Recent Advances in Transition Metal Free Synthetic Protocols for Quinoline Derivatives

Page: [1815 - 1852] Pages: 38

  • * (Excluding Mailing and Handling)

Abstract

The quinoline moiety is a privileged scaffold among heterocyclic compounds that is an important construction motif in the fields of pharmaceutical chemistry. Quinoline molecule possesses a variety of therapeutic activities like antiviral, antimalarial, antibacterial, antitumor, anticancer, antioxidant antihypertensive, antifungal, anthelmintic, cardiotonic, anticonvulsant and anti-inflammatory. This review provides an insight into recent development in transition metal free novel and modified conventional synthetic routes to yield a wide variety of substituted quinolines.

Keywords: Quinoline, quinoline derivatives, transition metal free, heterocyclic compounds, synthetic protocols, therapeutic activities.

Graphical Abstract

[1]
de la Guardia, C.; Stephens, D.E.; Dang, H.T.; Quijada, M.; Larionov, O.V.; Lleonart, R. Antiviral activity of novel quinoline derivatives against dengue virus serotype 2. Molecules, 2018, 23(3), 672.
[http://dx.doi.org/10.3390/molecules23030672] [PMID: 29547522]
[2]
Han, Y.; Pham, H.T.; Xu, H.; Quan, Y.; Mesplède, T. Antimalarial drugs and their metabolites are potent Zika virus inhibitors. J. Med. Virol., 2019, 91(7), 1182-1190.
[http://dx.doi.org/10.1002/jmv.25440] [PMID: 30801742]
[3]
Kos, J.; Ku, C.F.; Kapustikova, I.; Oravec, M.; Zhang, H-J.; Jampilek, J. 8-Hydroxyquinoline-2-carboxanilides as antiviral agents against avian Influenza virus. ChemistrySelect, 2019, 4, 4582-4587.
[http://dx.doi.org/10.1002/slct.201900873]
[4]
Singh, A.K.; Singh, A.; Shaikh, A.; Singh, R.; Misra, A. Chloroquine and hydroxychloroquine in the treatment of COVID-19 with or without diabetes: a systematic search and a narrative review with a special reference to India and other developing countries. Diabetes Metab. Syndr., 2020, 14(3), 241-246.
[http://dx.doi.org/10.1016/j.dsx.2020.03.011] [PMID: 32247211]
[5]
Gao, J.; Tian, Z.; Yang, X. Breakthrough: chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci. Trends, 2020, 14(1), 72-73.
[http://dx.doi.org/10.5582/bst.2020.01047] [PMID: 32074550]
[6]
Dong, L.; Hu, S.; Gao, J. Discovering drugs to treat coronavirus disease 2019 (COVID-19). Drug Discov. Ther., 2020, 14(1), 58-60.
[http://dx.doi.org/10.5582/ddt.2020.01012] [PMID: 32147628]
[7]
Jie, Z.; He, H.; Xi, H.; Zhi, Z. Expert consensus on chloroquine phosphate for the treatment of novel coronavirus pneumonia. Zhonghua Jie He He Hu Xi Za Zhi, 2020, 43, 185-188.
[http://dx.doi.org/10.3760/cma.j.issn.1001-0939.2020.03.009.]
[8]
Ghahremanzadeh, R.; Ahadi, S.; Shakibaei, G.I.; Bazgir, A. Grindstone chemistry: one-pot synthesis of spiro[diindenopyridine-indoline]triones and spiro[acenaphthylene-diindenopyridine]triones. Tetrahedron Lett., 2010, 51, 499-502.
[http://dx.doi.org/10.1016/j.tetlet.2009.11.041]
[9]
Praveen, C. DheenKumar, P.; Muralidharan, D.; Perumal, P.T. Synthesis, antimicrobial and antioxidant evaluation of quinolines and bis(indolyl)methanes. Bioorg. Med. Chem. Lett., 2010, 20(24), 7292-7296.
[http://dx.doi.org/10.1016/j.bmcl.2010.10.075] [PMID: 21071222]
[10]
Afzal, O.; Kumar, S.; Haider, M.R.; Ali, M.R.; Kumar, R.; Jaggi, M.; Bawa, S. A review on anticancer potential of bioactive heterocycle quinoline. Eur. J. Med. Chem., 2015, 97, 871-910.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.044] [PMID: 25073919]
[11]
AlFadly, E.D.; Elzahhar, P.A.; Tramarin, A.; Elkazaz, S.; Shaltout, H.; Abu-Serie, M.M.; Janockova, J.; Soukup, O.; Ghareeb, D.A.; El-Yazbi, A.F.; Rafeh, R.W.; Bakkar, N.Z.; Kobeissy, F.; Iriepa, I.; Moraleda, I.; Saudi, M.N.S.; Bartolini, M.; Belal, A.S.F. Tackling neuroinflammation and cholinergic deficit in Alzheimer’s disease: multi-target inhibitors of cholinesterases, cyclooxygenase-2 and 15-lipoxygenase. Eur. J. Med. Chem., 2019, 167, 161-186.
[http://dx.doi.org/10.1016/j.ejmech.2019.02.012] [PMID: 30771604]
[12]
Bonilla-Ramirez, L.; Rios, A.; Quiliano, M.; Calderon, G.R.; Hortelano, I.B.; Franetich, J.F.; Corcuera, L.; Bordessoulles, M.; Vettorazzi, A.; Cerain, A.L.; Aldana, I.; Mazier, D.; Pabón, A.; Galiano, S. Novel antimalarial chloroquine- and primaquine-quinoxaline 1,4-di-N-oxide hybrids: design, synthesis, Plasmodium life cycle stage profile, and preliminary toxicity studies. Eur. J. Med. Chem., 2018, 158, 68-81.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.063] [PMID: 30199706]
[13]
Páez, V.C.; Mundo, R.R.S.; Peralta, M.L.; Ruiz, J.C.G.; Martínez, D.C.; Corral, R.M.; Picos, R.E.; Höpfl, H.; Sánchez, O.J.; Lara, K.O. Synthesis, spectroscopic, physicochemical and structural characterization of tetrandrine-based macrocycles functionalized with acridine and anthracene groups: DNA binding and anti-proliferative activity. Chem. Biol. Interact., 2018, 286, 34-44.
