Anti-Cancer Agents in Medicinal Chemistry

Author(s): Mohd Mughees and Saima Wajid*

DOI: 10.2174/1871520620666200619171616

Herbal Based Polymeric Nanoparticles as a Therapeutic Remedy for Breast Cancer

Page: [433 - 444] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Background: The currently available anti breast cancer agents as well as conventional drug delivery methods have some limitations.

Objective: In view of these limitations, researchers used phytochemicals/herbal extracts as anti-breast cancer agents together with the polymeric nanoparticles to provide an effective way of targeted drug delivery with lesser /no side effects.

Methods: The literature for this review was searched during the year 2015 to 2019, using the keywords, ‘ ‘breast cancer’, ‘breast cancer and its current treatments’, ‘plants against the breast cancer’, ‘polymeric nanoparticles’, ‘herbal based polymeric nanoparticles’. The databases i.e., PubMed, Science Direct, and Google Scholar, were used for collecting the information.

Results: In the present review, an attempt was made to summarize the potential of herbal-based nanoformulation as a specific and high efficacy therapeutic strategy in order to pave the way for future research involving screening and use of herbal nanoparticles for the treatment of breast cancer.

Conclusion: The encapsulation of the herbal extract in the polymeric nanoparticles is the prominent, effective, and emerging way of targeted drug delivery for cancer. It may serve as a safer way of targeted drug delivery and maybe the answer to the complications related to the currently available anti-breast cancer agents as well as limitations of the conventional method of drug delivery.

Keywords: Breast cancer, herbal, polymeric nanoparticles, tumor micro-environment, phytochemicals, targeted drug delivery.

Graphical Abstract

[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin.,, 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
International Agency for Research on Cancer. Latest global cancer data: Cancer burden rises to 18.1 million new cases and 9.6 million cancer deaths. Press Release,, 2018.
[3]
Rajpal, S.; Kumar, A.; Joe, W. Economic burden of cancer in India: Evidence from cross-sectional nationally representative household survey, 2014. PLoS One, 2018, 13(2)e0193320
[http://dx.doi.org/10.1371/journal.pone.0193320] [PMID: 29481563]
[4]
Sandhu, G.S.; Erqou, S.; Patterson, H.; Mathew, A. Prevalence of triple-negative breast cancer in India: Systematic review and meta-analysis. J. Glob. Oncol., 2016, 2(6), 412-421.
[http://dx.doi.org/10.1200/JGO.2016.005397] [PMID: 28717728]
[5]
Greenwell, M.; Rahman, P.K.S.M. Medicinal plants: Their use in anticancer treatment. Int. J. Pharm. Sci. Res., 2015, 6(10), 4103-4112.
[PMID: 26594645]
[6]
Ke, X.; Shen, L. Molecular targeted therapy of cancer: The progress and future prospect. Front. Lab. Med., 2017, 1(2), 69-75.
[7]
Torre, L.A.; Islami, F.; Siegel, R.L.; Ward, E.M.; Jemal, A. Global cancer in women: burden and trends. Cancer Epidemiol. Biomark. Prev., 2017, 26(4), 444-457.,
[http://dx.doi.org/10.1158/1055-9965.EPI-16-0858]
[9]
Sun, Y.S.; Zhao, Z.; Yang, Z.N.; Xu, F.; Lu, H.J.; Zhu, Z.Y.; Shi, W.; Jiang, J.; Yao, P.P.; Zhu, H.P. Risk factors and preventions of breast cancer. Int. J. Biol. Sci., 2017, 13(11), 1387-1397.
[http://dx.doi.org/10.7150/ijbs.21635] [PMID: 29209143]
[10]
Dieterich, M.; Stubert, J.; Reimer, T.; Erickson, N.; Berling, A. Influence of lifestyle factors on breast cancer risk. Breast Care (Basel), 2014, 9(6), 407-414.
[http://dx.doi.org/10.1159/000369571] [PMID: 25759623]
[11]
He, K.Y.; Ge, D.; He, M.M. Big data analytics for genomic medicine. Int. J. Mol. Sci., 2017, 18(2), 412.
[http://dx.doi.org/10.3390/ijms18020412] [PMID: 28212287]
[12]
Ozaslan, C.; Kuru, B. Lymphedema after treatment of breast cancer. Am. J. Surg., 2004, 187(1), 69-72.
[http://dx.doi.org/10.1016/j.amjsurg.2002.12.003] [PMID: 14706589]
[13]
Kalinski, P.; Muthuswamy, R.; Urban, J. Dendritic cells in cancer immunotherapy: Vaccines and combination immunotherapies. Expert Rev. Vaccines, 2013, 12(3), 285-295.
[http://dx.doi.org/10.1586/erv.13.22] [PMID: 23496668]
[14]
Bhullar, K.S.; Lagarón, N.O.; McGowan, E.M.; Parmar, I.; Jha, A.; Hubbard, B.P.; Rupasinghe, H.P.V. Kinase-targeted cancer therapies: progress, challenges and future directions. Mol. Cancer, 2018, 17(1), 48.
[http://dx.doi.org/10.1186/s12943-018-0804-2] [PMID: 29455673]
[15]
Turdo, A.; Veschi, V.; Gaggianesi, M.; Chinnici, A.; Bianca, P.; Todaro, M.; Stassi, G. Meeting the challenge of targeting cancer stem cells. Front. Cell Dev. Biol., 2019, 7, 16.
[http://dx.doi.org/10.3389/fcell.2019.00016] [PMID: 30834247]
[16]
Seca, A.M.L.; Pinto, D.C.G.A. Plant secondary metabolites as anticancer agents: Successes in clinical trials and therapeutic application. Int. J. Mol. Sci., 2018, 19(1), 263.
[http://dx.doi.org/10.3390/ijms19010263] [PMID: 29337925]
[17]
Block, K.I.; Gyllenhaal, C.; Lowe, L.; Amedei, A.; Amin, A.R.; Amin, A.; Ashraf, S.S. A broad-spectrum integrative design for cancer prevention and therapy. Semin. Cancer Biol., 2015, 35(Suppl.), S276.
