Current Topics in Medicinal Chemistry

Author(s): Mayasah Y. Al-Nema and Anand Gaurav*

DOI: 10.2174/1568026620666200613202641

Phosphodiesterase as a Target for Cognition Enhancement in Schizophrenia

Page: [2404 - 2421] Pages: 18

  • * (Excluding Mailing and Handling)

Abstract

Schizophrenia is a severe mental disorder that affects more than 1% of the population worldwide. Dopamine system dysfunction and alterations in glutamatergic neurotransmission are strongly implicated in the aetiology of schizophrenia. To date, antipsychotic drugs are the only available treatment for the symptoms of schizophrenia. These medications, which act as D2-receptor antagonist, adequately address the positive symptoms of the disease, but they fail to improve the negative symptoms and cognitive impairment. In schizophrenia, cognitive impairment is a core feature of the disorder. Therefore, the treatment of cognitive impairment and the other symptoms related to schizophrenia remains a significant unmet medical need. Currently, phosphodiesterases (PDEs) are considered the best drug target for the treatment of schizophrenia since many PDE subfamilies are abundant in the brain regions that are relevant to cognition. Thus, this review aims to illustrate the mechanism of PDEs in treating the symptoms of schizophrenia and summarises the encouraging results of PDE inhibitors as anti-schizophrenic drugs in preclinical and clinical studies.

Keywords: Schizophrenia, Dopamine system dysfunction, Glutamatergic neurotransmission, Antipsychotic drugs, Cognitive impairment, Phosphodiesterases.

Graphical Abstract

[1]
Kaneko, K. Negative Symptoms and cognitive impairments in schizophrenia: two key symptoms negatively influencing social functioning. Yonago Acta Med., 2018, 61(2), 91-102.
[http://dx.doi.org/10.33160/yam.2018.06.001 ] [PMID: 29946215]
[2]
Carbon, M.; Correll, C.U. Thinking and acting beyond the positive: the role of the cognitive and negative symptoms in schizophrenia. CNS Spectr., 2014, 19(Suppl. 1), 38-52.
[http://dx.doi.org/10.1017/S1092852914000601 ] [PMID: 25403863]
[3]
Kirkpatrick, B.; Buchanan, R.W.; Ross, D.E.; Carpenter, W.T. Jr A separate disease within the syndrome of schizophrenia. Arch. Gen. Psychiatry, 2001, 58(2), 165-171.
[http://dx.doi.org/10.1001/archpsyc.58.2.165 ] [PMID: 11177118]
[4]
Remington, G.; Foussias, G.; Fervaha, G.; Agid, O.; Takeuchi, H.; Lee, J.; Hahn, M. Treating negative symptoms in schizophrenia: An Update. Curr. Treat. Options Psychiatry, 2016, 3, 133-150.
[http://dx.doi.org/10.1007/s40501-016-0075-8 ] [PMID: 27376016]
[5]
Kirschner, M.; Aleman, A.; Kaiser, S. Secondary negative symptoms - A review of mechanisms, assessment and treatment. Schizophr. Res., 2017, 186, 29-38.
[http://dx.doi.org/10.1016/j.schres.2016.05.003 ] [PMID: 27230288]
[6]
Bobes, J.; Arango, C.; Garcia-Garcia, M.; Rejas, J. CLAMORS Study Collaborative Group. Prevalence of negative symptoms in outpatients with schizophrenia spectrum disorders treated with antipsychotics in routine clinical practice: findings from the CLAMORS study. J. Clin. Psychiatry, 2010, 71(3), 280-286.
[http://dx.doi.org/10.4088/JCP.08m04250yel ] [PMID: 19895779]
[7]
Lyne, J.; Renwick, L.; O’Donoghue, B.; Kinsella, A.; Malone, K.; Turner, N.; O’Callaghan, E.; Clarke, M. Negative symptom domain prevalence across diagnostic boundaries: The relevance of diagnostic shifts. Psychiatry Res., 2015, 228(3), 347-354.
[http://dx.doi.org/10.1016/j.psychres.2015.05.086 ] [PMID: 26162655]
[8]
Bubl, E.; Werner, L.; Liang, Y.; Ebert, D.; Friedel, E.; Bubl, A.; Bach, M.; van Elst, L.T. Evaluating the neurobiological correlations and impact of treatment on cognitive dysfunction in ADHA and schizophrenia by means of the pattern electroretinogram. Schizophr. Bull., 2018, 44.
[9]
Mattson, M.P.; Chan, S.L.; Duan, W. Modification of brain aging and neurodegenerative disorders by genes, diet, and behavior. Physiol. Rev., 2002, 82(3), 637-672.
[http://dx.doi.org/10.1152/physrev.00004.2002 ] [PMID: 12087131]
[10]
Siuciak, J.A.; Chapin, D.S.; Harms, J.F.; Lebel, L.A.; McCarthy, S.A.; Chambers, L.; Shrikhande, A.; Wong, S.; Menniti, F.S.; Schmidt, C.J. Inhibition of the striatum-enriched phosphodiesterase PDE10A: a novel approach to the treatment of psychosis. Neuropharmacology, 2006, 51(2), 386-396.
[http://dx.doi.org/10.1016/j.neuropharm.2006.04.013 ] [PMID: 16780899]
[11]
Tsapakis, E.M.; Dimopoulou, T.; Tarazi, F.I. Clinical management of negative symptoms of schizophrenia: An update. Pharmacol. Ther., 2015, 153, 135-147.
[http://dx.doi.org/10.1016/j.pharmthera.2015.06.008 ] [PMID: 26116809]
[12]
Kehler, J.; Nielsen, J. PDE10A inhibitors: novel therapeutic drugs for schizophrenia. Curr. Pharm. Des., 2011, 17(2), 137-150.
[http://dx.doi.org/10.2174/138161211795049624 ] [PMID: 21355834]
[13]
Howes, O.D.; Kapur, S. The dopamine hypothesis of schizophrenia: version III--the final common pathway. Schizophr. Bull., 2009, 35(3), 549-562.
[http://dx.doi.org/10.1093/schbul/sbp006 ] [PMID: 19325164]
[14]
Perez-Costas, E.; Melendez-Ferro, M.; Roberts, R.C. Basal ganglia pathology in schizophrenia: dopamine connections and anomalies. J. Neurochem., 2010, 113(2), 287-302.
[http://dx.doi.org/10.1111/j.1471-4159.2010.06604.x ] [PMID: 20089137]
[15]
Luo, S.X.; Huang, E.J. Dopaminergic Neurons and Brain Reward Pathways: From Neurogenesis to Circuit Assembly. Am. J. Pathol., 2016, 186(3), 478-488.
[http://dx.doi.org/10.1016/j.ajpath.2015.09.023 ] [PMID: 26724386]
[16]
Alexander, G.E.; DeLong, M.R.; Strick, P.L. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu. Rev. Neurosci., 1986, 9, 357-381.