[http://dx.doi.org/10.1016/j.cbi.2018.02.013] [PMID: 29476729]
[14]
Chalupova, K.; Korabecny, J.; Bartolini, M.; Monti, B.; Lamba, D.; Caliandro, R.; Pesaresi, A.; Brazzolotto, X.; Gastellier, A-J.; Nachon, F.; Pejchal, J.; Jarosova, M.; Hepnarova, V.; Jun, D.; Hrabinova, M.; Dolezal, R.; Karasova, J.Z.; Mzik, M.; Kristofikova, Z.; Misik, J.; Muckova, L.; Jost, P.; Soukup, O.; Benkova, M.; Setnicka, V.; Habartova, L.; Chvojkova, M.; Kleteckova, L.; Vales, K.; Mezeiova, E.; Uliassi, E.; Valis, M.; Nepovimova, E.; Bolognesi, M.L.; Kuca, K. Novel tacrine-tryptophan hybrids: multi-target directed ligands as potential treatment for Alzheimer’s disease. Eur. J. Med. Chem., 2019, 168, 491-514.
[http://dx.doi.org/10.1016/j.ejmech.2019.02.021] [PMID: 30851693]
[15]
da Silva, R.M.R.J.; Gandi, M.O.; Mendonça, J.S.; Carvalho, A.S.; Coutinho, J.P.; Aguiar, A.C.C.; Krettli, A.U.; Boechat, N. New hybrid trifluoromethylquinolines as antiplasmodium agents. Bioorg. Med. Chem., 2019, 27(6), 1002-1008.
[http://dx.doi.org/10.1016/j.bmc.2019.01.044] [PMID: 30737133]
[16]
El Shehry, M.F.; Ghorab, M.M.; Abbas, S.Y.; Fayed, E.A.; Shedid, S.A.; Ammar, Y.A. Quinoline derivatives bearing pyrazole moiety: synthesis and biological evaluation as possible antibacterial and antifungal agents. Eur. J. Med. Chem., 2018, 143, 1463-1473.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.046] [PMID: 29113746]
[17]
Faidallah, H.M.; Girgis, A.S.; Tiwari, A.D.; Honkanadavar, H.H.; Thomas, S.J.; Samir, A.; Kalmouch, A.; Alamry, K.A.; Khan, K.A.; Ibrahim, T.S.; Al-Mahmoudy, A.M.M.; Asiri, A.M.; Panda, S.S. Synthesis, antibacterial properties and 2D-QSAR studies of quinoline-triazole conjugates. Eur. J. Med. Chem., 2018, 143, 1524-1534.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.042] [PMID: 29126731]
[18]
Fan, Y.L.; Cheng, X.W.; Wu, J.B.; Liu, M.; Zhang, F.Z.; Xu, Z.; Feng, L.S. Antiplasmodial and antimalarial activities of quinoline derivatives: an overview. Eur. J. Med. Chem., 2018, 146, 1-14.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.039] [PMID: 29360043]
[19]
Fan, Y.L.; Wu, J.B.; Cheng, X.W.; Zhang, F.Z.; Feng, L.S. Fluoroquinolone derivatives and their anti-tubercular activities. Eur. J. Med. Chem., 2018, 146, 554-563.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.080] [PMID: 29407980]
[20]
Ibrahim, M.K.; Taghour, M.S.; Metwaly, A.M.; Belal, A.; Mehany, A.B.M.; Elhendawy, M.A.; Radwan, M.M.; Yassin, A.M.; El-Deeb, N.M.; Hafez, E.E.; ElSohly, M.A.; Eissa, I.H. Design, synthesis, molecular modeling and anti-proliferative evaluation of novel quinoxaline derivatives as potential DNA intercalators and topoisomerase II inhibitors. Eur. J. Med. Chem., 2018, 155, 117-134.
[http://dx.doi.org/10.1016/j.ejmech.2018.06.004] [PMID: 29885574]
[21]
Jafari, F.; Baghayi, H.; Lavaee, P.; Hadizadeh, F.; Soltani, F.; Moallemzadeh, H.; Mirzaei, S.; Aboutorabzadeh, S.M.; Ghodsi, R. Design, synthesis and biological evaluation of novel benzo- and tetrahydrobenzo-[h]quinoline derivatives as potential DNA-intercalating antitumor agents. Eur. J. Med. Chem., 2019, 164, 292-303.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.060] [PMID: 30599418]
[22]
Li, S.; Hu, L.; Li, J.; Zhu, J.; Zeng, F.; Huang, Q.; Qiu, L.; Du, R.; Cao, R. Design, synthesis, structure-activity relationships and mechanism of action of new quinoline derivatives as potential antitumor agents. Eur. J. Med. Chem., 2019, 162, 666-678.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.048] [PMID: 30496987]
[23]
Luo, W.; Lv, J.W.; Wang, T.; Zhang, Z.Y.; Guo, H.Y.; Song, Z.Y.; Wang, C.J.; Ma, J.; Chen, Y.P. Synthesis, in vitro and in vivo biological evaluation of novel graveolinine derivatives as potential anti-Alzheimer agents. Bioorg. Med. Chem., 2020, 28(1)115190
[http://dx.doi.org/10.1016/j.bmc.2019.115190] [PMID: 31744779]
[24]
Marvadi, S.K.; Krishna, V.S.; Sriram, D.; Kantevari, S. Synthesis of novel morpholine, thiomorpholine and N-substituted piperazine coupled 2-(thiophen-2-yl)dihydroquinolines as potent inhibitors of Mycobacterium tuberculosis. Eur. J. Med. Chem., 2019, 164, 171-178.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.043] [PMID: 30594675]
[25]
Marvadi, S.K.; Krishna, V.S.; Sriram, D.; Kantevari, S. Synthesis and evaluation of novel substituted 1,2,3-triazolyldihydroquinolines as promising antitubercular agents. Bioorg. Med. Chem. Lett., 2019, 29(4), 529-533.
[http://dx.doi.org/10.1016/j.bmcl.2019.01.004] [PMID: 30638877]
[26]
Wilczkiewicz, A.M.; Malarz, K.; Rejmund, M.; Polanski, J.; Musiol, R. Anticancer activity of the thiosemicarbazones that are based on di-2-pyridine ketone and quinoline moiety. Eur. J. Med. Chem., 2019, 171, 180-194.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.027] [PMID: 30921758]
[27]
Overacker, R.D.; Banerjee, S.; Neuhaus, G.F.; Milicevic Sephton, S.; Herrmann, A.; Strother, J.A.; Werner, R.B.; Blakemore, P.R.; Loesgen, S. Biological evaluation of molecules of the azaBINOL class as antiviral agents: inhibition of HIV-1 RNase H activity by 7-isopropoxy-8-(naphth-1-yl)quinoline. Bioorg. Med. Chem., 2019, 27(16), 3595-3604.