[18]
Grosso, G. Dietary Antioxidants and Prevention of Non-Communicable Diseases.Antioxidants, 2018, 7(7), 94.,
[http://dx.doi.org/10.3390/antiox7070094]
[19]
Bailly, C. Ready for a comeback of natural products in oncology. Biochem. Pharmacol., 2009, 77(9), 1447-1457.
[http://dx.doi.org/10.1016/j.bcp.2008.12.013] [PMID: 19161987]
[20]
Reuben, S.C.; Gopalan, A.; Petit, D.M.; Bishayee, A. Modulation of angiogenesis by dietary phytoconstituents in the prevention and intervention of breast cancer. Mol. Nutr. Food Res., 2012, 56(1), 14-29.
[http://dx.doi.org/10.1002/mnfr.201100619] [PMID: 22125182]
[21]
Imran, M.; Ullah, A.; Saeed, F.; Nadeem, M.; Arshad, M.U.; Suleria, H.A.R. Cucurmin, anticancer, & antitumor perspectives: A comprehensive review. Crit. Rev. Food Sci. Nutr., 2018, 58(8), 1271-1293.
[http://dx.doi.org/10.1080/10408398.2016.1252711] [PMID: 27874279]
[22]
Chirumbolo, S.; Bjørklund, G.; Lysiuk, R.; Vella, A.; Lenchyk, L.; Upyr, T. Targeting cancer with phytochemicals via their fine tuning of the cell survival signaling pathways. Int. J. Mol. Sci., 2018, 19(11), 3568.
[http://dx.doi.org/10.3390/ijms19113568] [PMID: 30424557]
[23]
Lichota, A.; Gwozdzinski, K. Anticancer activity of natural compounds from plant and marine environment.Int. J. Mol. Sci.,, 2018, 19(11), 3533.
[http://dx.doi.org/10.3390/ijms19113533] [PMID: 30423952]
[24]
Shoeb, M. Anti-cancer agents from medicinal plants. Bangladesh J. Pharmacol., 2006, 1(2), 35-41.
[25]
Ardalani, H.; Avan, A.; Ghayour-Mobarhan, M. Podophyllotoxin: A novel potential natural anticancer agent. Avicenna J. Phytomed., 2017, 7(4), 285-294.
[PMID: 28884079]
[26]
Wang, Y.R.; Chen, S.F.; Wu, C.C.; Liao, Y.W.; Lin, T.S.; Liu, K.T.; Chen, Y.S.; Li, T.K.; Chien, T.C.; Chan, N.L. Producing irreversible topoisomerase II-mediated DNA breaks by site-specific Pt(II)-methionine coordination chemistry. Nucleic Acids Res., 2017, 45(18), 10861-10871.
[http://dx.doi.org/10.1093/nar/gkx742] [PMID: 28977631]
[27]
Li, F.; Jiang, T.; Li, Q.; Ling, X. Camptothecin (CPT) and its derivatives are known to target Topoisomerase I (Top1) as their mechanism of action: Did we miss something in CPT analogue molecular targets for treating human disease such as cancer? Am. J. Cancer Res., 2017, 7(12), 2350-2394.
[PMID: 29312794]
[28]
Martino, E.; Della Volpe, S.; Terribile, E.; Benetti, E.; Sakaj, M.; Centamore, A.; Sala, A.; Collina, S. The long story of camptothecin: From traditional medicine to drugs. Bioorg. Med. Chem. Lett., 2017, 27(4), 701-707.
[http://dx.doi.org/10.1016/j.bmcl.2016.12.085] [PMID: 28073672]
[29]
Kumar, V.; Guru, S.K.; Jain, S.K.; Joshi, P.; Gandhi, S.G.; Bharate, S.B.; Bhushan, S.; Bharate, S.S.; Vishwakarma, R.A. A chromatography-free isolation of rohitukine from leaves of Dysoxylum binectariferum: Evaluation for in vitro cytotoxicity, Cdk inhibition and physicochemical properties. Bioorg. Med. Chem. Lett., 2016, 26(15), 3457-3463.
[http://dx.doi.org/10.1016/j.bmcl.2016.06.046] [PMID: 27363938]
[30]
Zhang, T.; Shen, S.; Zhu, Z.; Lu, S.; Yin, X.; Zheng, J.; Jin, J. Homoharringtonine binds to and increases myosin-9 in myeloid leukaemia. Br. J. Pharmacol., 2016, 173(1), 212-221.
[http://dx.doi.org/10.1111/bph.13359] [PMID: 26448459]
[31]
Park, E.J.; Min, K.J.; Lee, T.J.; Yoo, Y.H.; Kim, Y.S.; Kwon, T.K. β-Lapachone induces programmed necrosis through the RIP1-PARP-AIF-dependent pathway in human hepatocellular carcinoma SK-Hep1 cells. Cell Death Dis., 2014, 5(5)e1230
[http://dx.doi.org/10.1038/cddis.2014.202] [PMID: 24832602]
[32]
Pham, H.N.T.; Sakoff, J.A.; Vuong, Q.V.; Bowyer, M.C.; Scarlett, C.J. Comparative cytotoxic activity between kaempferol and gallic acid against various cancer cell lines. Data Brief, 2018, 21, 1033-1036.
[http://dx.doi.org/10.1016/j.dib.2018.10.121] [PMID: 30450396]
[33]
Mughees, M.; Samim, M.; Ahmad, S.; Wajid, S. Comparative analysis of the cytotoxic activity of extracts from different parts of A. absinthium L. on breast cancer cell lines and correlation with active compounds concentration. Plant Biosyst.-. Int. J. Dealing Asp. Plant Biol., 2019, 153(4), 569-579.
[34]
Mughees, M.; Wajid, S. Evaluation of cytotoxicity of different part extracts of Ipomoea turpethum against breast cancer cell lines. J. Environ. Pathol. Toxicol. Oncol., In press
[http://dx.doi.org/10.1615/JEnvironPatholToxicolOncol.2020031451]
[35]
Zhang, W.K.; Xu, J.K.; Tian, H.Y.; Wang, L.; Zhang, X.Q.; Xiao, X.Z.; Li, P.; Ye, W.C. Two new vinblastine-type N-oxide alkaloids from Catharanthus roseus. Nat. Prod. Res., 2013, 27(20), 1911-1916.
