial registration, reporting, publication and FDAAA compliance: a cross-sectional analysis and ranking of new drugs approved by the FDA in 2012. BMJ Open 2015; 5(11): e009758.
[http://dx.doi.org/10.1136/bmjopen-2015-009758] [PMID: 26563214]
[22]
Heyneman CA, Lawless-Liday C, Wall GC. Oral versus topical NSAIDs in rheumatic diseases: A comparison. Drugs 2000; 60(3): 555-74.
[http://dx.doi.org/10.2165/00003495-200060030-00004] [PMID: 11030467]
[23]
Cevc G, Mazgareanu S, Rother M. Preclinical characterisation of NSAIDs in ultradeformable carriers or conventional topical gels. Int J Pharm 2008; 360(1-2): 29-39.
[http://dx.doi.org/10.1016/j.ijpharm.2008.01.051] [PMID: 18337027]
[24]
Rolf C, Engström B, Beauchard C, Jacobs LD, Le Liboux A. Intra-articular absorption and distribution of ketoprofen after topical plaster application and oral intake in 100 patients undergoing knee arthroscopy. Rheumatology (Oxford) 1999; 38(6): 564-7.
[http://dx.doi.org/10.1093/rheumatology/38.6.564] [PMID: 10402079]
[25]
Dominkus M, Nicolakis M, Kotz R, Wilkinson FE, Kaiser RR, Chlud K. Comparison of tissue and plasma levels of ibuprofen after oral and topical administration. Arzneimittelforschung 1996; 46(12): 1138-43.
[PMID: 9006788]
[26]
Nagai N, Yoshioka C, Ito Y. Topical therapies for rheumatoid arthritis by gel ointments containing indomethacin nanoparticles in adjuvant-induced arthritis rat. J Oleo Sci 2015; 64(3): 337-46.
[http://dx.doi.org/10.5650/jos.ess14170] [PMID: 25757439]
[27]
Johnson G, Woodward E. Novartis Consumer Health SA, assignee.. Topical diclofenac sodium compositions. United States patent application US 15/506,774 2017. Available from:https://patentimages.storage.googleapis.com/7f/40/a5/3888a4d4a76df8/US20170281580A1.pdf
[28]
Mittal R, Roy SB, Kothari JS, Sheikh S. Cadila Healthcare Ltd, assignee.. Method for treatment of pain and inflammation. United States patent US 9,713,590 2017. Available from:https://patents.google.com/patent/US9713590B2/en
[29]
Meisner LF. Topical composition for the treatment of psoriasis and related skin disorders. United States patent US 7,670,620, 2010. Available from:https://patents.google.com/patent/US7670620B2/en
[30]
Ashara KC, Paun JS, Soniwala MM, Chavada JR, Mori NM. Micro-emulsion based emulgel: A novel topical drug delivery system. Asian Pac J Trop Dis 2014; 4: S27-32.
[http://dx.doi.org/10.1016/S2222-1808(14)60411-4]
[31]
Bhowmik D, Gopinath H, Kumar BP, Duraivel S, Kumar KS. Recent advances in novel topical drug delivery system. Pharma Innovation 2012; 1(9, Part A): 12.
[32]
Khullar R, Kumar D, Seth N, Saini S. Formulation and evaluation of mefenamic acid emulgel for topical delivery. Saudi Pharm J 2012; 20(1): 63-7.
[http://dx.doi.org/10.1016/j.jsps.2011.08.001] [PMID: 23960777]
[33]
Mahajan VR, Basarkar GD. Formulation design, development and characterization of dexibuprofen emulgel for topical delivery: In-vitro and in-vivo evaluation. J Drug Deliv Ther 2019; 9(2-s): 330-42.
[34]
Sadarani B, Majumdar A, Paradkar S, et al. Enhanced skin permeation of Methotrexate from penetration enhancer containing vesicles: In vitro optimization and in vivo evaluation. Biomed Pharmacother 2019; 114: 108770.
[http://dx.doi.org/10.1016/j.biopha.2019.108770] [PMID: 30913494]
[35]
Jeengar MK, Rompicharla SVK, Shrivastava S, et al. Emu oil based nano-emulgel for topical delivery of curcumin. Int J Pharm 2016; 506(1-2): 222-36.
[http://dx.doi.org/10.1016/j.ijpharm.2016.04.052] [PMID: 27109049]
[36]
Chandra A, Arya RKK, Pal GR, Tewari B. Formulation and evaluation of ginger extract loaded nanoemulgel for the treatment of rheumatoid arthritis. J Drug Deliv Ther 2019; 9(4): 559-70.
[37]
Preeti KM. Development of celecoxib transfersomal gel for the treatment of rheumatoid arthritis. Indian J Pharm Biol Res 2014; 2: 7-13.
