Anti-Cancer Agents in Medicinal Chemistry

Author(s): Neelam Lohani and Moganty R. Rajeswari*

DOI: 10.2174/1871520620666200619170438

Antigene and Antiproliferative Effects of Triplex-Forming Oligonucleotide (TFO) Targeted on hmgb1 Gene in Human Hepatoma Cells

Page: [1943 - 1955] Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Background: The high mobility group box 1 (hmgb1) is one of the frequently over-expressed genes whose aberrant expression is reported in a number of human cancers. Various strategies are underway to inhibit hmgb1 expression in cancer cells having considerable therapeutic value.

Objective: The present work involves selective transcriptional inhibition of the hmgb1 gene using selective DNA triplex structure-based gene technology. Here, the promoter region of the hmgb1 gene at position (-183 to -165) from the transcription start site as a target was selected using bioinformatic tools.

Methods: The DNA triplex formation by the DNA of the target gene and TFO was confirmed using UV absorption spectroscopy, Circular Dichroism, and Isothermal Calorimetry.

Results: Treatment of HepG2 cell with specific Triplex-forming Oligonucleotide significantly downregulated HMGB1 expression level at mRNA and protein levels by 50%, while the classical anticancer drugs, actinomycin/ adriamycin as positive controls showed 65% and the combination of TFO and drug decreased by 70%. The anti-proliferative effects of TFO correlated well with the fact of accumulation of cells in the Go phase and apoptotic cell death. Further, the binding of anti-cancer drugs to hmgb1 is stronger in DNA triplex state as compared to hmgb1 alone, suggesting the combination therapy as a better option.

Conclusion: Therefore, the ability of hmgb1 targeted triplex-forming oligonucleotide in combination with triplex selective anticancer drug holds promise in the treatment of malignancies associated with hmgb1 overexpression. The result obtained may open up new vistas to provide a basis for the rational drug design and searching for high-affinity ligands with a high triplex selectivity.

Keywords: HMGB1, DNA triplex, triplex-forming oligonucleotide, hepatocellular carcinoma, antigene, transcription.