[http://dx.doi.org/10.1146/annurev.ne.09.030186.002041 ] [PMID: 3085570]
[17]
Alexander, G.E.; Crutcher, M.D.; DeLong, M.R. Basal gangliathalamocortical circuits: parallel substrates for motor, oculomotor, “prefrontal” and “limbic” functions. Prog. Brain Res., 1990, 85, 119-146..
[http://dx.doi.org/10.1016/S0079-6123(08)62678-3] [PMID: 2094891]
[18]
Björklund, A.; Dunnett, S.B. Dopamine neuron systems in the brain: an update. Trends Neurosci., 2007, 30(5), 194-202.
[http://dx.doi.org/10.1016/j.tins.2007.03.006 ] [PMID: 17408759]
[19]
Graveland, G.A.; DiFiglia, M. The frequency and distribution of medium-sized neurons with indented nuclei in the primate and rodent neostriatum. Brain Res., 1985, 327(1-2), 307-311.
[http://dx.doi.org/10.1016/0006-8993(85)91524-0 ] [PMID: 3986508]
[20]
Hedreen, J.C.; DeLong, M.R. Organization of striatopallidal, striatonigral, and nigrostriatal projections in the macaque. J. Comp. Neurol., 1991, 304(4), 569-595.
[http://dx.doi.org/10.1002/cne.903040406 ] [PMID: 2013650]
[21]
Smith, Y.; Bevan, M.D.; Shink, E.; Bolam, J.P. Microcircuitry of the direct and indirect pathways of the basal ganglia. Neuroscience, 1998, 86(2), 353-387.
[PMID: 9881853]
[22]
Tepper, J.M.; Abercrombie, E.D.; Bolam, J.P. Basal ganglia macrocircuits; Prog. Brain Res., 2007, 160, 3-7..
[http://dx.doi.org/10.1016/S0079-6123(06)60001-0] [PMID: 17499105]
[23]
Gerfen, C.R. The neostriatal mosaic: multiple levels of compartmental organization in the basal ganglia. Annu. Rev. Neurosci., 1992, 15, 285-320.
[http://dx.doi.org/10.1146/annurev.ne.15.030192.001441 ] [PMID: 1575444]
[24]
Parent, A.; Hazrati, L.N. Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res. Brain Res. Rev., 1995, 20(1), 91-127.
[http://dx.doi.org/10.1016/0165-0173(94)00007-C ] [PMID: 7711769]
[25]
Gerfen, C.R.; McGinty, J.F.; Young, W.S. III Dopamine differentially regulates dynorphin, substance P, and enkephalin expression in striatal neurons: in situ hybridization histochemical analysis. J. Neurosci., 1991, 11(4), 1016-1031.
[http://dx.doi.org/10.1523/JNEUROSCI.11-04-01016.1991 ] [PMID: 1707092]
[26]
Gerfen, C.R. Molecular effects of dopamine on striatal-projection pathways. Trends Neurosci., 2000, 23(10)(Suppl.), S64-S70.
[http://dx.doi.org/10.1016/S1471-1931(00)00019-7 ] [PMID: 11052222]
[27]
Abercrombie, E.D.; DeBoer, P. Substantia nigra D1 receptors and stimulation of striatal cholinergic interneurons by dopamine: a proposed circuit mechanism. J. Neurosci., 1997, 17(21), 8498-8505.
[http://dx.doi.org/10.1523/JNEUROSCI.17-21-08498.1997 ] [PMID: 9334422]
[28]
Kravitz, A.V.; Freeze, B.S.; Parker, P.R.; Kay, K.; Thwin, M.T.; Deisseroth, K.; Kreitzer, A.C. Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature, 2010, 466(7306), 622-626.
[http://dx.doi.org/10.1038/nature09159 ] [PMID: 20613723]
[29]
Calabresi, P.; Picconi, B.; Tozzi, A.; Ghiglieri, V.; Di Filippo, M. Direct and indirect pathways of basal ganglia: a critical reappraisal. Nat. Neurosci., 2014, 17(8), 1022-1030.
[http://dx.doi.org/10.1038/nn.3743 ] [PMID: 25065439]
[30]
Jentsch, J.D.; Roth, R.H. The neuropsychopharmacology of phencyclidine: from NMDA receptor hypofunction to the dopamine hypothesis of schizophrenia. Neuropsychopharmacology, 1999, 20(3), 201-225.
[http://dx.doi.org/10.1016/S0893-133X(98)00060-8 ] [PMID: 10063482]
[31]
Huettner, J.E. Competitive antagonism of glycine at the N-methyl-D-aspartate (NMDA) receptor. Biochem. Pharmacol., 1991, 41(1), 9-16.
[http://dx.doi.org/10.1016/0006-2952(91)90004-O ] [PMID: 1824750]
[32]
Prast, H.; Philippu, A. Nitric oxide as modulator of neuronal function. Prog. Neurobiol., 2001, 64(1), 51-68.
[http://dx.doi.org/10.1016/S0301-0082(00)00044-7 ] [PMID: 11250062]
[33]
Pitsikas, N. The role of nitric oxide in the object recognition memory. Behav. Brain Res., 2015, 285, 200-207.
[http://dx.doi.org/10.1016/j.bbr.2014.06.008 ] [PMID: 24933185]
[34]
Dagdeviren, M. Role of nitric oxide synthase in normal brain function and pathophysiology of neural diseases. Nitric Oxide Synthase: Simple Enzyme-Complex Roles; Saravi, S., Ed.; IntechOpen: London, 2017.
[http://dx.doi.org/10.5772/67267]
[35]
Coyle, J.T. The nagging question of the function of N-acetylaspartylglutamate. Neurobiol. Dis., 1997, 4(3-4), 231-238.
[http://dx.doi.org/10.1006/nbdi.1997.0153 ] [PMID: 9361299]
[36]
Kim, J.S.; Kornhuber, H.H.; Schmid-Burgk, W.; Holzmüller, B. Low cerebrospinal fluid glutamate in schizophrenic patients and a new hypothesis on schizophrenia. Neurosci. Lett., 1980, 20(3), 379-382.
[http://dx.doi.org/10.1016/0304-3940(80)90178-0 ] [PMID: 6108541]
[37]
Li, Y-W.; Seager, M.A.; Wojcik, T.; Heman, K.; Molski, T.F.; Fernandes, A.; Langdon, S.; Pendri, A.; Gerritz, S.; Tian, Y.; Hong, Y.; Gallagher, L.; Merritt, J.R.; Zhang, C.; Westphal, R.; Zaczek, R.; Macor, J.E.; Bronson, J.J.; Lodge, N.J. Biochemical and behavioral effects of PDE10A inhibitors: Relationship to target site occupancy. Neuropharmacology, 2016, 102, 121-135.