[http://dx.doi.org/10.1016/j.bmc.2019.06.044] [PMID: 31285097]
[28]
Ramprasad, J.; Sthalam, V.K.; Thampunuri, R.L.M.; Bhukya, S.; Ummanni, R.; Balasubramanian, S.; Pabbaraja, S. Synthesis and evaluation of a novel quinoline-triazole analogs for antitubercular properties via molecular hybridization approach. Bioorg. Med. Chem. Lett., 2019, 29(20)126671
[http://dx.doi.org/10.1016/j.bmcl.2019.126671] [PMID: 31526604]
[29]
Ribeiro, A.G.; Almeida, S.M.V.; de Oliveira, J.F.; Souza, T.R.C.L.; Santos, K.L.D.; Albuquerque, A.P.B.; Nogueira, M.C.B.L.; Carvalho, L.B.; Moura, R.O.; da Silva, A.C.; Pereira, V.R.A.; Castro, M.C.A.B.; Lima, M.D.C.A. Novel 4-quinoline-thiosemicarbazone derivatives: synthesis, antiproliferative activity, in vitro and in silico biomacromolecule interaction studies and topoisomerase inhibition. Eur. J. Med. Chem., 2019, 182111592
[http://dx.doi.org/10.1016/j.ejmech.2019.111592] [PMID: 31421632]
[30]
Shruthi, T.G.; Eswaran, S.; Shivarudraiah, P.; Narayanan, S.; Subramanian, S. Synthesis, antituberculosis studies and biological evaluation of new quinoline derivatives carrying 1,2,4-oxadiazole moiety. Bioorg. Med. Chem. Lett., 2019, 29(1), 97-102.
[http://dx.doi.org/10.1016/j.bmcl.2018.11.002] [PMID: 30448235]
[31]
Stringer, T.; Wiesner, L.; Smith, G.S. Ferroquine-derived polyamines that target resistant Plasmodium falciparum. Eur. J. Med. Chem., 2019, 179, 78-83.
[http://dx.doi.org/10.1016/j.ejmech.2019.06.023] [PMID: 31238252]
[32]
Su, T.; Zhu, J.; Sun, R.; Zhang, H.; Huang, Q.; Zhang, X.; Du, R.; Qiu, L.; Cao, R. Design, synthesis and biological evaluation of new quinoline derivatives as potential antitumor agents. Eur. J. Med. Chem., 2019, 178, 154-167.
[http://dx.doi.org/10.1016/j.ejmech.2019.05.088] [PMID: 31181480]
[33]
Taha, M.; Sultan, S.; Imran, S.; Rahim, F.; Zaman, K.; Wadood, A.; Ur Rehman, A.; Uddin, N.; Khan, K.M. Synthesis of quinoline derivatives as diabetic II inhibitors and molecular docking studies. Bioorg. Med. Chem., 2019, 27(18), 4081-4088.
[http://dx.doi.org/10.1016/j.bmc.2019.07.035] [PMID: 31378594]
[34]
Upadhyay, K.D.; Dodia, N.M.; Khunt, R.C.; Chaniara, R.S.; Shah, A.K. Synthesis and biological screening of pyrano[3,2-c]quinoline analogues as anti-inflammatory and anticancer agents. ACS Med. Chem. Lett., 2018, 9(3), 283-288.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00545] [PMID: 29541375]
[35]
Villa, P.; Arumugam, N.; Almansour, A.I.; Kumar, R.S.; Mahalingam, S.M.; Maruoka, K.; Thangamani, S. Benzimidazole tethered pyrrolo[3,4-b]quinoline with broad-spectrum activity against fungal pathogens. Bioorg. Med. Chem. Lett., 2019, 29(5), 729-733.
[http://dx.doi.org/10.1016/j.bmcl.2019.01.006] [PMID: 30655213]
[36]
Wang, Z.; Hu, J.; Yang, X.; Feng, X.; Li, X.; Huang, L.; Chan, A.S.C. Design, synthesis, and evaluation of orally bioavailable quinoline-indole derivatives as innovative multitarget-directed ligands: promotion of cell proliferation in the adult murine hippocampus for the treatment of Alzheimer’s disease. J. Med. Chem., 2018, 61(5), 1871-1894.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01417] [PMID: 29420891]
[37]
Zhang, G.F.; Liu, X.; Zhang, S.; Pan, B.; Liu, M.L. Ciprofloxacin derivatives and their antibacterial activities. Eur. J. Med. Chem., 2018, 146, 599-612.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.078] [PMID: 29407984]
[38]
Zhang, G.F.; Zhang, S.; Pan, B.; Liu, X.; Feng, L.S. 4-Quinoline derivatives and their activities against Gram positive pathogens. Eur. J. Med. Chem., 2018, 143, 710-723.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.082] [PMID: 29220792]
[39]
Zhu, J.; Wang, L.N.; Cai, R.; Geng, S.Q.; Dong, Y.F.; Liu, Y.M. Design, synthesis, evaluation and molecular modeling study of 4-N-phenylaminoquinolines for Alzheimer disease treatment. Bioorg. Med. Chem. Lett., 2019, 29(11), 1325-1329.
[http://dx.doi.org/10.1016/j.bmcl.2019.03.050] [PMID: 30956012]
[40]
Crifar, C.; Dörr, A.A.; Lubell, W.D. Copper-catalyzed cascade addition route to 2,3,4-trisubstituted quinoline derivatives. Tetrahedron Lett., 2015, 56, 3451-3453.
[http://dx.doi.org/10.1016/j.tetlet.2015.01.071]
[41]
Achan, J.; Talisuna, A.O.; Erhart, A.; Yeka, A.; Tibenderana, J.K.; Baliraine, F.N.; Rosenthal, P.J.; D’Alessandro, U. Quinine, an old anti-malarial drug in a modern world: role in the treatment of malaria. Malar. J., 2011, 10, 144.