Graphical Abstract

[1]
Lohani, N.; Rajeswari, M.R. Dichotomous life of DNA binding high mobility group box1 protein in human health and disease. Curr. Protein Pept. Sci., 2016, 17(8), 762-775.
[http://dx.doi.org/10.2174/1389203717666160226145217 ] [PMID: 26916160]
[2]
Tang, D.; Kang, R.; Zeh, H.J., III; Lotze, M.T. High-mobility group box 1 and cancer. Biochim. Biophys. Acta, 2010, 1799(1-2), 131-140.
[http://dx.doi.org/10.1016/j.bbagrm.2009.11.014 ] [PMID: 20123075]
[3]
Ishiguro, H.; Nakaigawa, N.; Miyoshi, Y.; Fujinami, K.; Kubota, Y.; Uemura, H. Receptor for Advanced Glycation End products (RAGE) and its ligand, amphoterin are overexpressed and associated with prostate cancer development. Prostate, 2005, 64(1), 92-100.
[http://dx.doi.org/10.1002/pros.20219 ] [PMID: 15666359]
[4]
Liu, Z.; Xu, Y.; Long, J.; Guo, K.; Ge, C.; Du, R. microRNA-218 suppresses the proliferation, invasion and promotes apoptosis of pancreatic cancer cells by targeting HMGB1. Chin. J. Cancer Res., 2015, 27(3), 247-257.
[5]
Lin, L.; Zhong, K.; Sun, Z.; Wu, G.; Ding, G. Receptor for Advanced Glycation End products (RAGE) partially mediates HMGB1-ERKs activation in clear cell renal cell carcinoma. J. Cancer Res. Clin. Oncol., 2012, 138(1), 11-22.
[http://dx.doi.org/10.1007/s00432-011-1067-0 ] [PMID: 21947243]
[6]
Zhou, R.R.; Kuang, X.Y.; Huang, Y.; Li, N.; Zou, M.X.; Tang, D.L.; Fan, X.G. Potential role of High mobility group box 1 in hepatocellular carcinoma. Cell Adhes. Migr., 2014, 8(5), 493-498.
[http://dx.doi.org/10.4161/19336918.2014.969139 ] [PMID: 25482616]
[7]
Akaike, H.; Kono, K.; Sugai, H.; Takahashi, A.; Mimura, K.; Kawaguchi, Y.; Fujii, H. Expression of High Mobility Group Box chromosomal protein-1 (HMGB-1) in gastric cancer. Anticancer Res., 2007, 27(1A), 449-457.
[PMID: 17352266]
[8]
Yao, X.; Zhao, G.; Yang, H.; Hong, X.; Bie, L.; Liu, G. Overexpression of high-mobility group box 1 correlates with tumor progression and poor prognosis in human colorectal carcinoma. J. Cancer Res. Clin. Oncol., 2010, 136(5), 677-684.
[http://dx.doi.org/10.1007/s00432-009-0706-1 ] [PMID: 19898867]
[9]
Mardente, S.; Mari, E.; Massimi, I.; Fico, F.; Faggioni, A.; Pulcinelli, F.; Antonaci, A.; Zicari, A. HMGB1-induced cross talk between PTEN and miRs 221/222 in thyroid cancer. BioMed Res. Int., 2015, 2015512027
[http://dx.doi.org/10.1155/2015/512027] [PMID: 26106610]
[10]
Sharma, A.; Ray, R.; Rajeswari, M.R. Overexpression of High Mobility Group (HMG) B1 and B2 proteins directly correlates with the progression of squamous cell carcinoma in skin. Cancer Invest., 2008, 26(8), 843-851.
[http://dx.doi.org/10.1080/07357900801954210 ] [PMID: 18798064]
[11]
Liu, P.L.; Tsai, J.R.; Hwang, J.J.; Chou, S.H.; Cheng, Y.J.; Lin, F.Y.; Chen, Y.L.; Hung, C.Y.; Chen, W.C.; Chen, Y.H.; Chong, I.W. High-mobility group box 1-mediated matrix metalloproteinase-9 expression in non-small cell lung cancer contributes to tumor cell invasiveness. Am. J. Respir. Cell Mol. Biol., 2010, 43(5), 530-538.
[http://dx.doi.org/10.1165/rcmb.2009-0269OC ] [PMID: 19933377]
[12]
Li, H.; Huang, W.; Luo, R. The microRNA-325 inhibits hepatocellular carcinoma progression by targeting high mobility group box 1. Diagn. Pathol., 2015, 10, 117.
[http://dx.doi.org/10.1186/s13000-015-0323-z ] [PMID: 26194496]
[13]
Gnanasekar, M.; Kalyanasundaram, R.; Zheng, G.; Chen, A.; Bosland, M.C.; Kajdacsy-Balla, A. HMGB1: A promising therapeutic target for prostate cancer. Prostate Cancer, 2013, 2013157103