[http://dx.doi.org/10.1016/j.neuropharm.2015.10.037 ] [PMID: 26522433]
[38]
Ahmad, F.; Murata, T.; Simizu, K.; Degeman, E.; Maurice, D.; Manganiello, V. Cyclic Nucleotide Phosphodiesterases: important signaling modulators and therapeutic targets. Oral disease. PMC, 2015, 21(1), 25-50.
[http://dx.doi.org/10.1111/odi.12275]
[39]
Tsai, E. J.; Kass, D. A. Cyclic GMP signaling in cardiovascular pathophysiology and therapeutics., Pharmacol therapeut, 2009, 122(3), 216-38.
[http://dx.doi.org/10.1016/j.pharmthera.2009.02.009]
[40]
Francis, S.H.; Blount, M.A.; Corbin, J.D. Mammalian cyclic nucleotide phosphodiesterases: molecular mechanisms and physiological functions. Physiol. Rev., 2011, 91(2), 651-690.
[http://dx.doi.org/10.1152/physrev.00030.2010 ] [PMID: 21527734]
[41]
Maurice, D.H.; Ke, H.; Ahmad, F.; Wang, Y.; Chung, J.; Manganiello, V.C. Advances in targeting cyclic nucleotide phosphodiesterases. Nat. Rev. Drug Discov., 2014, 13(4), 290-314.
[http://dx.doi.org/10.1038/nrd4228 ] [PMID: 24687066]
[42]
Bender, A.T.; Beavo, J.A. Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacol. Rev., 2006, 58(3), 488-520.
[http://dx.doi.org/10.1124/pr.58.3.5 ] [PMID: 16968949]
[43]
Eschenhagen, T. PDE4 in the human heart-major player or littel helper? BJP, 2013, 196(3), 524-527.
[http://dx.doi.org/10.1111/bph.12168]
[44]
Ejiofor, S.; Turner, A.M. Pharmacotherapies for COPD. Clin. Med. Insights Circ. Respir. Pulm. Med., 2013, 7, 17-34.
[http://dx.doi.org/10.4137/CCRPM.S7211 ] [PMID: 23700381]
[45]
Gacci, M.; Sebastianelli, A.; Salvi, M.; Vignozzi, L.; Corona, G.; McVary, K.T.; Kaplan, S.A.; Oelke, M.; Maggi, M.; Carini, M. PED5-Is for the Treatment of concomitant ED and LUTS/BPH. Curr. Bladder Dysfunct. Rep., 2013, 8(2), 150-159.
[http://dx.doi.org/10.1007/s11884-013-0184-9 ] [PMID: 23888186]
[46]
Conti, M.; Beavo, J. Biochemistry and physiology of cyclic nucleotide phosphodiesterases: essential components in cyclic nucleotide signaling. Annu. Rev. Biochem., 2007, 76, 481-511.
[http://dx.doi.org/10.1146/annurev.biochem.76.060305.150444 ] [PMID: 17376027]
[47]
Menniti, F.S.; Chappie, T.A.; Humphrey, J.M.; Schmidt, C.J. Phosphodiesterase 10A inhibitors: a novel approach to the treatment of the symptoms of schizophrenia. Curr. Opin. Investig. Drugs, 2007, 8(1), 54-59.
[PMID: 17263185]
[48]
Grauer, S.M.; Pulito, V.L.; Navarra, R.L.; Kelly, M.P.; Kelley, C.; Graf, R.; Langen, B.; Logue, S.; Brennan, J.; Jiang, L.; Charych, E.; Egerland, U.; Liu, F.; Marquis, K.L.; Malamas, M.; Hage, T.; Comery, T.A.; Brandon, N.J. Phosphodiesterase 10A inhibitor activity in preclinical models of the positive, cognitive, and negative symptoms of schizophrenia. J. Pharmacol. Exp. Ther., 2009, 331(2), 574-590.
[http://dx.doi.org/10.1124/jpet.109.155994 ] [PMID: 19661377]
[49]
Chan, S.; Yan, C. PDE1 isozymes, key regulators of pathological vascular remodeling. Curr. Opin. Pharmacol., 2011, 11(6), 720-724.
[http://dx.doi.org/10.1016/j.coph.2011.09.002 ] [PMID: 21962439]
[50]
Snyder, G.L.; Prickaerts, J.; Wadenberg, M.L.; Zhang, L.; Zheng, H.; Yao, W.; Akkerman, S.; Zhu, H.; Hendrick, J.P.; Vanover, K.E.; Davis, R.; Li, P.; Mates, S.; Wennogle, L.P. Preclinical profile of ITI-214, an inhibitor of phosphodiesterase 1, for enhancement of memory performance in rats. Psychopharmacology (Berl.), 2016, 233(17), 3113-3124.
[http://dx.doi.org/10.1007/s00213-016-4346-2 ] [PMID: 27342643]
[51]
Boess, F.G.; Hendrix, M.; van der Staay, F-J.; Erb, C.; Schreiber, R.; van Staveren, W.; de Vente, J.; Prickaerts, J.; Blokland, A.; Koenig, G. Inhibition of phosphodiesterase 2 increases neuronal cGMP, synaptic plasticity and memory performance. Neuropharmacology, 2004, 47(7), 1081-1092.
[http://dx.doi.org/10.1016/j.neuropharm.2004.07.040 ] [PMID: 15555642]
[52]
Masood, A.; Huang, Y.; Hajjhussein, H.; Xiao, L.; Li, H.; Wang, W.; Hamza, A.; Zhan, C-G.; O’Donnell, J.M. Anxiolytic effects of phosphodiesterase-2 inhibitors associated with increased cGMP signaling. J. Pharmacol. Exp. Ther., 2009, 331(2), 690-699.
[http://dx.doi.org/10.1124/jpet.109.156729 ] [PMID: 19684253]
[53]
Movsesian, M.A. PDE3 inhibition in dilated cardiomyopathy: reasons to reconsider. J. Card. Fail., 2003, 9(6), 475-480.
[http://dx.doi.org/10.1016/S1071-9164(03)00135-0 ] [PMID: 14966789]
[54]
Yashiro, Y.; Ohhashi, T. Effects of cilostazol, a selective cyclic AMP phosphodiesterase inhibitor on isolated rabbit spinal arterioles. Jpn. J. Physiol., 2002, 52(5), 471-477.
[http://dx.doi.org/10.2170/jjphysiol.52.471 ] [PMID: 12533252]
[55]
Rabe, K.F. Update on roflumilast, a phosphodiesterase 4 inhibitor for the treatment of chronic obstructive pulmonary disease. Br. J. Pharmacol., 2011, 163(1), 53-67.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01218.x ] [PMID: 21232047]
[56]
Jin, S.L.; Ding, S.L.; Lin, S.C. Phosphodiesterase 4 and its inhibitors in inflammatory diseases. Chang Gung Med. J., 2012, 35(3), 197-210.