[http://dx.doi.org/10.30750/ijpbr.2.2.2]
[38]
Irfan M, Verma S, Ram A. Preparation and characterization of ibuprofen loaded transferosome as a novel carrier for transdermal drug delivery system. Asian J Pharmaceut Clin Res 2012; 5(3): 162-5.
[39]
Ali MFM, Salah M, Rafea M, Saleh N. Liposomal methotrexate hydrogel for treatment of localized psoriasis: Preparation, characterization and laser targeting. Med Sci Monit 2008; 14(12): PI66-74.
[PMID: 19043379]
[40]
Zeb A, Qureshi OS, Yu C-H, et al. Enhanced anti-rheumatic activity of methotrexate-entrapped ultradeformable liposomal gel in adjuvant-induced arthritis rat model. Int J Pharm 2017; 525(1): 92-100.
[http://dx.doi.org/10.1016/j.ijpharm.2017.04.032] [PMID: 28428089]
[41]
Tatheer F, Mazahir R, Anshul Kumar S. Development and characterization of prednisolone liposomal gel for the treatment of rheumatoid arthritis. Int Res J Pharm 2015; 6: 1-5.
[http://dx.doi.org/10.7897/2230-8407.06230]
[42]
Hua S, Dias TH, Pepperall D-G, Yang Y. Topical loperamide-encapsulated liposomal gel increases the severity of inflammation and accelerates disease progression in the adjuvant-induced model of experimental rheumatoid arthritis. Front Pharmacol 2017; 8: 503.
[http://dx.doi.org/10.3389/fphar.2017.00503] [PMID: 28824428]
[43]
Paradkar M, Vaghela S. Thiocolchicoside niosomal gel formulation for the pain management of rheumatoid arthritis through topical drug delivery. Drug Deliv Lett 2018; 8(2): 159-68.
[http://dx.doi.org/10.2174/2210303108666180216151234]
[44]
Pandey M, Belgamwar V, Gattani S, Surana S, Tekade A. Pluronic lecithin organogel as a topical drug delivery system. Drug Deliv 2010; 17(1): 38-47.
[http://dx.doi.org/10.3109/10717540903508961] [PMID: 22747074]
[45]
Jain A, Mishra SK, Vuddanda PR, Singh SK, Singh R, Singh S. Targeting of diacerein loaded lipid nanoparticles to intra-articular cartilage using chondroitin sulfate as homing carrier for treatment of osteoarthritis in rats. Nanomedicine (Lond) 2014; 10(5): 1031-40.
[http://dx.doi.org/10.1016/j.nano.2014.01.008] [PMID: 24512762]
[46]
Khachatryan G, Khachatryan K, Grzyb J, Fiedorowicz M. Formation and properties of hyaluronan/nano Ag and hyaluronan-lecithin/nano Ag films. Carbohydr Polym 2016; 151: 452-7.
[http://dx.doi.org/10.1016/j.carbpol.2016.05.104] [PMID: 27474588]
[47]
Sudha PN, Rose MH. Beneficial effects of hyaluronic acid advances in food and nutrition research. Elsevier 2014; pp. 137-76.https://www.sciencedirect.com/science/article/pii/B9780128002698000099 [Accessed March 12, 2020
[48]
Salwowska NM, Bebenek KA, Żądło DA, Wcisło-Dziadecka DL. Physiochemical properties and application of hyaluronic acid: A systematic review. J Cosmet Dermatol 2016; 15(4): 520-6.
[http://dx.doi.org/10.1111/jocd.12237] [PMID: 27324942]
[49]
Bae MS, Ohe J-Y, Lee JB, et al. Photo-cured hyaluronic acid-based hydrogels containing growth and differentiation factor 5 (GDF-5) for bone tissue regeneration. Bone 2014; 59: 189-98.
[http://dx.doi.org/10.1016/j.bone.2013.11.019] [PMID: 24291420]
[50]
Mohan N, Mohanan PV, Sabareeswaran A, Nair P. Chitosan-hyaluronic acid hydrogel for cartilage repair. Int J Biol Macromol 2017; 104(Pt B): 1936-45.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.03.142] [PMID: 28359897]
[51]
Jung YS, Park W, Park H, Lee D-K, Na K. Thermo-sensitive injectable hydrogel based on the physical mixing of hyaluronic acid and Pluronic F-127 for sustained NSAID delivery. Carbohydr Polym 2017; 156: 403-8.
[http://dx.doi.org/10.1016/j.carbpol.2016.08.068] [PMID: 27842839]
[52]
Cai Y, López-Ruiz E, Wengel J, Creemers LB, Howard KA. A hyaluronic acid-based hydrogel enabling CD44-mediated chondrocyte binding and gapmer oligonucleotide release for modulation of gene expression in osteoarthritis. J Control Release 2017; 253: 153-9.