[http://dx.doi.org/10.1080/14786419.2013.790029] [PMID: 23621523]
[36]
Zhou, Q.M.; Sun, Y.; Lu, Y.Y.; Zhang, H.; Chen, Q.L.; Su, S.B. Curcumin reduces mitomycin C resistance in breast cancer stem cells by regulating Bcl-2 family-mediated apoptosis. Cancer Cell Int., 2017, 17(1), 84.
[http://dx.doi.org/10.1186/s12935-017-0453-3] [PMID: 28959140]
[37]
Zu, Y.; Yu, H.; Liang, L.; Fu, Y.; Efferth, T.; Liu, X.; Wu, N. Activities of ten essential oils towards Propionibacterium acnes and PC-3, A-549 and MCF-7 cancer cells. Molecules, 2010, 15(5), 3200-3210.
[http://dx.doi.org/10.3390/molecules15053200] [PMID: 20657472]
[38]
Ezzat, S.M.; Shouman, S.A.; Elkhoely, A.; Attia, Y.M.; Elsesy, M.S.; El Senousy, A.S.; Choucry, M.A.; El Gayed, S.H.; El Sayed, A.A.; Sattar, E.A.; El Tanbouly, N. Anticancer potentiality of lignan rich fraction of six Flaxseed cultivars. Sci. Rep., 2018, 8(1), 544.
[http://dx.doi.org/10.1038/s41598-017-18944-0] [PMID: 29323210]
[39]
Aghaei, M.; Ghanadian, M.; Sajjadi, S.E.; Saghafian, R.; Keyvanloo Shahrestanaki, M. Pimpinelol, a novel atypical Sesquiterpene lactone from Pimpinella haussknechtii fruits with evaluation of endoplasmic reticulum stress in breast cancer cells. Fitoterapia, 2018, 129, 198-202.
[http://dx.doi.org/10.1016/j.fitote.2018.06.024] [PMID: 29959054]
[40]
Periasamy, V.S.; Athinarayanan, J.; Alshatwi, A.A. Anticancer activity of an ultrasonic nanoemulsion formulation of Nigella sativa L. essential oil on human breast cancer cells. Ultrason. Sonochem., 2016, 31, 449-455.
[http://dx.doi.org/10.1016/j.ultsonch.2016.01.035] [PMID: 26964971]
[41]
Zhou, R.; Xu, L.; Ye, M.; Liao, M.; Du, H.; Chen, H. Formononetin inhibits migration and invasion of MDA-MB-231 and 4T1 breast cancer cells by suppressing MMP-2 and MMP-9 through PI3K/AKT signaling pathways. Horm. Metab. Res., 2014, 46(11), 753-760.
[http://dx.doi.org/10.1055/s-0034-1376977] [PMID: 24977660]
[42]
Ghafari, F.; Rajabi, M.R.; Mazoochi, T.; Taghizadeh, M.; Nikzad, H.; Atlasi, M.A.; Taherian, A. Comparing apoptosis and necrosis effects of Arctium lappa root extract and doxorubicin on MCF7 and MDA-MB-231 cell lines. Asian Pac. J. Cancer Prevent.: APJCP, 2017, 18(3), 795.
[43]
Rafieian-Kopaei, M.; Movahedi, M. Breast cancer chemopreventive and chemotherapeutic effects of Camellia sinensis (green tea): An updated review. Electron. Physician, 2017, 9(2), 3838-3844.
[http://dx.doi.org/10.19082/3838] [PMID: 28465816]
[44]
Srdic-Rajic, T.; Santibañez, J.F.; Kanjer, K.; Tisma-Miletic, N.; Cavic, M.; Galun, D.; Jevric, M.; Kardum, N.; Konic-Ristic, A.; Zoranovic, T. Iscador Qu inhibits doxorubicin-induced senescence of MCF7 cells. Sci. Rep., 2017, 7(1), 3763.
[http://dx.doi.org/10.1038/s41598-017-03898-0] [PMID: 28630419]
[45]
Salim, A.A.; Chai, H.B.; Rachman, I.; Riswan, S.; Kardono, L.B.; Farnsworth, N.R.; Carcache-Blanco, E.J.; Kinghorn, A.D. Constituents of the leaves and stem bark of Aglaia foveolata. Tetrahedron, 2007, 63(33), 7926-7934.
[http://dx.doi.org/10.1016/j.tet.2007.05.074] [PMID: 18698338]
[46]
Wang, Y.; Liu, L.; Ji, F.; Jiang, J.; Yu, Y.; Sheng, S.; Li, H. Soybean (Glycine max) prevents the progression of breast cancer cells by downregulating the level of histone demethylase JMJD5. J. Cancer Res. Ther., 2018, 14(10)(Suppl.), S609-S615.
[http://dx.doi.org/10.4103/0973-1482.187292] [PMID: 30249876]
[47]
Benarba, B. Use of medicinal plants by breast cancer patients in Algeria. EXCLI J., 2015, 14, 1164-1166.
[PMID: 26713086]
[48]
Noratto, G.; Porter, W.; Byrne, D.; Cisneros-Zevallos, L. Polyphenolics from peach (Prunus persica var. Rich Lady) inhibit tumor growth and metastasis of MDA-MB-435 breast cancer cells in vivo. J. Nutr. Biochem., 2014, 25(7), 796-800.
[http://dx.doi.org/10.1016/j.jnutbio.2014.03.001] [PMID: 24745759]
[49]
El Khalki, L.; Tilaoui, M.; Jaafari, A.; Ait Mouse, H.; Zyad, A. Studies on the dual cytotoxicity and antioxidant properties of Berberis vulgaris extracts and its main constituent berberine. Adv. Pharmacol. Sci., 2018, 20183018498
[http://dx.doi.org/10.1155/2018/3018498] [PMID: 29805448]
[50]
Baraya, Y.U.S.A.B.; Wong, K.K.; Yaacob, N.S. The immunomodulatory potential of selected bioactive plant-based compounds in breast cancer: A review. Anti-Cancer Agents Med. Chem.,, 2017, 17(6), 770-783.