[http://dx.doi.org/10.1155/2013/157103] [PMID: 23766911]
[14]
Chen, J.; Liu, X.; Zhang, J.; Zhao, Y. Targeting HMGB1 inhibits ovarian cancer growth and metastasis by lentivirus-mediated RNA interference. J. Cell. Physiol., 2012, 227(11), 3629-3638.
[http://dx.doi.org/10.1002/jcp.24069 ] [PMID: 22331597]
[15]
Wang, W.; Zhu, H.; Zhang, H.; Zhang, L.; Ding, Q.; Jiang, H. Targeting HMGB1 inhibits bladder cancer cells bioactivity by lentivirus-mediated RNA interference. Neoplasma, 2014, 61(6), 638-646.
[http://dx.doi.org/10.4149/neo_2014_079 ] [PMID: 25150308]
[16]
Ge, W.S.; Wu, J.X.; Fan, J.G.; Wang, Y.J.; Chen, Y.W. Inhibition of high-mobility group box 1 expression by siRNA in rat hepatic stellate cells. World J. Gastroenterol., 2011, 17(36), 4090-4098.
[http://dx.doi.org/10.3748/wjg.v17.i36.4090 ] [PMID: 22039322]
[17]
Guo, Z.S.; Liu, Z.; Bartlett, D.L.; Tang, D.; Lotze, M.T. Life after death: targeting high mobility group box 1 in emergent cancer therapies. Am. J. Cancer Res., 2013, 3(1), 1-20.
[PMID: 23359863]
[18]
Goñi, J.R.; de la Cruz, X.; Orozco, M. Triplex-forming oligonucleotide target sequences in the human genome. Nucleic Acids Res., 2004, 32(1), 354-360.
[http://dx.doi.org/10.1093/nar/gkh188 ] [PMID: 14726484]
[19]
Shen, C.; Buck, A.; Polat, B.; Schmid-Kotsas, A.; Matuschek, C.; Gross, H.J.; Bachem, M.; Reske, S.N. Triplex-forming oligodeoxynucleotides targeting survivin inhibit proliferation and induce apoptosis of human lung carcinoma cells. Cancer Gene Ther., 2003, 10(5), 403-410.
[http://dx.doi.org/10.1038/sj.cgt.7700581 ] [PMID: 12719710]
[20]
Carbone, G.M.; Napoli, S.; Valentini, A.; Cavalli, F.; Watson, D.K.; Catapano, C.V. Triplex DNA-mediated downregulation of Ets2 expression results in growth inhibition and apoptosis in human prostate cancer cells. Nucleic Acids Res., 2004, 32(14), 4358-4367.
[http://dx.doi.org/10.1093/nar/gkh744 ] [PMID: 15314206]
[21]
Shen, C.; Buck, A.; Mehrke, G.; Polat, B.; Gross, H.; Bachem, M.; Reske, S. Triplex forming oligonucleotide targeted to 3'UTR downregulates the expression of the bcl-2 proto-oncogene in HeLa cells. Nucleic Acids Res., 2001, 29(3), 622-628.
[http://dx.doi.org/10.1093/nar/29.3.622 ] [PMID: 11160882]
[22]
Giovannangeli, C.; Diviacco, S.; Labrousse, V.; Gryaznov, S.; Charneau, P.; Helene, C. Accessibility of nuclear DNA to triplex-forming oligonucleotides: The integrated HIV-1 provirus as a target. Proc. Natl. Acad. Sci. USA, 1997, 94(1), 79-84.
[http://dx.doi.org/10.1073/pnas.94.1.79 ] [PMID: 8990164]
[23]
Singhal, G.; Akhter, M.Z.; Stern, D.F.; Gupta, S.D.; Ahuja, A.; Sharma, U.; Jagannathan, N.R.; Rajeswari, M.R. DNA triplex-mediated inhibition of MET leads to cell death and tumor regression in hepatoma. Cancer Gene Ther., 2011, 18(7), 520-530.
[http://dx.doi.org/10.1038/cgt.2011.21 ] [PMID: 21660063]
[24]
Hewett, P.W.; Daft, E.L.; Laughton, C.A.; Ahmad, S.; Ahmed, A.; Murray, J.C. Selective inhibition of the human tie-1 promoter with triplex-forming oligonucleotides targeted to Ets binding sites. Mol. Med., 2006, 12(1-3), 8-16.
[http://dx.doi.org/10.2119/2005-00046.Hewett ] [PMID: 16838069]
[25]
Boulware, S.B.; Christensen, L.A.; Thames, H.; Coghlan, L.; Vasquez, K.M.; Finch, R.A. Triplex-forming oligonucleotides targeting c-MYC potentiate the anti-tumor activity of gemcitabine in a mouse model of human cancer. Mol. Carcinog., 2014, 53(9), 744-752.