[http://dx.doi.org/10.4103/2319-4170.106152 ] [PMID: 22735051]
[57]
Wang, C. Phosphodiesterase-5 inhibitors and benign prostatic hyperplasia. Curr. Opin. Urol., 2010, 20(1), 49-54.
[http://dx.doi.org/10.1097/MOU.0b013e328333ac68 ] [PMID: 19887943]
[58]
Safavi, M.; Baeeri, M.; Abdollahi, M. New methods for the discovery and synthesis of PDE7 inhibitors as new drugs for neurological and inflammatory disorders. Expert Opin. Drug Discov., 2013, 8(6), 733-751.
[http://dx.doi.org/10.1517/17460441.2013.787986 ] [PMID: 23570245]
[59]
Zhang, L.; Murray, F.; Zahno, A.; Kanter, J.R.; Chou, D.; Suda, R.; Fenlon, M.; Rassenti, L.; Cottam, H.; Kipps, T.J.; Insel, P.A. Cyclic nucleotide phosphodiesterase profiling reveals increased expression of phosphodiesterase 7B in chronic lymphocytic leukemia. Proc. Natl. Acad. Sci. USA, 2008, 105(49), 19532-19537.
[http://dx.doi.org/10.1073/pnas.0806152105 ] [PMID: 19033455]
[60]
Tsai, L-C.L.; Shimizu-Albergine, M.; Beavo, J.A. The high-affinity cAMP-specific phosphodiesterase 8B controls steroidogenesis in the mouse adrenal gland. Mol. Pharmacol., 2011, 79(4), 639-648.
[http://dx.doi.org/10.1124/mol.110.069104 ] [PMID: 21187369]
[61]
Reneerkens, O.A.; Rutten, K.; Steinbusch, H.W.; Blokland, A.; Prickaerts, J. Selective phosphodiesterase inhibitors: a promising target for cognition enhancement. Psychopharmacology (Berl.), 2009, 202(1-3), 419-443.
[http://dx.doi.org/10.1007/s00213-008-1273-x ] [PMID: 18709359]
[62]
Tomimatsu, Y.; Cash, D.; Suzuki, M.; Suzuki, K.; Bernanos, M.; Simmons, C.; Williams, S.C.R.; Kimura, H. TAK-063, a phosphodiesterase 10A inhibitor, modulates neuronal activity in various brain regions in phMRI and EEG studies with and without ketamine challenge. Neuroscience, 2016, 339, 180-190.
[http://dx.doi.org/10.1016/j.neuroscience.2016.10.006 ] [PMID: 27725212]
[63]
Lakics, V.; Karran, E.H.; Boess, F.G. Quantitative comparison of phosphodiesterase mRNA distribution in human brain and peripheral tissues. Neuropharmacology, 2010, 59(6), 367-374.
[http://dx.doi.org/10.1016/j.neuropharm.2010.05.004 ] [PMID: 20493887]
[64]
Menniti, F.S.; Faraci, W.S.; Schmidt, C.J. Phosphodiesterases in the CNS: targets for drug development. Nat. Rev. Drug Discov., 2006, 5(8), 660-670.
[http://dx.doi.org/10.1038/nrd2058 ] [PMID: 16883304]
[65]
Nishi, A.; Kuroiwa, M.; Shuto, T. Mechanisms for the modulation of dopamine d(1) receptor signaling in striatal neurons. Front. Neuroanat., 2011, 5, 43.
[http://dx.doi.org/10.3389/fnana.2011.00043 ] [PMID: 21811441]
[66]
Nishi, A.; Snyder, G.L. Advanced research on dopamine signaling to develop drugs for the treatment of mental disorders: biochemical and behavioral profiles of phosphodiesterase inhibition in dopaminergic neurotransmission. J. Pharmacol. Sci., 2010, 114(1), 6-16.
[http://dx.doi.org/10.1254/jphs.10R01FM ] [PMID: 20716858]
[67]
Heckman, P.R.A.; van Duinen, M.A.; Bollen, E.P.P.; Nishi, A.; Wennogle, L.P.; Blokland, A.; Prickaerts, J. Phosphodiesterase inhibition and regulation of dopaminergic frontal and striatal functioning: clinical implications. Int. J. Neuropsychopharmacol., 2016, 19(10), 30.
[http://dx.doi.org/10.1093/ijnp/pyw030 ] [PMID: 27037577]
[68]
Dorner-Ciossek, C.; Kroker, K.; Rosenbrock, H. Role of PDE9 in Cognition. In: Phosphodiesterase: CNS Functions and Diseases; Zhang, H.T.; Xu, Y.; O’Donnell, J.M., Eds.; Springer: Berlin, 2017, pp. 231-254.
[http://dx.doi.org/10.1007/978-3-319-58811-7_9]
[69]
Rosenbrock, H. Inhibition of cGMP-metabolizing PDEs as target for cognitive enhancement. BMC Pharmacol. Toxicol., 2015, 16(S1)
[http://dx.doi.org/10.1186/2050-6511-16-S1-A19]
[70]
Nakashima, M.; Imada, H.; Shiraishi, E.; Ito, Y.; Suzuki, N.; Miyamoto, M.; Taniguchi, T.; Iwashita, H. Phosphodiesterase 2A inhibitor TAK-915 ameliorates cognitive impairments and social withdrawal in N-methyl-D-aspartate receptor antagonist–induced rat models of schizophrenia. J. Pharmacol. Exp. Ther., 2018, 365(1), 179-188.
[http://dx.doi.org/10.1124/jpet.117.245506 ] [PMID: 29440309]
[71]
Ko, G.Y.; Kelly, P.T. Nitric oxide acts as a postsynaptic signaling molecule in calcium/calmodulin-induced synaptic potentiation in hippocampal CA1 pyramidal neurons. J. Neurosci., 1999, 19(16), 6784-6794.
[http://dx.doi.org/10.1523/JNEUROSCI.19-16-06784.1999 ] [PMID: 10436036]
[72]
Lu, Y-F.; Kandel, E.R.; Hawkins, R.D. Nitric oxide signaling contributes to late-phase LTP and CREB phosphorylation in the hippocampus. J. Neurosci., 1999, 19(23), 10250-10261.
[http://dx.doi.org/10.1523/JNEUROSCI.19-23-10250.1999 ] [PMID: 10575022]
[73]
Liemburg, E.J.; Knegtering, H.; Klein, H.C.; Kortekaas, R.; Aleman, A. Antipsychotic medication and prefrontal cortex activation: a review of neuroimaging findings. Eur. Neuropsychopharmacol., 2012, 22(6), 387-400.