[http://dx.doi.org/10.1186/1475-2875-10-144] [PMID: 21609473]
[42]
Gómez, C.; Kouznetsov, V. Recent developments on antimicrobial quinoline chemistry.Microbial Pathogens and Strategies for Combating Them: Science, Technology and Education; Formatex Research Centre, 2013.
[43]
Bergstrom, F.W. Heterocyclic nitrogen compounds. Part IIA. Hexacyclic compounds: pyridine, quinoline, and isoquinoline. Chem. Rev., 1944, 35, 77-277.
[http://dx.doi.org/10.1021/cr60111a001]
[44]
Manske, R.H. The chemistry of quinolines. Chem. Rev., 1942, 30, 113-144.
[http://dx.doi.org/10.1021/cr60095a006]
[45]
Bharate, J.B.; Vishwakarma, R.A.; Bharate, S.B. Metal-free domino one-pot protocols for quinoline synthesis. RSC Advances, 2015, 5, 42020-42053.
[http://dx.doi.org/10.1039/C5RA07798B]
[46]
Ramann, G.A.; Cowen, B.J. Recent advances in metal-free quinoline synthesis. Molecules, 2016, 21(8), 986.
[http://dx.doi.org/10.3390/molecules21080986]
[47]
Xuan, D.D. Recent progress in the synthesis of quinolines. Curr. Org. Synth., 2019, 16(5), 671-708.
[http://dx.doi.org/10.2174/1570179416666190719112423] [PMID: 31984888]
[48]
Stephens, D.E.; Larionov, O.V. Recent advances in the C–H-functionalization of the distal positions in pyridines and quinolines. Tetrahedron, 2015, 71(46), 8683-8716.
[http://dx.doi.org/10.1016/j.tet.2015.08.034] [PMID: 26640303]
[49]
Irgashev, R.A.; Demina, N.S.; Kazin, N.A.; Rusinov, G.L. Construction of new heteroacenes based on benzo[b]thieno[2,3-d]thiophene/quinoline or 1,8-naphthyridine systems using the Friedländer reaction. Tetrahedron Lett., 2019, 60, 1135-1138.
[http://dx.doi.org/10.1016/j.tetlet.2019.03.041]
[50]
Rao, M.S.; Sarkar, S.; Hussain, S. Microwave-assisted synthesis of 3-aminoarylquinolines from 2-nitrobenzaldehyde and indole via SnCl2-mediated reduction and facile indole ring opening. Tetrahedron Lett., 2019, 60, 1221-1225.
[http://dx.doi.org/10.1016/j.tetlet.2019.03.047]
[51]
Han, Z.S.; Wu, H.; Qu, B.; Wang, Y.; Wu, L.; Zhang, L.; Xu, Y.; Wu, L.; Zhang, Y.; Lee, H.; Roschangar, F.; Song, J.J.; Senanayake, C.H. New class of P-stereogenic chiral Brønsted acid catalysts derived from chiral phosphinamides. Tetrahedron Lett., 2019, 60, 1834-1837.
[http://dx.doi.org/10.1016/j.tetlet.2019.06.013]
[52]
Rayudu, S.V.; Karmakar, D.; Kumar, P. Water-acetic acid mediated an efficient one-pot eco-friendly synthesis of novel bis-isoxazolopyrroloquinoline derivatives. Tetrahedron Lett., 2019, 60151025
[http://dx.doi.org/10.1016/j.tetlet.2019.151025]
[53]
Taufa, T.; Gordon, R.M.A.; Hashmi, M.A.; Hira, K.; Miller, J.H.; Lein, M.; Fromont, J.; Northcote, P.T.; Keyzers, R.A. Pyrroloquinoline derivatives from a Tongan specimen of the marine sponge Strongylodesma tongaensis. Tetrahedron Lett., 2019, 60, 1825-1829.
[http://dx.doi.org/10.1016/j.tetlet.2019.06.014]
[54]
Huang, G.; Solano, C.M.; Su, Y.; Ezzat, N.; Matsui, S.; Huang, L.; Chakrabarti, D.; Yuan, Y. Microwave-assisted, rapid synthesis of 2-vinylquinolines and evaluation of their antimalarial activity. Tetrahedron Lett., 2019, 60(26), 1736-1740.
[http://dx.doi.org/10.1016/j.tetlet.2019.05.054] [PMID: 31802783]
[55]
Jiang, T.S.; Wang, X.; Zhang, X. Synthesis of quinolines from anilines, acetophenones and DMSO under air. Tetrahedron Lett., 2018, 59, 2979-2982.
[http://dx.doi.org/10.1016/j.tetlet.2018.06.054]
[56]
Thanetchaiyakup, A.; Rattanarat, H.; Chuanopparat, N.; Ngernmeesri, P. One-pot synthesis of substituted indolo[1,2-a]quinolines under transition-metal-free conditions. Tetrahedron Lett., 2018, 59, 1014-1018.
[http://dx.doi.org/10.1016/j.tetlet.2018.01.085]
[57]
Mishra, K.; Bharadwaj, K.C.; Singh, R.M. Catalytic trifluoromethylation of aldehyde and potential application for pyrano[4,3-b]quionline synthesis. Tetrahedron Lett., 2018, 59, 3439-3442.
[http://dx.doi.org/10.1016/j.tetlet.2018.08.012]
[58]
Liu, Y.; Zhang, X.; Xi, C. MeOTf-induced annulation of arylisocyanates and arylalkynes leading to 4-methoxyl-2,3-diarylquinolines. Tetrahedron Lett., 2018, 59, 2440-2442.
[http://dx.doi.org/10.1016/j.tetlet.2018.05.030]
[59]
Fan, Z.; Yang, S.; Peng, X.; Zhang, C.; Han, J.; Chen, J.; Deng, H.; Shao, M.; Zhang, H.; Cao, W. Metal-free synthesis of 2-difluoromethylated quinolines via DBU-promoted cascade michael addition/cyclization of methyl 4,4-difluorobut-2-ynoate with 2-aminobenzonitriles. Tetrahedron, 2019, 75, 868-873.
[http://dx.doi.org/10.1016/j.tet.2019.01.001]
[60]
Yang, M.; Hu, X.; Ouyang, B.; Xie, W.; Liu, J.B. TBAB-mediated radical 6-endo-trig ortho-cyclization of N-aryl-N-(prop-2-yn-1-yl)benzenesulfonamide for the synthesis of 3-bromo-1,2-dihydroquinoline. Tetrahedron, 2019, 75(25), 3516-3522.