[http://dx.doi.org/10.1016/j.jconrel.2017.03.004] [PMID: 28274742]
[53]
Lu K-Y, Lin Y-C, Lu H-T, et al. A novel injectable in situ forming gel based on carboxymethyl hexanoyl chitosan/hyaluronic acid polymer blending for sustained release of berberine. Carbohydr Polym 2019; 206: 664-73.
[http://dx.doi.org/10.1016/j.carbpol.2018.11.050] [PMID: 30553371]
[54]
Lee H-Y, Hwang C-H, Kim H-E, Jeong S-H. Enhancement of bio-stability and mechanical properties of hyaluronic acid hydrogels by tannic acid treatment. Carbohydr Polym 2018; 186: 290-8.
[http://dx.doi.org/10.1016/j.carbpol.2018.01.056] [PMID: 29455990]
[55]
Mallesh K, Pasula N, Kumar Ranjith CP. Piroxicam proliposomal gel: A novel approach for tropical delivery. J Pharm Res 2012; 5(3): 1755-63.
[56]
George A, Shah PA, Shrivastav PS. Natural biodegradable polymers based nano-formulations for drug delivery: A review. Int J Pharm 2019; 561: 244-64.
[http://dx.doi.org/10.1016/j.ijpharm.2019.03.011] [PMID: 30851391]
[57]
Alam MM, Han HS, Sung S, et al. Endogenous inspired biomineral-installed hyaluronan nanoparticles as pH-responsive carrier of methotrexate for rheumatoid arthritis. J Control Release 2017; 252: 62-72.
[http://dx.doi.org/10.1016/j.jconrel.2017.03.012] [PMID: 28288894]
[58]
Hunt CA, Macgregor RD, Siegel RA. Engineering targeted in vivo drug delivery. I. The physiological and physicochemical principles governing opportunities and limitations. Pharm Res 1986; 3(6): 333-44.
[http://dx.doi.org/10.1023/A:1016332023234] [PMID: 24271832]
[59]
Farr M, GARVEY K, Bold A, Kendall M, Bacon P. Significance of the hydrogen ion concentration in synovial fluid. Clin Exp Rheumatol 1985; 3: 99-104.
[PMID: 4017318]
[60]
Zhang Y, Sun T, Jiang C. Biomacromolecules as carriers in drug delivery and tissue engineering. Acta Pharm Sin B 2018; 8(1): 34-50.
[http://dx.doi.org/10.1016/j.apsb.2017.11.005] [PMID: 29872621]
[61]
Raut S, Bhadoriya SS, Uplanchiwar V, Mishra V, Gahane A, Jain SK. Lecithin organogel: A unique micellar system for the delivery of bioactive agents in the treatment of skin aging. Acta Pharm Sin B 2012; 2(1): 8-15.
[http://dx.doi.org/10.1016/j.apsb.2011.12.005]
[62]
Owen SC, Fisher SA, Tam RY, Nimmo CM, Shoichet MS. Hyaluronic acid click hydrogels emulate the extracellular matrix. Langmuir 2013; 29(24): 7393-400.
[http://dx.doi.org/10.1021/la305000w] [PMID: 23343008]
[63]
Meyer K, Palmer JW. The polysaccharide of the vitreous humor. J Biol Chem 1934; 107(3): 629-34.
[http://dx.doi.org/10.1016/S0021-9258(18)75338-6]
[64]
Balazs EA, Laurent TC, Jeanloz RW. Nomenclature of hyaluronic acid. Biochem J 1986; 235(3): 903.
[http://dx.doi.org/10.1042/bj2350903] [PMID: 16744177]
[65]
Kirschning A, Bechthold AF-W, Rohr J. Chemical and biochemical aspects of deoxysugars and deoxysugar oligosaccharides bioorganic chemistry deoxysugars, polyketides and related classes: Synthesis, biosynthesis, Enzymes. Springer 1997; pp. 1-84. [Accessed March 12, 2020 Available from:https://link.springer.com/chapter/10.1007/BFb0119234
[66]
Huang G, Huang H. Application of hyaluronic acid as carriers in drug delivery. Drug Deliv 2018; 25(1): 766-72.
[http://dx.doi.org/10.1080/10717544.2018.1450910] [PMID: 29536778]
[67]
Tan H, Chu CR, Payne KA, Marra KG. Injectable in situ forming biodegradable chitosan-hyaluronic acid based hydrogels for cartilage tissue engineering. Biomaterials 2009; 30(13): 2499-506.