[http://dx.doi.org/10.1016/j.euroneuro.2011.12.008 ] [PMID: 22300864]
[74]
Arnsten, A.F. The neurobiology of thought: the groundbreaking discoveries of Patricia Goldman-Rakic 1937-2003. Cereb. Cortex, 2013, 23(10), 2269-2281.
[http://dx.doi.org/10.1093/cercor/bht195 ] [PMID: 23926115]
[75]
Winterer, G. Cortical microcircuits in schizophrenia--the dopamine hypothesis revisited. Pharmacopsychiatry, 2006, 39(Suppl. 1), S68-S71.
[http://dx.doi.org/10.1055/s-2006-931498 ] [PMID: 16508900]
[76]
Winterer, G.; Weinberger, D.R. Genes, dopamine and cortical signal-to-noise ratio in schizophrenia. Trends Neurosci., 2004, 27(11), 683-690.
[http://dx.doi.org/10.1016/j.tins.2004.08.002 ] [PMID: 15474169]
[77]
Vereczkey, L. Pharmacokinetics and metabolism of vincamine and related compounds. Eur. J. Drug Metab. Pharmacokinet., 1985, 10(2), 89-103.
[http://dx.doi.org/10.1007/BF03189702 ] [PMID: 3899662]
[78]
Nicholson, C.D. Pharmacology of nootropics and metabolically active compounds in relation to their use in dementia. Psychopharmacology (Berl.), 1990, 101(2), 147-159.
[http://dx.doi.org/10.1007/BF02244119 ] [PMID: 2190256]
[79]
Molnár, P.; Gaál, L. Effect of different subtypes of cognition enhancers on long-term potentiation in the rat dentate gyrus in vivo. Eur. J. Pharmacol., 1992, 215(1), 17-22.
[http://dx.doi.org/10.1016/0014-2999(92)90602-Z ] [PMID: 1516646]
[80]
Molnár, P.; Gaál, L.; Horváth, C. The impairment of long-term potentiation in rats with medial septal lesion and its restoration by cognition enhancers. Neurobiology (Bp.), 1994, 2(3), 255-266.
[PMID: 7881404]
[81]
Lendvai, B.; Zelles, T.; Rozsa, B.; Vizi, E.S. A vinca alkaloid enhances morphological dynamics of dendritic spines of neocortical layer 2/3 pyramidal cells. Brain Res. Bull., 2003, 59(4), 257-260.
[http://dx.doi.org/10.1016/S0361-9230(02)00873-0 ] [PMID: 12464397]
[82]
DeNoble, V.J. Vinpocetine enhances retrieval of a step-through passive avoidance response in rats. Pharmacol. Biochem. Behav., 1987, 26(1), 183-186.
[http://dx.doi.org/10.1016/0091-3057(87)90552-1 ] [PMID: 3562490]
[83]
Hindmarch, I.; Fuchs, H.H.; Erzigkeit, H. Efficacy and tolerance of vinpocetine in ambulant patients suffering from mild to moderate organic psychosyndromes. Int. Clin. Psychopharmacol., 1991, 6(1), 31-43.
[http://dx.doi.org/10.1097/00004850-199100610-00005 ] [PMID: 2071888]
[84]
Polgár, M.; Vereczkey, L.; Nyáry, I. Pharmacokinetics of vinpocetine and its metabolite, apovincaminic acid, in plasma and cerebrospinal fluid after intravenous infusion. J. Pharm. Biomed. Anal., 1985, 3(2), 131-139.
[http://dx.doi.org/10.1016/0731-7085(85)80016-9 ] [PMID: 16867695]
[85]
Li, P.; Zheng, H.; Zhao, J.; Zhang, L.; Yao, W.; Zhu, H.; Beard, J.D.; Ida, K.; Lane, W.; Snell, G.; Sogabe, S.; Heyser, C.J.; Snyder, G.L.; Hendrick, J.P.; Vanover, K.E.; Davis, R.E.; Wennogle, L.P. Discovery of potent and selective inhibitors of phosphodiesterase 1 for the treatment of cognitive impairment associated with neurodegenerative and neuropsychiatric diseases. J. Med. Chem., 2016, 59(3), 1149-1164.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01751 ] [PMID: 26789933]
[86]
Clinical trial study found in clinical trials for ITI-214: NCT01900522. https://clinicaltrials.gov/ct2/show/NCT01900522 (Accessed October 30, 2019) https://clinicaltrials.gov/ct2/show/NCT01900522
[87]
Clinical trial study found in clinical trials for ITI-214: NCT03489772 https://clinicaltrials.gov/ct2/show/NCT03489772 (Accessed October 30, 2019)
[88]
Dyck, B.; Branstetter, B.; Gharbaoui, T.; Hudson, A.R.; Breitenbucher, J.G.; Gomez, L.; Botrous, I.; Marrone, T.; Barido, R.; Allerston, C.K.; Cedervall, E.P.; Xu, R.; Sridhar, V.; Barker, R.; Aertgeerts, K.; Schmelzer, K.; Neul, D.; Lee, D.; Massari, M.E.; Andersen, C.B.; Sebring, K.; Zhou, X.; Petroski, R.; Limberis, J.; Augustin, M.; Chun, L.E.; Edwards, T.E.; Peters, M.; Tabatabaei, A. Discovery of selective phosphodiesterase 1 inhibitors with memory enhancing properties. J. Med. Chem., 2017, 60(8), 3472-3483.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00302 ] [PMID: 28406621]
[89]
Stephenson, D.T.; Coskran, T.M.; Wilhelms, M.B.; Adamowicz, W.O.; O’Donnell, M.M.; Muravnick, K.B.; Menniti, F.S.; Kleiman, R.J.; Morton, D. Immunohistochemical localization of phosphodiesterase 2A in multiple mammalian species. J. Histochem. Cytochem., 2009, 57(10), 933-949.
[http://dx.doi.org/10.1369/jhc.2009.953471 ] [PMID: 19506089]
[90]
Stephenson, D.T.; Coskran, T.M.; Kelly, M.P.; Kleiman, R.J.; Morton, D.; O’Neill, S.M.; Schmidt, C.J.; Weinberg, R.J.; Menniti, F.S. The distribution of phosphodiesterase 2A in the rat brain. Neuroscience, 2012, 226, 145-155.
[http://dx.doi.org/10.1016/j.neuroscience.2012.09.011 ] [PMID: 23000621]
[91]
Abdel-Magid, A.F. Potential treatment of cognitive impairment in schizophrenia by phosphodiesterase 2 (PDE2) inhibitors. ACS Med. Chem. Lett., 2016, 8(1), 17-18.