[http://dx.doi.org/10.1016/j.tet.2019.05.016]
[61]
Singh, J.B.; Mishra, K.; Gupta, T.; Singh, R.M. TBHP-promoted oxidative cyclization of o-alkynylquinoline aldehydes: Metal/additive-free domino synthesis of pyrano[4,3-b]quinolin-1-ones. Tetrahedron Lett., 2018, 59, 1019-1022.
[http://dx.doi.org/10.1016/j.tetlet.2018.01.083]
[62]
Taha, M.; Tariq Javid, M.; Imran, S.; Selvaraj, M.; Chigurupati, S.; Ullah, H.; Rahim, F.; Khan, F.; Mohammad, J.I.; Khan, K.M. Synthesis and study of the α-amylase inhibitory potential of thiadiazole quinoline derivatives. Bioorg. Chem., 2017, 74, 179-186.
[http://dx.doi.org/10.1016/j.bioorg.2017.08.003] [PMID: 28826047]
[63]
Subhedar, D.D.; Shaikh, M.H.; Shingate, B.B.; Nawale, L.; Sarkar, D.; Khedkar, V.M.; Kalam Khan, F.A.; Sangshetti, J.N. Quinolidene-rhodanine conjugates: facile synthesis and biological evaluation. Eur. J. Med. Chem., 2017, 125, 385-399.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.059] [PMID: 27688192]
[64]
Shiri, M.; Heydari, M.; Zadsirjan, V. Efficient synthesis of novel functionalized pyrazolo-pyranoquinoline and tetrahydrodibenzo-[1,8]naphthyridinone derivatives. Tetrahedron, 2017, 73, 2116-2122.
[http://dx.doi.org/10.1016/j.tet.2017.02.064]
[65]
Pejović, A.; Damljanović, I.; Stevanović, D.; Minić, A.; Jovanović, J.; Mihailović, V.; Katanić, J.; Bogdanović, G.A. Synthesis, characterization and antimicrobial activity of novel ferrocene containing quinolines: 2-ferrocenyl-4-methoxyquinolines, 1-benzyl-2-ferrocenyl-2,3-dihydroquinolin-4(1H)-ones and 1-benzyl-2-ferrocenylquinolin-4(1H)-ones. J. Organomet. Chem., 2017, 846, 6-17.
[http://dx.doi.org/10.1016/j.jorganchem.2017.05.051]
[66]
Nahide, P.D.; Solorio-Alvarado, C.R. Mild, rapid and efficient metal-free synthesis of 2-aryl-4-aryloxyquinolines via direct Csp2O bond formation by using diaryliodonium salts. Tetrahedron Lett., 2017, 58, 279-284.
[http://dx.doi.org/10.1016/j.tetlet.2016.11.093]
[67]
Lu, L.; Zhou, P.; Hu, B.; Li, X.; Huang, R.; Yu, F. An improved Pfitzinger reaction: eco-efficient synthesis of quinaldine-4-carboxylates by TMSCl-mediated. Tetrahedron Lett., 2017, 58, 3658-3661.
[http://dx.doi.org/10.1016/j.tetlet.2017.08.014]
[68]
Xin, J.R.; Guo, J.T.; Vigliaturo, D.; He, Y.H.; Guan, Z. Metal-free visible light driven synthesis of tetrahydroquinoline derivatives utilizing Rose Bengal. Tetrahedron, 2017, 73, 4627-4633.
[http://dx.doi.org/10.1016/j.tet.2017.06.030]
[69]
Zhao, F.; Sun, T.; Sun, H.; Xi, G.; Sun, K. Hypervalent iodine mediated oxidative radical amination of heteroarenes under metal-free conditions. Tetrahedron Lett., 2017, 58, 3132-3135.
[http://dx.doi.org/10.1016/j.tetlet.2017.06.081]
[70]
Shiri, M.; Pourabed, R.; Zadsirjan, V.; Sodagar, E. Highly selective organocatalytic three-component reaction of 2-chloroquinoline-3-carbaldehydes, 6-aminouracils, and cyclic methylene active compounds. Tetrahedron Lett., 2016, 57, 5435-5438.
[http://dx.doi.org/10.1016/j.tetlet.2016.10.057]
[71]
Onnagawa, T.; Shima, Y.; Yoshimura, T.; Matsuo, J-i. Formal [4+2] cycloaddition of quinolines, pyridines, and isoquinolines with 3-ethoxycyclobutanones. Tetrahedron Lett., 2016, 57, 3050-3052.
[http://dx.doi.org/10.1016/j.tetlet.2016.06.011]
[72]
Mallepalli, R.; Vennam, D.K.R.; Perali, R.S. PEG-400 mediated sp3 CH functionalization of aza-arenes: an enroute to the synthesis of 2-(2- (6-methylpyridin/quinolin-2-yl)-1-phenylethyl)malononitriles. Tetrahedron Lett., 2016, 57, 4541-4543.
[http://dx.doi.org/10.1016/j.tetlet.2016.08.083]
[73]
Ma, X.; Zhu, Y.; Lü, S.; Zhang, L.; Luo, L.; Jia, X. Construction of quinoline-fused lactones and 2,3-disubstituted quinolines via catalytic aerobic sp3 C–H oxidation: application of fragment-reassembly strategy. Tetrahedron Lett., 2016, 57, 1528-1531.
[http://dx.doi.org/10.1016/j.tetlet.2016.02.055]
[74]
Venkanna, P.; Rajanna, K.C.; Kumar, M.S.; Ansari, M.B.; Ali, M.M. 2,4,6-Trichloro-1,3,5-triazine and N,N′-dimethylformamide as an effective Vilsmeier–Haack reagent for the synthesis of 2-chloro-3-formyl quinolines from acetanilides. Tetrahedron Lett., 2015, 56, 5164-5167.
[http://dx.doi.org/10.1016/j.tetlet.2015.07.056]
[75]
Sączewski, J.; Fedorowicz, J.; Korcz, M.; Sączewski, F.; Wicher, B.; Gdaniec, M.; Konopacka, A. Experimental and theoretical studies on the tautomerism and reactivity of isoxazolo[3,4-b]quinolin-3(1H)-ones. Tetrahedron, 2015, 71, 8975-8984.