[http://dx.doi.org/10.1016/j.biomaterials.2008.12.080] [PMID: 19167750]
[68]
Florczyk SJ, Wang K, Jana S, et al. Porous chitosan-hyaluronic acid scaffolds as a mimic of glioblastoma microenvironment ECM. Biomaterials 2013; 34(38): 10143-50.
[http://dx.doi.org/10.1016/j.biomaterials.2013.09.034] [PMID: 24075410]
[69]
Nath SD, Abueva C, Kim B, Lee BT. Chitosan-hyaluronic acid polyelectrolyte complex scaffold crosslinked with genipin for immobilization and controlled release of BMP-2. Carbohydr Polym 2015; 115: 160-9.
[http://dx.doi.org/10.1016/j.carbpol.2014.08.077] [PMID: 25439881]
[70]
Barbucci R, Lamponi S, Borzacchiello A, et al. Hyaluronic acid hydrogel in the treatment of osteoarthritis. Biomaterials 2002; 23(23): 4503-13.
[http://dx.doi.org/10.1016/S0142-9612(02)00194-1] [PMID: 12322970]
[71]
Saadat E, Shakor N, Gholami M, Dorkoosh FA. Hyaluronic acid based micelle for articular delivery of triamcinolone, preparation, in vitro and in vivo evaluation. Int J Pharm 2015; 489(1-2): 218-25.
[http://dx.doi.org/10.1016/j.ijpharm.2015.05.001] [PMID: 25956051]
[72]
Moreland LW. Intra-articular hyaluronan (hyaluronic acid) and hylans for the treatment of osteoarthritis: Mechanisms of action. Arthritis Res Ther 2003; 5(2): 54-67.
[http://dx.doi.org/10.1186/ar623] [PMID: 12718745]
[73]
Jebens EH, Monk-Jones ME. On the viscosity and pH of synovial fluid and the pH of blood. J Bone Joint Surg Br 1959; 41-B(2): 388-400.
[http://dx.doi.org/10.1302/0301-620X.41B2.388] [PMID: 13641329]
[74]
Dahl LB, Dahl IM, Engström-Laurent A, Granath K. Concentration and molecular weight of sodium hyaluronate in synovial fluid from patients with rheumatoid arthritis and other arthropathies. Ann Rheum Dis 1985; 44(12): 817-22.
[http://dx.doi.org/10.1136/ard.44.12.817] [PMID: 4083937]
[75]
Lotz M, Loeser RF. Effects of aging on articular cartilage homeostasis. Bone 2012; 51(2): 241-8.
[http://dx.doi.org/10.1016/j.bone.2012.03.023] [PMID: 22487298]
[76]
Emerton KB, Drapeau SJ, Prasad H, et al. Regeneration of periodontal tissues in non-human primates with rhGDF-5 and beta-tricalcium phosphate. J Dent Res 2011; 90(12): 1416-21.
[http://dx.doi.org/10.1177/0022034511423665] [PMID: 21940517]
[77]
Forsey RW, Fisher J, Thompson J, Stone MH, Bell C, Ingham E. The effect of hyaluronic acid and phospholipid based lubricants on friction within a human cartilage damage model. Biomaterials 2006; 27(26): 4581-90.
[http://dx.doi.org/10.1016/j.biomaterials.2006.04.018] [PMID: 16701868]
[78]
Kim Y-J, Chae SY, Jin C-H, et al. Ionic complex systems based on hyaluronic acid and PEGylated TNF-related apoptosis-inducing ligand for treatment of rheumatoid arthritis. Biomaterials 2010; 31(34): 9057-64.
[http://dx.doi.org/10.1016/j.biomaterials.2010.08.015] [PMID: 20813405]
[79]
Gallo N, Nasser H, Salvatore L, et al. Hyaluronic acid for advanced therapies: Promises and challenges. Eur Polym J 2019; 117: 134-47.
[http://dx.doi.org/10.1016/j.eurpolymj.2019.05.007]
[80]
Van Nieuwenhuyzen W. The industrial uses of special lecithins: A review. J Am Oil Chem Soc 1981; 58(10): 886-8.
[http://dx.doi.org/10.1007/BF02659651]
[81]
Xu Q, Nakajima M, Liu Z, Shiina T. Soybean-based surfactants and their applications.Soybean-Applications and Technology. Intech Open 2011; pp. 341-64. Available from:https://www.intechopen.com/books/soybean-applications-and-technology/soybean-based-surfactants-and-their-applications
[82]
Fahy E, Subramaniam S, Murphy RC, et al. Update of the LIPID MAPS comprehensive classification system for lipids. J Lipid Res 2009; 50(Suppl.): S9-S14.
[http://dx.doi.org/10.1194/jlr.R800095-JLR200] [PMID: 19098281]
[83]
Pichot R, Watson RL, Norton IT. Phospholipids at the interface: Current trends and challenges. Int J Mol Sci 2013; 14(6): 11767-94.