[http://dx.doi.org/10.1021/acsmedchemlett.6b00514 ] [PMID: 28105267]
[92]
Wu, Y.; Li, Z.; Huang, Y-Y.; Wu, D.; Luo, H-B. Novel Phosphodiesterase Inhibitors for Cognitive Improvement in Alzheimer’s Disease. J. Med. Chem., 2018, 61(13), 5467-5483.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01370 ] [PMID: 29363967]
[93]
Rutten, K.; Prickaerts, J.; Hendrix, M.; van der Staay, F.J.; Şik, A.; Blokland, A. Time-dependent involvement of cAMP and cGMP in consolidation of object memory: studies using selective phosphodiesterase type 2, 4 and 5 inhibitors. Eur. J. Pharmacol., 2007, 558(1-3), 107-112.
[http://dx.doi.org/10.1016/j.ejphar.2006.11.041 ] [PMID: 17207788]
[94]
Domek-Łopacińska, K.; Strosznajder, J.B. The effect of selective inhibition of cyclic GMP hydrolyzing phosphodiesterases 2 and 5 on learning and memory processes and nitric oxide synthase activity in brain during aging. Brain Res., 2008, 1216, 68-77.
[http://dx.doi.org/10.1016/j.brainres.2008.02.108 ] [PMID: 18499090]
[95]
Reneerkens, O.A.H.; Rutten, K.; Bollen, E.; Hage, T.; Blokland, A.; Steinbusch, H.W.M.; Prickaerts, J. Inhibition of phoshodiesterase type 2 or type 10 reverses object memory deficits induced by scopolamine or MK-801. Behav. Brain Res., 2013, 236(1), 16-22.
[http://dx.doi.org/10.1016/j.bbr.2012.08.019 ] [PMID: 22951181]
[96]
Snyder, G.L.; Vanover, K.E. PDE Inhibitors for the Treatment of Schizophrenia. Phosphodiesterases: CNS Functions and Diseases Zhang, H.T.; Xu, Y.; O’Donnell, J.M., Eds.; Springer: Berlin, 2017, pp. 385-409.
[http://dx.doi.org/10.1007/978-3-319-58811-7_14]
[97]
Fernández-Fernández, D.; Rosenbrock, H.; Kroker, K.S. Inhibition of PDE2A, but not PDE9A, modulates presynaptic short-term plasticity measured by paired-pulse facilitation in the CA1 region of the hippocampus. Synapse, 2015, 69(10), 484-496.
[http://dx.doi.org/10.1002/syn.21840 ] [PMID: 26178667]
[98]
Clinical trial study found in clinical trials for PF-05180999: NCT01429740 https://clinicaltrials.gov/ct2/show/NCT01429740 (Accessed February 5, 2020)
[99]
Clinical trial study found in clinical trials for PF-05180999: NCT01530529https://clinicaltrials.gov/ct2/show/NCT01530529 (Accessed February 5, 2020)
[100]
Helal, C.J.; Arnold, E.P.; Boyden, T.L.; Chang, C.; Chappie, T.A.; Fennell, K.F.; Forman, M.D.; Hajos, M.; Harms, J.F.; Hoffman, W.E.; Humphrey, J.M.; Kang, Z.; Kleiman, R.J.; Kormos, B.L.; Lee, C.W.; Lu, J.; Maklad, N.; McDowell, L.; Mente, S.; O’Connor, R.E.; Pandit, J.; Piotrowski, M.; Schmidt, A.W.; Schmidt, C.J.; Ueno, H.; Verhoest, P.R.; Yang, E.X. Application of structure-based design and parallel chemistry to identify a potent, selective, and brain penetrant Phosphodiesterase 2A inhibitor. J. Med. Chem., 2017, 60(13), 5673-5698.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00397 ] [PMID: 28574706]
[101]
Gomez, L.; Breitenbucher, J.G. PDE2 inhibition: potential for the treatment of cognitive disorders. Bioorg. Med. Chem. Lett., 2013, 23(24), 6522-6527.
[http://dx.doi.org/10.1016/j.bmcl.2013.10.014 ] [PMID: 24189054]
[102]
Clinical trial study found in clinical trials for TAK-915: NCT0258456 https://clinicaltrials.gov/ct2/show/NCT02584569 (Accessed February 5, 2020)
[103]
Clinical trial study found in clinical trials for TAK-915: NCT02461160 https://clinicaltrials.gov/ct2/show/NCT02461160 (Accessed February 5, 2020)
[104]
Richter, W.; Menniti, F.S.; Zhang, H.T.; Conti, M. PDE4 as a target for cognition enhancement. Expert Opin. Ther. Targets, 2013, 17(9), 1011-1027.
[http://dx.doi.org/10.1517/14728222.2013.818656 ] [PMID: 23883342]
[105]
Cherry, J.A.; Davis, R.L. Cyclic AMP phosphodiesterases are localized in regions of the mouse brain associated with reinforcement, movement, and affect. J. Comp. Neurol., 1999, 407(2), 287-301.
[http://dx.doi.org/10.1002/(SICI)1096-9861(19990503)407:2<287:AID-CNE9>3.0.CO;2-R ] [PMID: 10213096]
[106]
Wise, R.A. Dopamine, learning and motivation. Nat. Rev. Neurosci., 2004, 5(6), 483-494.
[http://dx.doi.org/10.1038/nrn1406 ] [PMID: 15152198]
[107]
McGirr, A.; Lipina, T.V.; Mun, H.S.; Georgiou, J.; Al-Amri, A.H.; Ng, E.; Zhai, D.; Elliott, C.; Cameron, R.T.; Mullins, J.G.; Liu, F.; Baillie, G.S.; Clapcote, S.J.; Roder, J.C. Specific inhibition of phosphodiesterase-4B results in anxiolysis and facilitates memory acquisition. Neuropsychopharmacology, 2016, 41(4), 1080-1092.
[http://dx.doi.org/10.1038/npp.2015.240 ] [PMID: 26272049]
[108]
Kuroiwa, M.; Snyder, G.L.; Shuto, T.; Fukuda, A.; Yanagawa, Y.; Benavides, D.R.; Nairn, A.C.; Bibb, J.A.; Greengard, P.; Nishi, A. Phosphodiesterase 4 inhibition enhances the dopamine D1 receptor/PKA/DARPP-32 signaling cascade in frontal cortex. Psychopharmacology (Berl.), 2012, 219(4), 1065-1079.
[http://dx.doi.org/10.1007/s00213-011-2436-8 ] [PMID: 21833500]
[109]
Heinrichs, R.W.; Zakzanis, K.K. Neurocognitive deficit in schizophrenia: a quantitative review of the evidence. Neuropsychology, 1998, 12(3), 426-445.
[http://dx.doi.org/10.1037/0894-4105.12.3.426 ] [PMID: 9673998]
[110]
Goldman-Rakic, P.S.; Castner, S.A.; Svensson, T.H.; Siever, L.J.; Williams, G.V. Targeting the dopamine D1 receptor in schizophrenia: insights for cognitive dysfunction. Psychopharmacology (Berl.), 2004, 174(1), 3-16.