[http://dx.doi.org/10.1016/j.tet.2015.09.050]
[76]
Borel, C.R.; Barbosa, L.C.A.; Maltha, C.R.Á.; Fernandes, S.A. A facile one-pot synthesis of 2-(2-pyridyl)quinolines via Povarov reaction. Tetrahedron Lett., 2015, 56, 662-665.
[http://dx.doi.org/10.1016/j.tetlet.2014.12.016]
[77]
Almansour, A.I.; Arumugam, N.; Kumar, R.S.; Menéndez, J.C.; Ghabbour, H.A.; Fun, H.K.; Kumar, R.R. Straightforward synthesis of pyrrolo[3,4-b]quinolines through intramolecular Povarov reactions. Tetrahedron Lett., 2015, 56, 6900-6903.
[http://dx.doi.org/10.1016/j.tetlet.2015.10.107]
[78]
Alizadeh, A.; Hosseini, S.Y.; Sedighian, H.; Bayat, F.; Zhu, Z.; Dusek, M. Synthesis of 5,6-dihydroquinolines and succinates via the reaction of α,α-dicyanoolefins and acetylenic esters in a ratio of 2:1. Tetrahedron, 2015, 71, 7885-7891.
[http://dx.doi.org/10.1016/j.tet.2015.08.033]
[79]
Suresh, N.; Nagesh, H.N.; Renuka, J.; Rajput, V.; Sharma, R.; Khan, I.A.; Gowri, C.S.K.V. Synthesis and evaluation of 1-cyclopropyl-6-fluoro-1,4-dihydro-4-oxo-7-(4-(2-(4-substitutedpiperazin-1-yl)acetyl)piperazin-1-yl)quinoline-3-carboxylic acid derivatives as anti-tubercular and antibacterial agents. Eur. J. Med. Chem., 2014, 71, 324-332.
[http://dx.doi.org/10.1016/j.ejmech.2013.10.055] [PMID: 24333580]
[80]
Sinha, M.; Dola, V.R.; Agarwal, P.; Srivastava, K.; Haq, W.; Puri, S.K.; Katti, S.B. Antiplasmodial activity of new 4-aminoquinoline derivatives against chloroquine resistant strain. Bioorg. Med. Chem., 2014, 22(14), 3573-3586.
[http://dx.doi.org/10.1016/j.bmc.2014.05.024] [PMID: 24906512]
[81]
Yaragorla, S.; Pareek, A. Regioselective intramolecular annulations of ambident β-enamino esters: A diversity-oriented synthesis of nitrogen-containing privileged molecules. Tetrahedron Lett., 2018, 59, 909-913.
[http://dx.doi.org/10.1016/j.tetlet.2018.01.064]
[82]
Dev, J.; Poornachandra, Y.; Reddy, K.R.; Kumar, R.N.; Ravikumar, N.; Swaroop, D.K.; Ranjithreddy, P.; Kumar, G.S.; Nanubolu, J.B.; Kumar, C.G.; Narsaiah, B. Synthesis of novel pyrazolo[3,4-b]quinolinyl acetamide analogs, their evaluation for antimicrobial and anticancer activities, validation by molecular modeling and CoMFA analysis. Eur. J. Med. Chem., 2017, 130, 223-239.
[http://dx.doi.org/10.1016/j.ejmech.2017.02.052]
[83]
Chen, J.; Huang, D.; Ding, Y. Transition-metal-free site-selective C–F bond activation for synthesis of 8-aminoquinolines. Tetrahedron Lett., 2017, 58, 4240-4242.
[http://dx.doi.org/10.1016/j.tetlet.2017.09.069]
[84]
Upadhyay, A.; Sharma, L.K.; Singh, V.K.; Singh, R.K.P. An efficient one pot three component synthesis of fused pyridines via electrochemical approach. Tetrahedron Lett., 2016, 57, 5599-5604.
[http://dx.doi.org/10.1016/j.tetlet.2016.10.111]
[85]
Syniugin, A.R.; Chekanov, M.O.; Savitskiy, P.V.; Pashenko, A.E.; Zhuk, T.S.; Yarmoluk, S.M.; Fokin, A.A. New method for the synthesis of pyrrolo[2,3-b]dihydroquinolines. Tetrahedron Lett., 2016, 57, 213-215.
[http://dx.doi.org/10.1016/j.tetlet.2015.12.011]
[86]
Singh, S.; Agarwal, D.; Sharma, K.; Sharma, M.; Nielsen, M.A.; Alifrangis, M.; Singh, A.K.; Gupta, R.D.; Awasthi, S.K. 4-Aminoquinoline derivatives: synthesis, in vitro and in vivo antiplasmodial activity against chloroquine-resistant parasites. Eur. J. Med. Chem., 2016, 122, 394-407.
[http://dx.doi.org/10.1016/j.ejmech.2016.06.033] [PMID: 27394399]
[87]
Shahabi, D.; Tavakol, H. One-pot synthesis of quinoline derivatives using choline chloride/tin (II) chloride deep eutectic solvent as a green catalyst. J. Mol. Liq., 2016, 220, 324-328.
[http://dx.doi.org/10.1016/j.molliq.2016.04.094]
[88]
Yaragorla, S.; Singh, G.; Dada, R.C. (sp3)–H functionalization of methyl azaarenes: a calcium-catalyzed facile synthesis of (E)-2-styryl azaarenes and 2-aryl-1,3-bisazaarenes. Tetrahedron Lett., 2015, 56, 5924-5929.
[http://dx.doi.org/10.1016/j.tetlet.2015.09.035]
[89]
Nguyen, H.H.; Fettinger, J.C.; Haddadin, M.J.; Kurth, M.J. Expedient one-pot synthesis of indolo[3,2-c]isoquinolines via a base-promoted N-alkylation/tandem cyclization. Tetrahedron Lett., 2015, 56(40), 5429-5433.
[http://dx.doi.org/10.1016/j.tetlet.2015.08.006] [PMID: 26366017]
[90]
Kaur, H.; Balzarini, J.; de Kock, C.; Smith, P.J.; Chibale, K.; Singh, K. Synthesis, antiplasmodial activity and mechanistic studies of pyrimidine-5-carbonitrile and quinoline hybrids. Eur. J. Med. Chem., 2015, 101, 52-62.