[http://dx.doi.org/10.2174/1871520616666160817111242]
[51]
Variya, B.C.; Bakrania, A.K.; Patel, S.S. Emblica officinalis (Amla): A review for its phytochemistry, ethnomedicinal uses and medicinal potentials with respect to molecular mechanisms. Pharmacol. Res., 2016, 111, 180-200.
[http://dx.doi.org/10.1016/j.phrs.2016.06.013] [PMID: 27320046]
[52]
Kılıç, M.Ö.; Yalaza, M.; Bilgiç, C.İ.; Dener, C. Docetaxel-induced scleroderma in a breast cancer patient: A case report. J. Breast Health, 2015, 11(2), 95-97.
[http://dx.doi.org/10.5152/tjbh.2015.1879] [PMID: 28331700]
[53]
Arulkumaran, S.; Ramprasath, V.R.; Shanthi, P.; Sachdanandam, P. Restorative effect of Kalpaamruthaa, an indigenous preparation, on oxidative damage in mammary gland mitochondrial fraction in experimental mammary carcinoma. Mol. Cell. Biochem., 2006, 291(1-2), 77-82.
[http://dx.doi.org/10.1007/s11010-006-9199-2] [PMID: 16953336]
[54]
Shareef, M.; Ashraf, M.A.; Sarfraz, M. Natural cures for breast cancer treatment.Saudi Pharmaceut. J.,, 2016, 24, 233-240.
[http://dx.doi.org/10.1016/j.jsps.2016.04.018]
[55]
El-shiekh, R.A.; Al-Mahdy, D.A.; Hifnawy, M.S.; Tzanova, T.; Evain-Bana, E.; Philippot, S.; Abdelsattar, E.A. Chemical and biological investigation of Ochrosia elliptica Labill. cultivated in Egypt. Rec. Nat. Prod., 2017, 11, 552-557..
[http://dx.doi.org/10.25135/rnp.70.17.03.049]
[56]
Li, Y.; Li, S.; Meng, X.; Gan, R.Y.; Zhang, J.J.; Li, H.B. Dietary natural products for prevention and treatment of breast cancer.Nutrients, 2017, 79(7), 728.,
[http://dx.doi.org/10.3390/nu9070728]
[57]
Yadav, N.K.; Saini, K.S.; Hossain, Z.; Omer, A.; Sharma, C.; Gayen, J.R.; Singh, R.K. Saraca indica bark extract shows in vitro antioxidant, antibreast cancer activity and does not exhibit toxicological effects. Oxid. Med. Cell. Longev., 2015, 2015, Article ID 205360.,
[http://dx.doi.org/10.1155/2015/205360]
[58]
Mughees, M.; Sharma, Y.; Ahmad, J.; Ahmad, A. Comparative analysis of anticancer activity of Rubia cordifolia L. & adulterant on MCF-7 cells and SCAR marker development. Int. J. Plant, Animal. Envir. Sci., 2017, 7, 72-79.
[59]
Wang, J.; Song, H.; Wu, X.; Zhang, S.; Gao, X.; Li, F. teroidal saponins from Vernonia amygdalina Del. and their biological activity. Molecules,, 2018, 23(3), 579.
[http://dx.doi.org/10.3390/molecules23030579]
[60]
Gezici, S.; Şekeroğlu, N. Current perspectives in the application of medicinal plants against cancer: Novel therapeutic agents. Anti- Cancer Agents Med. Chem.,, 2019, 19(1), 101-111.
[http://dx.doi.org/10.2174/1871520619666181224121004]
[61]
Zakaria, Z.; Gan, S.H.; Mohamed, M. In vitro studies of Asian medicinal plants with potential activity against breast cancer. J. Appl. Biol. Biotechnol., 2018, 6(04), 49-55.
[62]
Lambertini, E.; Piva, R.; Khan, M.T.H.; Lampronti, I.; Bianchi, N.; Borgatti, M.; Gambari, R. Effects of extracts from Bangladeshi medicinal plants on in vitro proliferation of human breast cancer cell lines and expression of estrogen receptor α gene. Int. J. Oncol., 2004, 24(2), 419-423.
[http://dx.doi.org/10.3892/ijo.24.2.419] [PMID: 14719119]
[63]
Guo, J.R.; Chen, Q.Q.; Lam, C.W.; Wang, C.Y.; Xu, F.G.; Liu, B.M.; Zhang, W. Effect of Phyllanthusamarus extract on 5-fluorouracil-induced perturbations in ribonucleotide and deoxyribonucleotide pools in HepG2 cell line. Molecules, 2016, 21(9), 1254.
[http://dx.doi.org/10.3390/molecules21091254] [PMID: 27657029]
[64]
Sharma, A.; Saggu, S.K.; Mishra, R.; Kaur, G. Anti-brain cancer activity of chloroform and hexane extracts of Tinospora cordifolia Miers: An in vitro perspective. Ann. Neurosci., 2019, 26(1), 10-20.
[http://dx.doi.org/10.5214/ans.0972.7531.260104] [PMID: 31975767]
[65]
Karthik, K.; Shashank, M.; Revathi, V.; Tatarchuk, T. Facile microwave-assisted green synthesis of NiO nanoparticles from Andrographis paniculata leaf extract and evaluation of their photocatalytic and anticancer activities.Mol. Cryst. Liq. Cryst. (Phila. Pa.),, 2018, 673(1), 70-80.
[http://dx.doi.org/10.1080/15421406.2019.1578495]
[66]
Soyingbe, O.S.; Mongalo, N.I.; Makhafola, T.J. In vitro antibacterial and cytotoxic activity of leaf extracts of Centella asiatica (L.) Urb, Warburgia salutaris (Bertol. F.) Chiov and Curtisia dentata (Burm. F.) C.A.Sm - medicinal plants used in South Africa. BMC Complement. Altern. Med., 2018, 18(1), 315.
[http://dx.doi.org/10.1186/s12906-018-2378-3] [PMID: 30497461]
[67]
Desai, A.G.; Qazi, G.N.; Ganju, R.K.; El-Tamer, M.; Singh, J.; Saxena, A.K.; Bedi, Y.S.; Taneja, S.C.; Bhat, H.K. Medicinal plants and cancer chemoprevention. Curr. Drug Metab., 2008, 9(7), 581-591.