[http://dx.doi.org/10.1007/s00213-004-1793-y ] [PMID: 15118803]
[111]
Taylor, J.R.; Birnbaum, S.; Ubriani, R.; Arnsten, A.F. Activation of cAMP-dependent protein kinase A in prefrontal cortex impairs working memory performance. J. Neurosci., 1999, 19(18), RC23.
[http://dx.doi.org/10.1523/JNEUROSCI.19-18-j0001.1999 ] [PMID: 10479716]
[112]
Burgin, A.B.; Magnusson, O.T.; Singh, J.; Witte, P.; Staker, B.L.; Bjornsson, J.M.; Thorsteinsdottir, M.; Hrafnsdottir, S.; Hagen, T.; Kiselyov, A.S.; Stewart, L.J.; Gurney, M.E. Design of phosphodiesterase 4D (PDE4D) allosteric modulators for enhancing cognition with improved safety. Nat. Biotechnol., 2010, 28(1), 63-70.
[http://dx.doi.org/10.1038/nbt.1598 ] [PMID: 20037581]
[113]
Bruno, O.; Fedele, E.; Prickaerts, J.; Parker, L.A.; Canepa, E.; Brullo, C.; Cavallero, A.; Gardella, E.; Balbi, A.; Domenicotti, C.; Bollen, E.; Gijselaers, H.J.; Vanmierlo, T.; Erb, K.; Limebeer, C.L.; Argellati, F.; Marinari, U.M.; Pronzato, M.A.; Ricciarelli, R. GEBR-7b, a novel PDE4D selective inhibitor that improves memory in rodents at non-emetic doses. Br. J. Pharmacol., 2011, 164(8), 2054-2063.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01524.x ] [PMID: 21649644]
[114]
Zhang, H.T.; O’Donnell, J.M. Effects of rolipram on scopolamine-induced impairment of working and reference memory in the radial-arm maze tests in rats. Psychopharmacology (Berl.), 2000, 150(3), 311-316.
[http://dx.doi.org/10.1007/s002130000414 ] [PMID: 10923759]
[115]
Krause, W.; Kühne, G. Pharmacokinetics of rolipram in the rhesus and cynomolgus monkeys, the rat and the rabbit. Studies on species differences. Xenobiotica, 1988, 18(5), 561-571.
[http://dx.doi.org/10.3109/00498258809041693 ] [PMID: 3400274]
[116]
Mori, F.; Pérez-Torres, S.; De Caro, R.; Porzionato, A.; Macchi, V.; Beleta, J.; Gavaldà, A.; Palacios, J.M.; Mengod, G. The human area postrema and other nuclei related to the emetic reflex express cAMP phosphodiesterases 4B and 4D. J. Chem. Neuroanat., 2010, 40(1), 36-42.
[http://dx.doi.org/10.1016/j.jchemneu.2010.03.004 ] [PMID: 20347962]
[117]
Vanmierlo, T.; Creemers, P.; Akkerman, S.; van Duinen, M.; Sambeth, A.; De Vry, J.; Uz, T.; Blokland, A.; Prickaerts, J. The PDE4 inhibitor roflumilast improves memory in rodents at non-emetic doses. Behav. Brain Res., 2016, 303, 26-33.
[http://dx.doi.org/10.1016/j.bbr.2016.01.031 ] [PMID: 26794595]
[118]
Van Duinen, M.A.; Sambeth, A.; Heckman, P.R.A.; Smit, S.; Tsai, M.; Lahu, G.; Uz, T.; Blokland, A.; Prickaerts, J. Acute administration of roflumilast enhances immediate recall of verbal word memory in healthy young adults. Neuropharmacology, 2018, 131, 31-38.
[http://dx.doi.org/10.1016/j.neuropharm.2017.12.019 ] [PMID: 29241652]
[119]
Van Duinen, M.A.; Heckman, P.R.A.; Vanmierlo, T.; Sambeth, A.; Ogrinc, F.; Tsai, M.; Lahu, G.; Uz, T.; Blokland, A.; Prickaerts, J. The PDE4-inhbitor roflumilast improves episodic memory: findings from a translational perspective. Eur. Neuropsychopharmacol., 2017, 27, S1024-S1025.
[http://dx.doi.org/10.1016/S0924-977X(17)31794-7]
[120]
Gilleen, J.; Farah, Y.; Davison, C.; Kerins, S.; Valdearenas, L.; Uz, T.; Lahu, G.; Tsai, M.; Ogrinc, F.; Reichenberg, A.; Williams, S.C.; Mehta, M.A.; Shergill, S.S. An experimental medicine study of the phosphodiesterase-4 inhibitor, roflumilast, on working memory-related brain activity and episodic memory in schizophrenia patients. Psychopharmacology (Berl.), 2018. (ePub ahead of print),
[http://dx.doi.org/10.1007/s00213-018-5134-y] [PMID: 30536081]
[121]
Clinical trial study found in clinical trials for Roflumilast: NCT01433666 https://clinicaltrials.gov/ct2/show/NCT01433666 (Accessed November 4, 2019)
[122]
Clinical trial study found in clinical trials for HT-0712: NCT02013310 https://clinicaltrials.gov/ct2/show/NCT02013310 (Accessed November 4, 2019)
[123]
Clinical trial study found in clinical trials for BPN14770: NCT03030105 https://clinicaltrials.gov/ct2/show/NCT03030105 (Accessed November 1, 2019)
[124]
Clinical trial study found in clinical trials for Etazolate: NCT00880412 https://clinicaltrials.gov/ct2/show/NCT00880412 (Accessed November 4, 2019)
[125]
Fisher, D.A.; Smith, J.F.; Pillar, J.S.; St Denis, S.H.; Cheng, J.B. Isolation and characterization of PDE9A, a novel human cGMP-specific phosphodiesterase. J. Biol. Chem., 1998, 273(25), 15559-15564.
[http://dx.doi.org/10.1074/jbc.273.25.15559 ] [PMID: 9624146]
[126]
Soderling, S.H.; Bayuga, S.J.; Beavo, J.A. Identification and characterization of a novel family of cyclic nucleotide phosphodiesterases. J. Biol. Chem., 1998, 273(25), 15553-15558.
[http://dx.doi.org/10.1074/jbc.273.25.15553 ] [PMID: 9624145]
[127]
Andreeva, S.G.; Dikkes, P.; Epstein, P.M.; Rosenberg, P.A. Expression of cGMP-specific phosphodiesterase 9A mRNA in the rat brain. J. Neurosci., 2001, 21(22), 9068-9076.
[http://dx.doi.org/10.1523/JNEUROSCI.21-22-09068.2001 ] [PMID: 11698617]
[128]
van der Staay, F.J.; Rutten, K.; Bärfacker, L.; Devry, J.; Erb, C.; Heckroth, H.; Karthaus, D.; Tersteegen, A.; van Kampen, M.; Blokland, A.; Prickaerts, J.; Reymann, K.G.; Schröder, U.H.; Hendrix, M. The novel selective PDE9 inhibitor BAY 73-6691 improves learning and memory in rodents. Neuropharmacology, 2008, 55(5), 908-918.