[http://dx.doi.org/10.1002/mc.22026 ] [PMID: 23681918]
[26]
Graham, M.K.; Brown, T.R.; Miller, P.S. Targeting the human androgen receptor gene with platinated triplex-forming oligonucleotides. Biochemistry, 2015, 54(13), 2270-2282.
[http://dx.doi.org/10.1021/bi501565n ] [PMID: 25768916]
[27]
Akhter, M.Z.; Rajeswari, M.R. Triplex forming oligonucleotides targeted to hmga1 selectively inhibit its expression and induce apoptosis in human cervical cancer. J. Biomol. Struct. Dyn., 2016, 1-15.
[http://dx.doi.org/10.1080/07391102.2016.1160257 ] [PMID: 26923360]
[28]
Kalish, J.M.; Seidman, M.M.; Weeks, D.L.; Glazer, P.M. Triplex-induced recombination and repair in the pyrimidine motif. Nucleic Acids Res., 2005, 33(11), 3492-3502.
[http://dx.doi.org/10.1093/nar/gki659 ] [PMID: 15961731]
[29]
Jain, A.; Wang, G.; Vasquez, K.M. DNA triple helices: Biological consequences and therapeutic potential. Biochimie, 2008, 90(8), 1117-1130.
[http://dx.doi.org/10.1016/j.biochi.2008.02.011 ] [PMID: 18331847]
[30]
Lohani, N.; Rajeswari, M.R. Preferential binding of anticancer drugs to triplex DNA compared to duplex DNA: A spectroscopic and calorimetric study. RSC Adv., 2016, 6(46), 39903-39917.
[http://dx.doi.org/10.1039/C6RA03514K]
[31]
Gray, D.M.; Hung, S.H.; Johnson, K.H. Absorption and circular dichroism spectroscopy of nucleic acid duplexes and triplexes. Methods Enzymol., 1995, 246, 19-34.
[http://dx.doi.org/10.1016/0076-6879(95)46005-5 ] [PMID: 7538624]
[32]
(a)Gaddis, S.S.; Wu, Q.; Thames, H.D.; DiGiovanni, J.; Walborg, E.F.; MacLeod, M.C.; Vasquez, K.M. A web-based search engine for triplex-forming oligonucleotide target sequences. Oligonucleotides, 2006, 16(2), 196-201.
[http://dx.doi.org/10.1089/oli.2006.16.196] [PMID: 16764543]
(b)Jenjaroenpun, P.; Kuznetsov, V.A. TTS mapping: Integrative WEB tool for analysis of triplex formation target DNA sequences, G-quadruplets and non-protein coding regulatory DNA elements in the human genome. BMC Genomics, 2009, 10(Suppl. 3), S9.
[http://dx.doi.org/10.1186/1471-2164-10-S3-S9 ] [PMID: 19958507]
[33]
Gowers, D.M.; Fox, K.R. DNA triple helix formation at oligopurine sites containing multiple contiguous pyrimidines. Nucleic Acids Res., 1997, 25(19), 3787-3794.
[http://dx.doi.org/10.1093/nar/25.19.3787 ] [PMID: 9380499]
[34]
Pilch, D.S.; Levenson, C.; Shafer, R.H. Structure, stability, and thermodynamics of a short intermolecular purine-purine-pyrimidine triple helix. Biochemistry, 1991, 30(25), 6081-6088.
[http://dx.doi.org/10.1021/bi00239a001 ] [PMID: 2059618]
[35]
Rajeswari, M.R.; Bose, H.S.; Kukreti, S.; Gupta, A.; Chauhan, V.S.; Roy, K.B. Binding of oligopeptides to d-AGATCTAGATCT and d-AAGCTTAAGCTT: Can tryptophan intercalate in DNA hairpins? Biochemistry, 1992, 31(27), 6237-6241.
[http://dx.doi.org/10.1021/bi00142a010 ] [PMID: 1320931]
[36]
Rajeswari, M.R. Tryptophan intercalation in G, C containing polynucleotides: Z to B conversion of poly [d(G-5M C)] in low salt induced by a tetra peptide. J. Biomol. Struct. Dyn., 1996, 14(1), 25-30.
[http://dx.doi.org/10.1080/07391102.1996.10508926 ] [PMID: 8877559]
[37]
Shafer, R.H. Stability and structure of model DNA triplexes and quadruplexes and their interactions with small ligands. Prog. Nucleic Acid Res. Mol. Biol., 1998, 59, 55-94.
[http://dx.doi.org/10.1016/S0079-6603(08)61029-6 ] [PMID: 9427840]