[http://dx.doi.org/10.1016/j.ejmech.2015.06.024] [PMID: 26114811]
[91]
Figueiras, M.; Coelho, L.; Wicht, K.J.; Santos, S.A.; Lavrado, J.; Gut, J.; Rosenthal, P.J.; Nogueira, F.; Egan, T.J.; Moreira, R.; Paulo, A. N10,N11-di-alkylamine indolo[3,2-b]quinolines as hemozoin inhibitors: design, synthesis and antiplasmodial activity. Bioorg. Med. Chem., 2015, 23(7), 1530-1539.
[http://dx.doi.org/10.1016/j.bmc.2015.02.007] [PMID: 25725608]
[92]
Sohal, H.S.; Khare, R.; Goyal, A.; Woolley, A.; Singh, K.; Sharma, R. Multi-component approach for the synthesis of fused dihydropyridines via unsymmetrical Hantzch condensation using glycerol as green solvent. Am. J. Chem., 2014, 4, 29-34.
[http://dx.doi.org/10.5923/j.chemistry.20140401.04 ]
[93]
Khan, M.N.; Pal, S.; Karamthulla, S.; Choudhury, L.H. Multicomponent reactions for facile access to coumarin-fused dihydroquinolines and quinolines: synthesis and photophysical studies. New J. Chem., 2014, 38, 4722-4729.
[http://dx.doi.org/10.1039/C4NJ00630E]
[94]
Zhang, B.Q.; Luo, Y.; He, Y.H.; Guan, Z. Highly efficient synthesis of polysubstituted 1,2-dihydroquinolines via cascade reaction of α-ketoesters with arylamines mediated by iodine. Tetrahedron, 2014, 70, 1961-1966.
[http://dx.doi.org/10.1016/j.tet.2014.01.061]
[95]
Tabassum, S.; Suresha Kumara, T.H.; Jasinski, J.P.; Millikan, S.P.; Yathirajan, H.S.; Sujan Ganapathy, P.S.; Sowmya, H.B.V.; More, S.S.; Nagendrappa, G.; Kaur, M.; Jose, G. Synthesis, crystal structure, ABTS radical-scavenging activity, antimicrobial and docking studies of some novel quinoline derivatives. J. Mol. Struct., 2014, 1070, 10-20.
[http://dx.doi.org/10.1016/j.molstruc.2014.04.009]
[96]
Huang, P.; Su, Q.; Dong, W.; Zhang, Y.; An, D. Bronsted/Lewis acids-promoted selective preparations of 3-hetero quinolines or 4/5-hetero triazoles from azides and hetero-alkynes. Tetrahedron, 2017, 73, 4275-4284.
[http://dx.doi.org/10.1016/j.tet.2017.05.076]
[97]
Wang, X.; Liu, M.; Chen, Z. Bronsted-acid catalyzed cascade annulations toward the fused pyranoquinoline derivatives. Tetrahedron, 2016, 72, 4423-4426.
[http://dx.doi.org/10.1016/j.tet.2016.06.004]
[98]
Elghamry, I.; Al-Faiyz, Y. A simple one-pot synthesis of quinoline-4-carboxylic acids by the Pfitzinger reaction of isatin with enaminones in water. Tetrahedron Lett., 2016, 57, 110-112.
[http://dx.doi.org/10.1016/j.tetlet.2015.11.070]
[99]
Yu, F.C.; Zhou, B.; Xu, H.; Li, Y.M.; Lin, J.; Yan, S.J.; Shen, Y. Three-component synthesis of functionalized pyrrolo[3,4-c]quinolin-1-ones by an unusual reductive Cascade reaction. Tetrahedron, 2015, 71, 1036-1044.
[http://dx.doi.org/10.1016/j.tet.2014.12.100]
[100]
Wan, W.; Wang, H.; Lin, H.; Wang, J.; Jiang, Y.; Jiang, H.; Zhu, S.; Wang, Z.; Hao, J. Synthesis, electrochemical, photophysical, and electroluminescent properties of organic dyes containing pyrazolo[3, 4-b]quinoline chromophore. Dyes Pigm., 2015, 121, 138-146.
[http://dx.doi.org/10.1016/j.dyepig.2015.05.002]
[101]
Srivastava, V.; Lee, H. Synthesis and bio-evaluation of novel quinolino-stilbene derivatives as potential anticancer agents. Bioorg. Med. Chem., 2015, 23(24), 7629-7640.
[http://dx.doi.org/10.1016/j.bmc.2015.11.007] [PMID: 26602827]
[102]
Ramann, G.A.; Cowen, B.J. Quinoline synthesis by improved Skraup–Doebner–Von Miller reactions utilizing acrolein diethyl acetal. Tetrahedron Lett., 2015, 56, 6436-6439.
[http://dx.doi.org/10.1016/j.tetlet.2015.09.145]
[103]
Prasath, R.; Bhavana, P.; Sarveswari, S.; Ng, S.W.; Tiekink, E.R.T. Efficient ultrasound-assisted synthesis, spectroscopic, crystallographic and biological investigations of pyrazole-appended quinolinyl chalcones. J. Mol. Struct., 2015, 1081, 201-210.
[http://dx.doi.org/10.1016/j.molstruc.2014.10.026]
[104]
Zhang, X.; Xu, X.; Yu, L.; Zhao, Q. Bronsted acid-mediated reactions of aldehydes with 2-vinylaniline and biphenyl-2-amine. Tetrahedron Lett., 2014, 55, 2280-2282.
[http://dx.doi.org/10.1016/j.tetlet.2014.02.090]
[105]
Suzuki, Y.; Nemoto, T.; Nakano, S.I.; Zhao, Z.; Yoshimatsu, Y.; Hamada, Y. Synthesis of 4,5-fused tricyclic quinolines via an acid-promoted intramolecular Friedel-Crafts allenylation of aniline derivatives. Tetrahedron Lett., 2014, 55, 6726-6728.
[http://dx.doi.org/10.1016/j.tetlet.2014.10.010]
[106]
Singh, K.; Verma, V.; Yadav, K.; Sreekanth, V.; Kumar, D.; Bajaj, A.; Kumar, V. Design, regioselective synthesis and cytotoxic evaluation of 2-aminoimidazole-quinoline hybrids against cancer and primary endothelial cells. Eur. J. Med. Chem., 2014, 87, 150-158.
[http://dx.doi.org/10.1016/j.ejmech.2014.09.055] [PMID: 25247771]
[107]
Ryabukhin, D.S.; Gurskaya, L.Y.; Fukin, G.K.; Vasilyev, A.V. Superelectrophilic activation of N-aryl amides of 3-arylpropynoic acids: synthesis of quinolin-2(1H)-one derivatives. Tetrahedron, 2014, 70, 6428-6443.