[http://dx.doi.org/10.3390/ijms140611767] [PMID: 23736688]
[84]
Joshi A, Paratkar SG, Thorat BN. Modification of lecithin by physical, chemical and enzymatic methods. Eur J Lipid Sci Technol 2006; 108(4): 363-73.
[http://dx.doi.org/10.1002/ejlt.200600016]
[85]
Valenta C, Janisch M. Permeation of cyproterone acetate through pig skin from different vehicles with phospholipids. Int J Pharm 2003; 258(1-2): 133-9.
[http://dx.doi.org/10.1016/S0378-5173(03)00180-7] [PMID: 12753760]
[86]
Kaiser N, Kimpfler A, Massing U, et al. 5-Fluorouracil in vesicular phospholipid gels for anticancer treatment: Entrapment and release properties. Int J Pharm 2003; 256(1-2): 123-31.
[http://dx.doi.org/10.1016/S0378-5173(03)00069-3] [PMID: 12695018]
[87]
Tiemessen H, van Hoogevest P, Leigh ML. Characteristics of a novel phospholipid-based depot injectable technology for poorly water-soluble drugs. Eur J Pharm Biopharm 2004; 58(3): 587-93.
[http://dx.doi.org/10.1016/j.ejpb.2004.04.002] [PMID: 15451533]
[88]
Lin C-C, Lin H-Y, Chen H-C, Yu M-W, Lee M-H. Stability and characterisation of phospholipid-based curcumin-encapsulated microemulsions. Food Chem 2009; 116(4): 923-8.
[http://dx.doi.org/10.1016/j.foodchem.2009.03.052]
[89]
Han F, Yin R, Che X, et al. Nanostructured lipid carriers (NLC) based topical gel of flurbiprofen: Design, characterization and in vivo evaluation. Int J Pharm 2012; 439(1-2): 349-57.
[http://dx.doi.org/10.1016/j.ijpharm.2012.08.040] [PMID: 22989987]
[90]
Chang LC, Chang YY, Gau CS. Interfacial properties of Pluronics and the interactions between Pluronics and cholesterol/DPPC mixed monolayers. J Colloid Interface Sci 2008; 322(1): 263-73.
[http://dx.doi.org/10.1016/j.jcis.2008.02.051] [PMID: 18377918]
[91]
Kabanov AV, Batrakova EV, Alakhov VY. Pluronic block copolymers for overcoming drug resistance in cancer. Adv Drug Deliv Rev 2002; 54(5): 759-79.
[http://dx.doi.org/10.1016/S0169-409X(02)00047-9] [PMID: 12204601]
[92]
Batrakova EV, Kabanov AV. Pluronic block copolymers: evolution of drug delivery concept from inert nanocarriers to biological response modifiers. J Control Release 2008; 130(2): 98-106.
[http://dx.doi.org/10.1016/j.jconrel.2008.04.013] [PMID: 18534704]
[93]
Schmolka IR. A review of block polymer surfactants. J Am Oil Chem Soc 1977; 54(3): 110-6.
[http://dx.doi.org/10.1007/BF02894385]
[94]
Ur-Rehman T, Tavelin S, Gröbner G. Effect of DMSO on micellization, gelation and drug release profile of Poloxamer 407. Int J Pharm 2010; 394(1-2): 92-8.
[http://dx.doi.org/10.1016/j.ijpharm.2010.05.012] [PMID: 20472044]
[95]
Alakhov V, Klinski E, Lemieux P, Pietrzynski G, Kabanov A. Block copolymeric biotransport carriers as versatile vehicles for drug delivery. Expert Opin Biol Ther 2001; 1(4): 583-602.
[http://dx.doi.org/10.1517/14712598.1.4.583] [PMID: 11727496]
[96]
Jeong B, Gutowska A. Lessons from nature: stimuli-responsive polymers and their biomedical applications. Trends Biotechnol 2002; 20(7): 305-11.
[http://dx.doi.org/10.1016/S0167-7799(02)01962-5] [PMID: 12062976]
[97]
Batrakova E, Lee S, Li S, Venne A, Alakhov V, Kabanov A. Fundamental relationships between the composition of pluronic block copolymers and their hypersensitization effect in MDR cancer cells. Pharm Res 1999; 16(9): 1373-9.
[http://dx.doi.org/10.1023/A:1018942823676] [PMID: 10496652]
[98]
Kabanov AV, Nazarova IR, Astafieva IV, et al. Micelle formation and solubilization of fluorescent probes in poly (oxyethylene-b-oxypropylene-b-oxyethylene) solutions. Macromolecules 1995; 28(7): 2303-14.