[38]
Kypr, J.; Kejnovská, I.; Renciuk, D.; Vorlícková, M. Circular dichroism and conformational polymorphism of DNA. Nucleic Acids Res., 2009, 37(6), 1713-1725.
[http://dx.doi.org/10.1093/nar/gkp026 ] [PMID: 19190094]
[39]
Plum, G.E.; Park, Y.W.; Singleton, S.F.; Dervan, P.B.; Breslauer, K.J. Thermodynamic characterization of the stability and the melting behavior of a DNA triplex: A spectroscopic and calorimetric study. Proc. Natl. Acad. Sci. USA, 1990, 87(23), 9436-9440.
[http://dx.doi.org/10.1073/pnas.87.23.9436 ] [PMID: 2251285]
[40]
Yoon, S.; Lee, J.Y.; Yoon, B.K.; Bae, D.S.; Choi, D.S. Effects of HMGB-1 overexpression on cell-cycle progression in MCF-7 cells. J. Korean Med. Sci., 2004, 19(3), 321-326.
[http://dx.doi.org/10.3346/jkms.2004.19.3.321 ] [PMID: 15201494]
[41]
Völp, K.; Brezniceanu, M.L.; Bösser, S.; Brabletz, T.; Kirchner, T.; Göttel, D.; Joos, S.; Zörnig, M. Increased expression of High Mobility Group Box 1 (HMGB1) is associated with an elevated level of the antiapoptotic c-IAP2 protein in human colon carcinomas. Gut, 2006, 55(2), 234-242.
[http://dx.doi.org/10.1136/gut.2004.062729 ] [PMID: 16118352]
[42]
Uramoto, H.; Izumi, H.; Nagatani, G.; Ohmori, H.; Nagasue, N.; Ise, T.; Yoshida, T.; Yasumoto, K.; Kohno, K. Physical interaction of tumour suppressor p53/p73 with CCAAT-binding Transcription Factor 2 (CTF2) and differential regulation of human High-Mobility Group 1 (HMG1) gene expression. Biochem. J., 2003, 371(Pt 2), 301-310.
[http://dx.doi.org/10.1042/bj20021646 ] [PMID: 12534345]
[43]
Rothermund, K.; Rogulski, K.; Fernandes, E.; Whiting, A.; Sedivy, J.; Pu, L.; Prochownik, E.V. C-Myc-independent restoration of multiple phenotypes by two C-Myc target genes with overlapping functions. Cancer Res., 2005, 65(6), 2097-2107.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-2928 ] [PMID: 15781619]
[44]
Liu, J.; Liu, Y.; Zhang, H.; Chen, G.; Wang, K.; Xiao, X. KLF4 promotes the expression, translocation, and releas eof HMGB1 in RAW264.7 macrophages in response to LPS. Shock, 2008, 30(3), 260-266.
[PMID: 18197146]
[45]
Wood, L.J.; Mukherjee, M.; Dolde, C.E.; Xu, Y.; Maher, J.F.; Bunton, T.E.; Williams, J.B.; Resar, L.M. HMG-I/Y, a new c-Myc target gene and potential oncogene. Mol. Cell. Biol., 2000, 20(15), 5490-5502.
[http://dx.doi.org/10.1128/MCB.20.15.5490-5502.2000 ] [PMID: 10891489]
[46]
Pourquier, P.; Montaudon, D.; Huet, S.; Larrue, A.; Clary, A.; Robert, J. Doxorubicin-induced alterations of c-myc and c-jun gene expression in rat glioblastoma cells: Role of c-jun in drug resistance and cell death. Biochem. Pharmacol., 1998, 55(12), 1963-1971.
[http://dx.doi.org/10.1016/S0006-2952(98)00006-9 ] [PMID: 9714316]
[47]
Wei, M.C.; Zong, W.X.; Cheng, E.H.; Lindsten, T.; Panoutsakopoulou, V.; Ross, A.J.; Roth, K.A.; MacGregor, G.R.; Thompson, C.B.; Korsmeyer, S.J. Proapoptotic BAX and BAK: A requisite gateway to mitochondrial dysfunction and death. Science, 2001, 292(5517), 727-730.
[http://dx.doi.org/10.1126/science.1059108 ] [PMID: 11326099]
[48]
Matsuzaki, H.; Schmied, B.M.; Ulrich, A.; Standop, J.; Schneider, M.B.; Batra, S.K.; Picha, K.S.; Pour, P.M. Combination of Tumor necrosis factor-Related Apoptosis-Inducing Ligand (TRAIL) and actinomycin D induces apoptosis even in TRAIL-resistant human pancreatic cancer cells. Clin. Cancer Res.: Off. J. Am. Assoc. Cancer Res., 2001, 7(2), 407-414.