[http://dx.doi.org/10.2174/138920008785821657] [PMID: 18781909]
[68]
Yang, J.; Liu, R.H. Synergistic effect of apple extracts and quercetin 3-β-d-glucoside combination on antiproliferative activity in MCF-7 human breast cancer cells in vitro. J. Agric. Food Chem., 2009, 57(18), 8581-8586.
[http://dx.doi.org/10.1021/jf8039796] [PMID: 19694432]
[69]
Choi, S.H.; Ahn, J.B.; Kozukue, N.; Kim, H.J.; Nishitani, Y.; Zhang, L.; Mizuno, M.; Levin, C.E.; Friedman, M. Structure-activity relationships of α-, β(1)-, γ-, and δ-tomatine and tomatidine against human breast (MDA-MB-231), gastric (KATO-III), and prostate (PC3) cancer cells. J. Agric. Food Chem., 2012, 60(15), 3891-3899.
[http://dx.doi.org/10.1021/jf3003027] [PMID: 22482398]
[70]
Sartippour, M.R.; Pietras, R.; Marquez-Garban, D.C.; Chen, H.W.; Heber, D.; Henning, S.M.; Sartippour, G.; Zhang, L.; Lu, M.; Weinberg, O.; Rao, J.Y.; Brooks, M.N. The combination of green tea and tamoxifen is effective against breast cancer. Carcinogenesis, 2006, 27(12), 2424-2433.
[http://dx.doi.org/10.1093/carcin/bgl066] [PMID: 16785249]
[71]
Schröder, L.; Marahrens, P.; Koch, J.G.; Heidegger, H.; Vilsmeier, T.; Phan-Brehm, T.; Hofmann, S.; Mahner, S.; Jeschke, U.; Richter, D.U. Effects of green tea, matcha tea and their components epigallocatechin gallate and quercetin on MCF 7 and MDA-MB-231 breast carcinoma cells. Oncol. Rep., 2019, 41(1), 387-396.
[PMID: 30320348]
[72]
Ahmadiankia, N.; Bagheri, M.; Fazli, M. Gene expression changes in pomegranate peel extract-treated triple-negative breast cancer cells. Rep. Biochem. Mol. Biol., 2018, 7(1), 102-109.
[PMID: 30324124]
[73]
Roy, M.K.; Kobori, M.; Takenaka, M.; Nakahara, K.; Shinmoto, H.; Isobe, S.; Tsushida, T. Antiproliferative effect on human cancer cell lines after treatment with nimbolide extracted from an edible part of the neem tree (Azadirachta indica). Phytother. Res., 2007, 21(3), 245-250.
[http://dx.doi.org/10.1002/ptr.2058] [PMID: 17163581]
[74]
Ito, T.; Aimaiti, S.; Win, N.N.; Kodama, T.; Morita, H. New sesquiterpene lactones, vernonilides A and B, from the seeds of Vernonia anthelmintica in Uyghur and their antiproliferative activities. Bioorg. Med. Chem. Lett., 2016, 26(15), 3608-3611.
[http://dx.doi.org/10.1016/j.bmcl.2016.06.009] [PMID: 27311895]
[75]
Schwartzberg, L.S.; Navari, R.M. Safety of polysorbate 80 in the oncology setting. Adv. Ther., 2018, 35(6), 754-767.
[http://dx.doi.org/10.1007/s12325-018-0707-z] [PMID: 29796927]
[76]
Kydd, J.; Jadia, R.; Velpurisiva, P.; Gad, A.; Paliwal, S.; Rai, P. Targeting strategies for the combination treatment of cancer using drug delivery systems. Pharmaceutics, 2017, 9(4), 46.
[http://dx.doi.org/10.3390/pharmaceutics9040046] [PMID: 29036899]
[77]
Posocco, B.; Dreussi, E.; De Santa, J.; Toffoli, G.; Abrami, M.; Musiani, F. Polysaccharides for the delivery of antitumor drugs.Materials (Basel), 2015, 8(5), 2569-2615.,
[http://dx.doi.org/10.3390/ma8052569]
[78]
Klein, D. The tumor vascular endothelium as decision maker in cancer therapy. Front. Oncol., 2018, 8, 367.
[http://dx.doi.org/10.3389/fonc.2018.00367] [PMID: 30250827]
[79]
Stylianopoulos, T.; Munn, L.L.; Jain, R.K. Reengineering the physical microenvironment of tumors to improve drug delivery and efficacy: From mathematical modeling to bench to bedside. Trends Cancer, 2018, 4(4), 292-319.
[http://dx.doi.org/10.1016/j.trecan.2018.02.005] [PMID: 29606314]
[80]
Bielenberg, D.R.; Zetter, B.R. The contribution of angiogenesis to the process of metastasis. Cancer J., 2015, 21(4), 267-273.
[http://dx.doi.org/10.1097/PPO.0000000000000138] [PMID: 26222078]
[81]
Katayama, Y.; Uchino, J.; Chihara, Y.; Tamiya, N.; Kaneko, Y.; Yamada, T.; Takayama, K. Tumor neovascularization and developments in therapeutics. Cancers (Basel), 2019, 11(3), 316.
[http://dx.doi.org/10.3390/cancers11030316] [PMID: 30845711]
[82]
Hall, C.N.; Reynell, C.; Gesslein, B.; Hamilton, N.B.; Mishra, A.; Sutherland, B.A.; O’Farrell, F.M.; Buchan, A.M.; Lauritzen, M.; Attwell, D. Capillary pericytes regulate cerebral blood flow in health and disease. Nature, 2014, 508(7494), 55-60.
[http://dx.doi.org/10.1038/nature13165] [PMID: 24670647]
[83]
Dreher, M.R.; Liu, W.; Michelich, C.R.; Dewhirst, M.W.; Yuan, F.; Chilkoti, A. Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers. J. Natl. Cancer Inst., 2006, 98(5), 335-344.
[http://dx.doi.org/10.1093/jnci/djj070] [PMID: 16507830]
[84]
Tee, J.K.; Yip, L.X.; Tan, E.S.; Santitewagun, S.; Prasath, A.; Ke, P.C.; Ho, H.K.; Leong, D.T. Nanoparticles’ interactions with vasculature in diseases. Chem. Soc. Rev., 2019, 48(21), 5381-5407.