[http://dx.doi.org/10.1021/ma00111a026]
[99]
Tatini D, Tempesti P, Ridi F, Fratini E, Bonini M, Baglioni P. Pluronic/gelatin composites for controlled release of actives. Colloids Surf B Biointerfaces 2015; 135: 400-7.
[http://dx.doi.org/10.1016/j.colsurfb.2015.08.002] [PMID: 26277715]
[100]
Rapoport N. Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery. Prog Polym Sci 2007; 32(8-9): 962-90.
[http://dx.doi.org/10.1016/j.progpolymsci.2007.05.009]
[101]
Bodratti AM, Alexandridis P. Formulation of poloxamers for drug delivery. J Funct Biomater 2018; 9(1): 11.
[http://dx.doi.org/10.3390/jfb9010011] [PMID: 29346330]
[102]
Diniz IM, Chen C, Xu X, et al. Pluronic F-127 hydrogel as a promising scaffold for encapsulation of dental-derived mesenchymal stem cells. J Mater Sci Mater Med 2015; 26(3): 153.
[http://dx.doi.org/10.1007/s10856-015-5493-4] [PMID: 25773231]
[103]
Tharmalingam T, Ghebeh H, Wuerz T, Butler M. Pluronic enhances the robustness and reduces the cell attachment of mammalian cells. Mol Biotechnol 2008; 39(2): 167-77.
[http://dx.doi.org/10.1007/s12033-008-9045-8] [PMID: 18327558]
[104]
Curry DJ, Wright DA, Lee RC, Kang UJ, Frim DM. Surfactant poloxamer 188-related decreases in inflammation and tissue damage after experimental brain injury in rats. J Neurosurg 2004; 101(1)(Suppl.): 91-6.
[PMID: 16206978]
[105]
Jackson JK, Springate CM, Hunter WL, Burt HM. Neutrophil activation by plasma opsonized polymeric microspheres: Inhibitory effect of pluronic F127. Biomaterials 2000; 21(14): 1483-91.
[http://dx.doi.org/10.1016/S0142-9612(00)00034-X] [PMID: 10872777]
[106]
Escobar-Chávez JJ, Quintanar-Guerrero D, Ganem-Quintanar A. In vivo skin permeation of sodium naproxen formulated in pluronic F-127 gels: Effect of Azone and Transcutol. Drug Dev Ind Pharm 2005; 31(4-5): 447-54.
[http://dx.doi.org/10.1080/03639040500214662] [PMID: 16093210]
[107]
Sharma K, Singh V, Arora A. Natural biodegradable polymers as matrices in transdermal drug delivery. Int J Drug Dev Res 2011; 3: 85-103.
[108]
Schmitt F, Lagopoulos L, Käuper P, et al. Chitosan-based nanogels for selective delivery of photosensitizers to macrophages and improved retention in and therapy of articular joints. J Control Release 2010; 144(2): 242-50.
[http://dx.doi.org/10.1016/j.jconrel.2010.02.008] [PMID: 20152870]
[109]
Xie W, Xu P, Liu Q. Antioxidant activity of water-soluble chitosan derivatives. Bioorg Med Chem Lett 2001; 11(13): 1699-701.
[http://dx.doi.org/10.1016/S0960-894X(01)00285-2] [PMID: 11425541]
[110]
Comblain F, Rocasalbas G, Gauthier S, Henrotin Y. Chitosan: A promising polymer for cartilage repair and viscosupplementation. Biomed Mater Eng 2017; 28(s1): S209-15.
[http://dx.doi.org/10.3233/BME-171643] [PMID: 28372297]
[111]
Kim S. Competitive biological activities of chitosan and its derivatives: Antimicrobial, antioxidant, anticancer, and anti-inflammatory activities. Int J Polym Sci 2018; 1708172: 13.
[http://dx.doi.org/10.1155/2018/1708172]
[112]
Dutta J, Tripathi S, Dutta PK. Progress in antimicrobial activities of chitin, chitosan and its oligosaccharides: a systematic study needs for food applications. Food Sci Technol Int 2012; 18(1): 3-34.
[http://dx.doi.org/10.1177/1082013211399195] [PMID: 21954316]
[113]
Ren K, Dusad A, Dong R, Quan L. Albumin as a delivery carrier for rheumatoid arthritis. J Nanomed Nanotechnol 2013; 4(4): 176.
[114]
Lee P, Wu X. Review: Modifications of human serum albumin and their binding effect. Curr Pharm Des 2015; 21(14): 1862-5.
[http://dx.doi.org/10.2174/1381612821666150302115025] [PMID: 25732553]
[115]
Weber C, Coester C, Kreuter J, Langer K. Desolvation process and surface characterisation of protein nanoparticles. Int J Pharm 2000; 194(1): 91-102.