[http://dx.doi.org/10.1016/j.tet.2014.07.028]
[108]
Ren, T.; Wang, J.; Li, G.; Cheng, H.; Li, Y. Synthesis of quinoline derivatives containing pyrazole group and investigation of their crystal structure and spectroscopic properties in relation to acidity and alkalinity of mediums. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 129, 7-13.
[http://dx.doi.org/10.1016/j.saa.2014.03.018] [PMID: 24709388]
[109]
Ramesh, V.; Ananda Rao, B.; Sharma, P.; Swarna, B.; Thummuri, D.; Srinivas, K.; Naidu, V.G.M.; Jayathirtha Rao, V. Synthesis and biological evaluation of new rhodanine analogues bearing 2-chloroquinoline and benzo[h]quinoline scaffolds as anticancer agents. Eur. J. Med. Chem., 2014, 83, 569-580.
[http://dx.doi.org/10.1016/j.ejmech.2014.06.013] [PMID: 24996143]
[110]
Nandini, D.; Asthana, M.; Mishra, K.; Singh, R.P.; Singh, R.M. Temperature dependent selective synthesis of linear 2-bromo and 2-alkoxyfuro[2,3-b]quinolines: reaction of 3-(2,2-dibromovinyl-)quinolin-2(1H)-ones with alcoholic KOH. Tetrahedron Lett., 2014, 55, 6257-6262.
[http://dx.doi.org/10.1016/j.tetlet.2014.09.082]
[111]
Muscia, G.C.; Buldain, G.Y.; Asís, S.E. Design, synthesis and evaluation of acridine and fused-quinoline derivatives as potential anti-tuberculosis agents. Eur. J. Med. Chem., 2014, 73, 243-249.
[http://dx.doi.org/10.1016/j.ejmech.2013.12.013] [PMID: 24412719]
[112]
Mamedov, V.A.; Galimullina, V.R.; Zhukova, N.A.; Kadyrova, S.F.; Mironova, E.V.; Rizvanov, I.K.; Latypov, S.K. Quinoxalinone-benzimidazole rearrangement: an efficient strategy for the synthesis of structurally diverse quinoline derivatives with benzimidazole moieties. Tetrahedron Lett., 2014, 55, 4319-4324.
[http://dx.doi.org/10.1016/j.tetlet.2014.06.023]
[113]
Castillo, J.C.; Jiménez, E.; Portilla, J.; Insuasty, B.; Quiroga, J.; Fuquen, R.M.; Kennedy, A.R.; Abonia, R. Application of a catalyst-free domino Mannich/Friedel-Crafts alkylation reaction for the synthesis of novel tetrahydroquinolines of potential antitumor activity. Tetrahedron, 2018, 74, 932-947.
[http://dx.doi.org/10.1016/j.tet.2017.12.049]
[114]
Kong, D.; Wang, Q.; Zhu, Z.; Wang, X.; Shi, Z.; Lin, Q.; Wu, M. Convenient one-pot synthesis of thiobarbituro-quinoline derivatives via catalyst-free multicomponent reactions in water. Tetrahedron Lett., 2017, 58, 2644-2647.
[http://dx.doi.org/10.1016/j.tetlet.2017.05.047]
[115]
Ezzati, M.; Khalafy, J.; Marjani, A.P.; Prager, R.H. The catalyst-free syntheses of pyrazolo[3,4-b]quinolin-5-one and pyrazolo[4′,3′:5,6]pyrido[2,3-d]pyrimidin-5,7-dione derivatives by one-pot, three-component reactions. Tetrahedron, 2017, 73, 6587-6596.
[http://dx.doi.org/10.1016/j.tet.2017.10.004]
[116]
Çelik, İ.; Yildiz, F. Synthesis of 4-hydroxyquinoline-2,3-dicarboxylates using N-(2-aminobenzoyl)benzotriazoles. Tetrahedron, 2017, 73, 3878-3882.
[http://dx.doi.org/10.1016/j.tet.2017.05.058]
[117]
Lima, G.B.; Pinto, L.S.S.; Kaiser, C.R.; Wardell, J.L.; De Freitas, C.S.; Vieira, Y.R.; Marttorelli, A.; Neto, J.C.; Bozza, P.T.; Wardell, S.M.S.V.; de Souza, M.V.N.; Souza, T.M.L.N. -(2-(arylmethylimino)ethyl)-7-chloroquinolin-4-amine derivatives, synthesized by thermal and ultrasonic means, are endowed with anti-Zika virus activity. Eur. J. Med. Chem., 2017, 127, 434-441.
[http://dx.doi.org/10.1016/j.ejmech.2017.01.007] [PMID: 28092859]
[118]
Yaragorla, S.; Singh, G.; Dada, R. ‘On water synthesis’ of oxindoles bearing quaternary carbon center through C–H (sp3) functionalization of methyl azaarenes. Tetrahedron Lett., 2016, 57, 591-594.
[http://dx.doi.org/10.1016/j.tetlet.2015.12.096]
[119]
Arab-Salmanabadi, S.; Dorvar, M.; Notash, B. Synthesis of novel functionalized dihydroimidazo[2,1-a]isoquinolines and dihydroimidazo[2,1-a] quinolines: single crystal X-ray studies of (Z)-methyl 2-(1-(benzo[d]thiazol-2-yl)-2-oxo-1,2-dihydroimidazo[2,1-a]isoquinolin-3(10bH)-ylidene)acetate. Tetrahedron, 2015, 71, 1292-1296.
[http://dx.doi.org/10.1016/j.tet.2014.12.076]
[120]
Xu, L.; Shao, Z.; Wang, L.; Zhao, H.; Xiao, J. Catalyst-free synthesis of (E)-2-alkenylquinoline derivatives via C(sp3)-H functionalization of 2-methylquinolines. Tetrahedron Lett., 2014, 55, 6856-6860.
[http://dx.doi.org/10.1016/j.tetlet.2014.10.079]
[121]
Nammalwar, B.; Murie, M.; Fortenberry, C.; Bunce, R.A. Quinoline- and 1,8-naphthyridine-3-carboxylic acids using a self-catalyzed Friedländer approach. Tetrahedron Lett., 2014, 55, 3181-3183.
[http://dx.doi.org/10.1016/j.tetlet.2014.04.010]