[http://dx.doi.org/10.1039/C9CS00309F] [PMID: 31495856]
[85]
Golombek, S.K.; May, J.N.; Theek, B.; Appold, L.; Drude, N.; Kiessling, F.; Lammers, T. Tumor targeting via EPR: Strategies to enhance patient responses. Adv. Drug Deliv. Rev., 2018, 130, 17-38.
[http://dx.doi.org/10.1016/j.addr.2018.07.007] [PMID: 30009886]
[86]
Shi, J.; Kantoff, P.W.; Wooster, R.; Farokhzad, O.C. Cancer nanomedicine: progress, challenges and opportunities. Nat. Rev. Cancer, 2017, 17(1), 20-37.
[http://dx.doi.org/10.1038/nrc.2016.108] [PMID: 27834398]
[87]
Rizvi, S.A.A.; Saleh, A.M. Applications of nanoparticle systems in drug delivery technology. Saudi Pharm. J., 2018, 26(1), 64-70.
[http://dx.doi.org/10.1016/j.jsps.2017.10.012] [PMID: 29379334]
[88]
Prasad, M.; Lambe, U.P.; Brar, B.; Shah, I.; Manimegalai, J.; Ranjan, K.; Rao, R.; Kumar, S.; Mahant, S.; Khurana, S.K.; Iqbal, H.M.N.; Dhama, K.; Misri, J.; Prasad, G. Nanotherapeutics: An insight into healthcare and multi-dimensional applications in medical sector of the modern world. Biomed. Pharmacother., 2018, 97, 1521-1537..
[http://dx.doi.org/10.1016/j.biopha.2017.11.026] [PMID: 29793315]
[89]
Strebhardt, K.; Ullrich, A. Paul Ehrlich’s magic bullet concept: 100 years of progress. Nat. Rev. Cancer, 2008, 8(6), 473-480.
[http://dx.doi.org/10.1038/nrc2394] [PMID: 18469827]
[90]
Ringsdorf, H. Structure and properties of pharmacologically active polymers. J. Polym. Sci.: Polym. Sympos.,, 1975, 51, 135-153.
[http://dx.doi.org/10.1002/polc.5070510111]
[91]
Guerrini, L.; Alvarez-Puebla, R.A.; Pazos-Perez, N. Surface modifications of nanoparticles for stability in biological fluids. Materials (Basel), 2018, 11(7), 1154.
[http://dx.doi.org/10.3390/ma11071154] [PMID: 29986436]
[92]
Hanafy, N.A.N.; El-Kemary, M.; Leporatti, S. Micelles structure development as a strategy to improve smart cancer therapy. Cancers (Basel), 2018, 10(7), 238.
[http://dx.doi.org/10.3390/cancers10070238] [PMID: 30037052]
[93]
Aliabadi, H.M.; Lavasanifar, A. Polymeric micelles for drug delivery. Expert Opin. Drug Deliv., 2006, 3(1), 139-162.
[http://dx.doi.org/10.1517/17425247.3.1.139] [PMID: 16370946]
[94]
Tyler, B.; Gullotti, D.; Mangraviti, A.; Utsuki, T.; Brem, H. Polylactic Acid (PLA) controlled delivery carriers for biomedical applications. Adv. Drug Deliv. Rev., 2016, 107, 163-175.
[http://dx.doi.org/10.1016/j.addr.2016.06.018] [PMID: 27426411]
[95]
Khuphe, M.; Thornton, P.D. Poly (amino acids).Engineering of Biomaterials for Drug Delivery Systems; Woodhead Publishing: UK, 2018, pp. 199-228.
[96]
Bodratti, A.M.; Alexandridis, P. Formulation of poloxamers for drug delivery. J. Funct. Biomater., 2018, 9(1), 11.
[http://dx.doi.org/10.3390/jfb9010011] [PMID: 29346330]
[97]
Hoshyar, N.; Gray, S.; Han, H.; Bao, G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine (Lond.), 2016, 11(6), 673-692.
[http://dx.doi.org/10.2217/nnm.16.5] [PMID: 27003448]
[98]
Operti, M.C.; Dölen, Y.; Keulen, J.; van Dinther, E.A.W.; Figdor, C.G.; Tagit, O. Microfluidics-assisted size tuning and biological evaluation of PLGA particles. Pharmaceutics, 2019, 11(11), 590.
[http://dx.doi.org/10.3390/pharmaceutics11110590] [PMID: 31717354]
[99]
Lee, Y.; Thompson, D.H. Stimuli-responsive liposomes for drug delivery. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2017, 9(5)e1450
[http://dx.doi.org/10.1002/wnan.1450] [PMID: 28198148]
[100]
Lombardo, D.; Kiselev, M.A.; Caccamo, M.T. Smart nanoparticles for drug delivery application: development of versatile nanocarrier platforms in biotechnology and nanomedicine. J. Nanomater., 2019, 2019, Article ID 3702518..
[http://dx.doi.org/10.1155/2019/3702518]
[101]
Meng, F.; Hiemstra, C.; Engbers, G.H.M.; Feijen, J. Biodegradable polymersomes.Macromolecules,, 2003, 36(9), 3004-3006.
[http://dx.doi.org/10.1021/ma034040+]
[102]
Meng, F.; Zhong, Z.; Feijen, J. Stimuli-responsive polymersomes for programmed drug delivery. Biomacromolecules, 2009, 10(2), 197-209.
[http://dx.doi.org/10.1021/bm801127d] [PMID: 19123775]
[103]
Chen, W.; Meng, F.; Cheng, R.; Zhong, Z. pH-Sensitive degradable polymersomes for triggered release of anticancer drugs: A comparative study with micelles. J. Control. Release, 2010, 142(1), 40-46.
[http://dx.doi.org/10.1016/j.jconrel.2009.09.023] [PMID: 19804803]
[104]
Sun, H.; Meng, F.; Cheng, R.; Deng, C.; Zhong, Z. Reduction and pH dual-bioresponsive crosslinked polymersomes for efficient intracellular delivery of proteins and potent induction of cancer cell apoptosis. Acta Biomater., 2014, 10(5), 2159-2168.