[http://dx.doi.org/10.1016/S0378-5173(99)00370-1] [PMID: 10601688]
[116]
Ahmed F, Husain Q. Suppression in advanced glycation adducts of human serum albumin by bio-enzymatically synthesized gold and silver nanoformulations: A potential tool to counteract hyperglycemic condition. Biochimie 2019; 162: 66-76.
[http://dx.doi.org/10.1016/j.biochi.2019.04.004] [PMID: 30959081]
[117]
Das RP, Gandhi VV, Singh BG, Kunwar A, Kumar NN, Priyadarsini K. Preparation of albumin nanoparticles: Optimum size for cellular uptake of entrapped drug (Curcumin). Colloids Surf A Physicochem Eng Asp 2019; 567: 86-95.
[http://dx.doi.org/10.1016/j.colsurfa.2019.01.043]
[118]
Arroyo V, García-Martinez R, Salvatella X. Human serum albumin, systemic inflammation, and cirrhosis. J Hepatol 2014; 61(2): 396-407.
[http://dx.doi.org/10.1016/j.jhep.2014.04.012] [PMID: 24751830]
[119]
Bar-Or D, Thomas GW, Rael LT, Gersch ED, Rubinstein P, Brody E. Low molecular weight fraction of commercial human serum albumin induces morphologic and transcriptional changes of bone marrow-derived mesenchymal stem cells. Stem Cells Transl Med 2015; 4(8): 945-55.
[http://dx.doi.org/10.5966/sctm.2014-0293] [PMID: 26041739]
[120]
Sah E, Sah H. Recent trends in preparation of poly (lactide-co-glycolide) nanoparticles by mixing polymeric organic solution with antisolvent. J Nanomater 2015; 794601: 22.
[http://dx.doi.org/10.1155/2015/794601]
[121]
Luis de Redín I, Boiero C, Martínez-Ohárriz MC, et al. Human serum albumin nanoparticles for ocular delivery of bevacizumab. Int J Pharm 2018; 541(1-2): 214-23.
[http://dx.doi.org/10.1016/j.ijpharm.2018.02.003] [PMID: 29481946]
[122]
Allahyari M, Mohit E. Peptide/protein vaccine delivery system based on PLGA particles. Hum Vaccin Immunother 2016; 12(3): 806-28.
[http://dx.doi.org/10.1080/21645515.2015.1102804] [PMID: 26513024]
[123]
Sahoo SK, Ma W, Labhasetwar V. Efficacy of transferrin-conjugated paclitaxel-loaded nanoparticles in a murine model of prostate cancer. Int J Cancer 2004; 112(2): 335-40.
[http://dx.doi.org/10.1002/ijc.20405] [PMID: 15352049]
[124]
Sahu P, Kashaw SK, Jain S, Sau S, Iyer AK. Assessment of penetration potential of pH responsive double walled biodegradable nanogels coated with eucalyptus oil for the controlled delivery of 5-fluorouracil: In vitro and ex vivo studies. J Control Release 2017; 253: 122-36.
[http://dx.doi.org/10.1016/j.jconrel.2017.03.023] [PMID: 28322977]
[125]
Nimesh S. Poly (D, L-lactide-co-glycolide)-based nanoparticles.Woodhead Publishing series in biomedicine, gene therapy. Sawston: Woodhead Publishing 2013; pp. 309-29.
[126]
Avgoustakis K. Polylactic-co-glycolic acid (PLGA)Encyclopedia of biomaterials and biomedical engineering.Encyclopedia of Biomaterials and Biomedical Engineering. UK: Informa Healthcare 2005; 1: pp. 1-11.
[127]
Chereddy KK, Payen VL, Préat V. PLGA: From a classic drug carrier to a novel therapeutic activity contributor. J Control Release 2018; 289: 10-3.
[http://dx.doi.org/10.1016/j.jconrel.2018.09.017] [PMID: 30244137]
[128]
Makadia HK, Siegel SJ. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers (Basel) 2011; 3(3): 1377-97.
[http://dx.doi.org/10.3390/polym3031377] [PMID: 22577513]
[129]
Rezvantalab S, Drude NI, Moraveji MK, et al. PLGA-based nanoparticles in cancer treatment. Front Pharmacol 2018; 9: 1260.
[http://dx.doi.org/10.3389/fphar.2018.01260] [PMID: 30450050]
[130]
Gentile P, Chiono V, Carmagnola I, Hatton PV. An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Int J Mol Sci 2014; 15(3): 3640-59.
[http://dx.doi.org/10.3390/ijms15033640] [PMID: 24590126]
[131]
Singh G, Kaur T, Kaur R, Kaur A. Recent biomedical applications and patents on biodegradable polymer-PLGA. Int J Pharm Pharm Sci 2014; 1(2): 30-42.
[132]
Chronopoulou L, Domenici F, Giantulli S, et al. PLGA based particles as “drug reservoir” for antitumor drug delivery: characterization and cytotoxicity studies. Colloids Surf B Biointerfaces 2019; 180: 495-502.
[http://dx.doi.org/10.1016/j.colsurfb.2019.05.006] [PMID: 31103709]
[133]
Wei J, Wang H, Zhu M, et al. Janus nanogels of PEGylated Taxol and PLGA-PEG-PLGA copolymer for cancer therapy. Nanoscale 2013; 5(20): 9902-7.
[http://dx.doi.org/10.1039/c3nr02937a] [PMID: 23982346]
[134]
Pan Z, Ding J. Poly(lactide-co-glycolide) porous scaffolds for tissue engineering and regenerative medicine. Interface Focus 2012; 2(3): 366-77.
[http://dx.doi.org/10.1098/rsfs.2011.0123] [PMID: 23741612]
[135]
Wang Z, Zhang Z, Zhang J, She Z, Ding J. Distribution of bone marrow stem cells in large porous polyester scaffolds. Chin Sci Bull 2009; 54(17): 2968-75.
[http://dx.doi.org/10.1007/s11434-009-0181-8]
[136]
Fan H, Hu Y, Zhang C, et al. Cartilage regeneration using mesenchymal stem cells and a PLGA-gelatin/chondroitin/hyaluronate hybrid scaffold. Biomaterials 2006; 27(26): 4573-80.
[http://dx.doi.org/10.1016/j.biomaterials.2006.04.013] [PMID: 16720040]
[137]
Ge Z, Tian X, Heng BC, Fan V, Yeo JF, Cao T. Histological evaluation of osteogenesis of 3D-printed poly-lactic-co-glycolic acid (PLGA) scaffolds in a rabbit model. Biomed Mater 2009; 4(2): 021001.
[http://dx.doi.org/10.1088/1748-6041/4/2/021001] [PMID: 19208943]
[138]
Shuqiang M, Kunzheng W, Xiaoqiang D, Wei W, Mingyu Z, Daocheng W. Osteogenic growth peptide incorporated into PLGA scaffolds accelerates healing of segmental long bone defects in rabbits. Journal of plastic, reconstructive aesthetic surgery 2008; 61(12): 1558-60.
[http://dx.doi.org/10.1016/j.bjps.2008.03.040]
[139]
Huang W, Shi X, Ren L, Du C, Wang Y. PHBV microspheres--PLGA matrix composite scaffold for bone tissue engineering. Biomaterials 2010; 31(15): 4278-85.
[http://dx.doi.org/10.1016/j.biomaterials.2010.01.059] [PMID: 20199806]
[140]
Lupton JR, Alster TS. Cutaneous hypersensitivity reaction to injectable hyaluronic acid gel. Dermatol Surg 2000; 26(2): 135-7.
[http://dx.doi.org/10.1046/j.1524-4725.2000.99202.x] [PMID: 10691942]
[141]
Isailovic TM, Todosijevic MN, Dordevic SM, Savic SD. Natural surfactants-based micro/nanoemulsion systems for NSAIDs—practical formulation approach, physicochemical and biopharmaceutical characteristics/performances.Microsized and Nanosized Carriers for Nonsteroidal Anti-Inflammatory Drugs. London: Academic Press 2017; pp. 179-217.
[http://dx.doi.org/10.1016/B978-0-12-804017-1.00007-8]
[142]
Lippens E, Swennen I, Gironès J, et al. Cell survival and proliferation after encapsulation in a chemically modified Pluronic(R) F127 hydrogel. J Biomater Appl 2013; 27(7): 828-39.
[http://dx.doi.org/10.1177/0885328211427774] [PMID: 22090430]
[143]
Chambers P, McCarthy HO, Dunne NJ. Emerging areas of bone repair materials: nucleic acid therapy and drug delivery.Bone Repair Biomaterials. Elsevier 2019; pp. 411-46.
[http://dx.doi.org/10.1016/B978-0-08-102451-5.00016-0]
[144]
Wang S, Liu S, Zhang Y, He J, Coy DH, Sun L. Human serum albumin (HSA) and its applications as a drug delivery vehicle. Health Sci J 2020; 14(2): 1-8.
[145]
Bairagi U, Mittal P, Mishra B. Albumin: A versatile drug carrier Austin therapeutics. 2015; 2(2): 1021-27.
[146]
Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Préat V. PLGA-based nanoparticles: An overview of biomedical applications. J Control Release 2012; 161(2): 505-22.
[http://dx.doi.org/10.1016/j.jconrel.2012.01.043] [PMID: 22353619]