[http://dx.doi.org/10.1016/j.actbio.2014.01.010] [PMID: 24440420]
[105]
Liu, G-Y.; Lv, L-P.; Chen, C-J.; Liu, X-S.; Hu, X-F. Ji, J. Biocompatible and biodegradable polymersomes for pH-triggered drug release. Soft Matt.,, 2011, 7(14), 6629-6636.
[http://dx.doi.org/10.1039/c1sm05308f]
[106]
Johnson, R.P. Poly(PEGA)-b-poly(L-lysine)-b-poly(L-histidine) hybrid vesicles for Tumoral pH-triggered intracellular delivery of doxorubicin hydrochloride. ACS Appl. Mater. Inter, 2015, 7, 21770-21779.
[107]
Kongkatigumjorn, N.; Smith, S.A.; Chen, M.; Fang, K.; Yang, S.; Gillies, E.R.; Johnston, A.P.; Such, G.K. Controlling endosomal escape using pH-responsive nanoparticles with tunable disassembly.ACS Appl. Nano Mater., 2018, 1 (7), 3164-3173.,
[http://dx.doi.org/10.1021/acsanm.8b00338]
[108]
Zhou, K.; Wang, Y.; Huang, X.; Luby-Phelps, K.; Sumer, B.D.; Gao, J. Tunable, ultrasensitive pH-responsive nanoparticles targeting specific endocytic organelles in living cells. Angew. Chem. Int. Ed. Engl., 2011, 50(27), 6109-6114.
[http://dx.doi.org/10.1002/anie.201100884] [PMID: 21495146]
[109]
Gunasekaran, T.; Haile, T.; Nigusse, T.; Dhanaraju, M.D. Nanotechnology: An effective tool for enhancing bioavailability and bioactivity of phytomedicine. Asian Pac. J. Trop. Biomed., 2014, 4(Suppl. 1), S1-S7.
[http://dx.doi.org/10.12980/APJTB.4.2014C980] [PMID: 25183064]
[110]
Sivasami, P.; Hemalatha, T. Augmentation of therapeutic potential of curcumin using nanotechnology: Current perspectives. Artif. Cells, Nanomedi., Biotechnol., 2018, 46(sup1), 1004-1015.,
[http://dx.doi.org/10.1080/21691401.2018.1442345]
[111]
Sahu, A.; Bora, U.; Kasoju, N.; Goswami, P. Synthesis of novel biodegradable and self-assembling methoxy poly(ethylene glycol)- palmitate nanocarrier for curcumin delivery to cancer cells. Acta Biomater., 2008, 4(6), 1752-1761.,
[http://dx.doi.org/10.1016/j.actbio.2008.04.021] [PMID: 18524701]
[112]
Min, K.H.; Park, K.; Kim, Y.S.; Bae, S.M.; Lee, S.; Jo, H.G.; Park, R.W.; Kim, I.S.; Jeong, S.Y.; Kim, K.; Kwon, I.C. Hydrophobically modified glycol chitosan nanoparticles-encapsulated camptothecin enhance the drug stability and tumor targeting in cancer therapy. J. Control. Release, 2008, 127(3), 208-218.
[http://dx.doi.org/10.1016/j.jconrel.2008.01.013] [PMID: 18336946]
[113]
Zeisser-Labouèbe, M.; Lange, N.; Gurny, R.; Delie, F. Hypericin-loaded nanoparticles for the photodynamic treatment of ovarian cancer. Int. J. Pharm., 2006, 326(1-2), 174-181.
[http://dx.doi.org/10.1016/j.ijpharm.2006.07.012] [PMID: 16930882]
[114]
Yen, F.L.; Wu, T.H.; Lin, L.T.; Cham, T.M.; Lin, C.C. Nanoparticles formulation of Cuscuta chinensis prevents acetaminophen-induced hepatotoxicity in rats. Food Chem. Toxicol., 2008, 46(5), 1771-1777.
[http://dx.doi.org/10.1016/j.fct.2008.01.021] [PMID: 18308443]
[115]
Zhang, L.; Kosaraju, S.L. Biopolymeric delivery system for controlled release of polyphenolic antioxidants.Eur. Polym. J.,, 2007, 43(7), 2956-2966.
[http://dx.doi.org/10.1016/j.eurpolymj.2007.04.033]
[116]
Bhatia, A.; Shard, P.; Chopra, D.; Mishra, T. Chitosan nanoparticles as carrier of immunorestoratory plant extract: Synthesis, characterization and immunorestoratory efficacy. Int. J. Drug Deliv., 2011, 3(2), 381.
[117]
Le Broc-Ryckewaert, D.; Carpentier, R.; Lipka, E.; Daher, S.; Vaccher, C.; Betbeder, D.; Furman, C. Development of innovative paclitaxel-loaded small PLGA nanoparticles: Study of their antiproliferative activity and their molecular interactions on prostatic cancer cells. Int. J. Pharm., 2013, 454(2), 712-719.
[http://dx.doi.org/10.1016/j.ijpharm.2013.05.018] [PMID: 23707251]
[118]
Çırpanlı, Y.; Allard, E.; Passirani, C.; Bilensoy, E.; Lemaire, L.; Calış, S.; Benoit, J.P. Antitumoral activity of camptothecin-loaded nanoparticles in 9L rat glioma model. Int. J. Pharm., 2011, 403(1-2), 201-206.
[http://dx.doi.org/10.1016/j.ijpharm.2010.10.015] [PMID: 20951783]
[119]
Zale, S.E.; Troiano, G.; Ali, M.M.; Hrkach, J.; Wright, J.U.S. Patent 9,351,933 2016.
[120]
Ghosh, V.; Saranya, S.; Mukherjee, A.; Chandrasekaran, N. Antibacterial microemulsion prevents sepsis and triggers healing of wound in wistar rats. Colloids Surf. B Biointerfaces, 2013, 105, 152-157.
[http://dx.doi.org/10.1016/j.colsurfb.2013.01.009] [PMID: 23357738]
[121]
Rajendran, R.; Radhai, R.; Kotresh, T.M.; Csiszar, E. Development of antimicrobial cotton fabrics using herb loaded nanoparticles. Carbohydr. Polym., 2013, 91(2), 613-617.
[http://dx.doi.org/10.1016/j.carbpol.2012.08.064] [PMID: 23121954]
[122]
Bhattacharya, S. Phytosomes: The emerging technology for enhancement of bioavailability of botanicals and nutraceuticals. Internet J. Aesthetic Antiaging Med., 2009, 2(1), 141-153.
[123]
Su, Y.L.; Fu, Z.Y.; Zhang, J.Y.; Wang, W.M.; Wang, H.; Wang, Y.C.; Zhang, Q.J. Microencapsulation of Radix salvia miltiorrhiza nanoparticles by spray-drying.Powder Technol., 2008, 184(1), 114-121.,
[http://dx.doi.org/10.1016/j.powtec.2007.08.014]
[124]
Sinico, C.; De Logu, A.; Lai, F.; Valenti, D.; Manconi, M.; Loy, G.; Bonsignore, L.; Fadda, A.M. Liposomal incorporation of Artemisia arborescens L. essential oil and in vitro antiviral activity. Eur. J. Pharm. Biopharm., 2005, 59(1), 161-168.
[http://dx.doi.org/10.1016/j.ejpb.2004.06.005] [PMID: 15567314]
[125]
Bisht, S.; Feldmann, G.; Soni, S.; Ravi, R.; Karikar, C.; Maitra, A.; Maitra, A. Polymeric nanoparticle-encapsulated curcumin (“nanocurcumin”): A novel strategy for human cancer therapy. J. Nanobiotechnol, 2007, 5(1), 3.
[http://dx.doi.org/10.1186/1477-3155-5-3] [PMID: 17439648]
[126]
Hua, S.; de Matos, M.B.C.; Metselaar, J.M.; Storm, G. Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: Pathways for translational development and commercialization. Front. Pharmacol., 2018, 9, 790.
[http://dx.doi.org/10.3389/fphar.2018.00790] [PMID: 30065653]
[127]
Bhardwaj, V.; Kaushik, A.; Khatib, Z.M.; Nair, M.; McGoron, A.J. Recalcitrant issues and new frontiers in nano-pharmacology. Front. Pharmacol., 2019, 10, 1369.
[http://dx.doi.org/10.3389/fphar.2019.01369] [PMID: 31849645]
[128]
Tabatabaei Mirakabad, F.S.; Akbarzadeh, A.; Milani, M.; Zarghami, N.; Taheri-Anganeh, M.; Zeighamian, V.; Badrzadeh, F.; Rahmati-Yamchi, M. Tabatabaei, M. A comparison between the cytotoxic effects of pure curcumin and curcumin-loaded PLGA-PEG nanoparticles on the MCF-7 human breast cancer cell line. Artif. Cells Nanomed. Biotechnol., 2016, 44(1), 423-430.
[http://dx.doi.org/10.3109/21691401.2014.955108] [PMID: 25229832]
[129]
Gupta, V.; Aseh, A.; Ríos, C.N.; Aggarwal, B.B.; Mathur, A.B. Fabrication and characterization of silk fibroin-derived curcumin nanoparticles for cancer therapy. Int. J. Nanomedic, 2009, 4, 115-122.
[http://dx.doi.org/10.2147/IJN.S5581] [PMID: 19516890]
[130]
Kumari, P.; Swami, M.O.; Nadipalli, S.K.; Myneni, S.; Ghosh, B.; Biswas, S. Curcumin delivery by poly (Lactide)-based co-polymeric micelles: An in vitro anticancer study. Pharm. Res., 2016, 33(4), 826-841.
[http://dx.doi.org/10.1007/s11095-015-1830-z] [PMID: 26597940]
[131]
Adesina, S.K.; Holly, A.; Kramer-Marek, G.; Capala, J.; Akala, E.O. Polylactide-based paclitaxel-loaded nanoparticles fabricated by dispersion polymerization: Characterization, evaluation in cancer cell lines, and preliminary biodistribution studies. J. Pharm. Sci., 2014, 103(8), 2546-2555.
[http://dx.doi.org/10.1002/jps.24061] [PMID: 24961596]
[132]
Chen, Y.; Zheng, X.L.; Fang, D.L.; Yang, Y.; Zhang, J.K.; Li, H.L.; Song, X.R. Dual agent loaded PLGA nanoparticles enhanced antitumor activity in a multidrug-resistant breast tumor xenograft model Int. J. Mol. Sci., 2014, 15(2), 2761-2772.,
[http://dx.doi.org/10.3390/ijms15022761] [PMID: 24552875]
[133]
Mughees, M.; Samim, M.; Wajid, S. 83P Artemisia absinthium extract loaded polymeric nanoparticles as the therapeutic remedy for breast cancer. Ann. Oncol., 2018, 29(suppl_3), mdy047-032..
[134]
Mughees, M.; Samim, M.; Sharma, Y.; Wajid, S. Identification of protein targets and the mechanism of the cytotoxic action of Ipomoea turpethum extract loaded nanoparticles against breast cancer cells. J. Mater. Chem. B Mater. Biol. Med., 2019, 7(39), 6048-6063.
[http://dx.doi.org/10.1039/C9TB00824A] [PMID: 31549130]
[135]
Mughees, M.; Wajid, S. 7P Artemisia absinthium nanoparticles induce apoptosis in breast cancer cells via inhibiting vesicular trafficking related proteins. Ann. Oncol., 2019, 30(Supplement_7), mdz413-032..
[136]
Mughees, M.; Wajid, S.; Samim, M. Cytotoxic potential of Artemisia absinthium extract loaded polymeric nanoparticles against breast cancer cells: Insight into the protein targets. Int. J. Pharmaceut.,2020, 586, 119583.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119583] [PMID: 32603837]
[137]
Oerlemans, C.; Bult, W.; Bos, M.; Storm, G.; Nijsen, J.F.W.; Hennink, W.E. Polymeric micelles in anticancer therapy: Targeting, imaging and triggered release. Pharm. Res., 2010, 27(12), 2569-2589.
[http://dx.doi.org/10.1007/s11095-010-0233-4] [PMID: 20725771.]