[http://dx.doi.org/10.1016/j.neuropharm.2008.07.005 ] [PMID: 18674549]
[129]
Li, J.; Liu, C-N.; Wei, N.; Li, X-D.; Liu, Y-Y.; Yang, R.; Jia, Y-J. Protective effects of BAY 73-6691, a selective inhibitor of phosphodiesterase 9, on amyloid-β peptides-induced oxidative stress in in-vivo and in-vitro models of Alzheimer’s disease. Brain Res., 2016, 1642, 327-335.
[http://dx.doi.org/10.1016/j.brainres.2016.04.011 ] [PMID: 27071547]
[130]
Verhoest, P.R.; Fonseca, K.R.; Hou, X.; Proulx-Lafrance, C.; Corman, M.; Helal, C.J.; Claffey, M.M.; Tuttle, J.B.; Coffman, K.J.; Liu, S.; Nelson, F.; Kleiman, R.J.; Menniti, F.S.; Schmidt, C.J.; Vanase-Frawley, M.; Liras, S. Design and discovery of 6-[(3S,4S)-4-methyl-1-(pyrimidin-2-ylmethyl)pyrrolidin-3-yl]-1-(tetrahydro-2H-pyran-4-yl)-1,5-dihydro-4H-pyrazolo[3,4-d]pyrimidin-4-one (PF-04447943), a selective brain penetrant PDE9A inhibitor for the treatment of cognitive disorders. J. Med. Chem., 2012, 55(21), 9045-9054.
[http://dx.doi.org/10.1021/jm3007799 ] [PMID: 22780914]
[131]
Clinical trial study found in clinical trials for BI 409306: NCT02281773 https://clinicaltrials.gov/ct2/show/results/NCT02281773 (Accessed February 4, 2020)
[132]
Xie, Z.; Adamowicz, W.O.; Eldred, W.D.; Jakowski, A.B.; Kleiman, R.J.; Morton, D.G.; Stephenson, D.T.; Strick, C.A.; Williams, R.D.; Menniti, F.S. Cellular and subcellular localization of PDE10A, a striatum-enriched phosphodiesterase. Neuroscience, 2006, 139(2), 597-607.
[http://dx.doi.org/10.1016/j.neuroscience.2005.12.042 ] [PMID: 16483723]
[133]
Bateup, H.S.; Svenningsson, P.; Kuroiwa, M.; Gong, S.; Nishi, A.; Heintz, N.; Greengard, P. Cell type-specific regulation of DARPP-32 phosphorylation by psychostimulant and antipsychotic drugs. Nat. Neurosci., 2008, 11(8), 932-939.
[http://dx.doi.org/10.1038/nn.2153 ] [PMID: 18622401]
[134]
Ooms, M.; Attili, B.; Celen, S.; Koole, M.; Verbruggen, A.; Van Laere, K.; Bormans, G. [18F]JNJ42259152 binding to phosphodiesterase 10A, a key regulator of medium spiny neuron excitability, is altered in the presence of cyclic AMP. J. Neurochem., 2016, 139(5), 897-906.
[http://dx.doi.org/10.1111/jnc.13855 ] [PMID: 27664396]
[135]
Fujishige, K.; Kotera, J.; Omori, K. Striatum- and testis-specific phosphodiesterase PDE10A isolation and characterization of a rat PDE10A. Eur. J. Biochem., 1999, 266(3), 1118-1127.
[http://dx.doi.org/10.1046/j.1432-1327.1999.00963.x ] [PMID: 10583409]
[136]
Nishi, A.; Kuroiwa, M.; Miller, D.B.; O’Callaghan, J.P.; Bateup, H.S.; Shuto, T.; Sotogaku, N.; Fukuda, T.; Heintz, N.; Greengard, P.; Snyder, G.L. Distinct roles of PDE4 and PDE10A in the regulation of cAMP/PKA signaling in the striatum. J. Neurosci., 2008, 28(42), 10460-10471.
[http://dx.doi.org/10.1523/JNEUROSCI.2518-08.2008 ] [PMID: 18923023]
[137]
Baumeister, A.A.; Francis, J.L. Historical development of the dopamine hypothesis of schizophrenia. J. Hist. Neurosci., 2002, 11(3), 265-277.
[http://dx.doi.org/10.1076/jhin.11.3.265.10391 ] [PMID: 12481477]
[138]
Hollman, A.; Bank, S.; Pett, C.H. Plants and the heart windfalls from the opium poppy: the discovery of papaverine and verapamil. Dialogues Cardiovasc. Med., 2005, 10, 259-263.
[139]
Rodefer, J.S.; Murphy, E.R.; Baxter, M.G. PDE10A inhibition reverses subchronic PCP-induced deficits in attentional set-shifting in rats. Eur. J. Neurosci., 2005, 21(4), 1070-1076.
[http://dx.doi.org/10.1111/j.1460-9568.2005.03937.x ] [PMID: 15787711]
[140]
Zagorska, A.; Partyka, A.; Bucki, A.; Gawalskax, A.; Czopek, A.; Pawlowski, M. Phosphodiesterase 10 inhibitors - novel perspectives for psychiatric and neurodegenerative drug discovery. Curr. Med. Chem., 2018, 25(29), 3455-3481.
[http://dx.doi.org/10.2174/0929867325666180309110629 ] [PMID: 29521210]
[141]
Suzuki, K.; Harada, A.; Suzuki, H.; Miyamoto, M.; Kimura, H. TAK-063, a PDE10A inhibitor with balanced activation of direct and indirect pathways, provides potent antipsychotic-like effects in multiple paradigms. Neuropsychopharmacology, 2016, 41(9), 2252-2262.
[http://dx.doi.org/10.1038/npp.2016.20 ] [PMID: 26849714]
[142]
DeMartinis, N.; Banerjee, A.; Kumar, V.; Boyer, S.; Schmidt, C.; Arroyo, S. Results of a phase 2a proof-of-concept trial with a PDE10A Inhibitor in the treatment of acute exacerbation of schizophrenia. Schizophr. Res., 2012, 136, S262.
[http://dx.doi.org/10.1016/S0920-9964(12)70783-1]
[143]
Shiraishi, E.; Suzuki, K.; Harada, A.; Suzuki, N.; Kimura, H. The phosphodiesterase 10a selective inhibitor tak-063 improves cognitive functions associated with schizophrenia in rodent models. J. Pharmacol. Exp. Ther., 2016, 356(3), 587-595.
[http://dx.doi.org/10.1124/jpet.115.230482 ] [PMID: 26675680]
[144]
Macek, T.A.; McCue, M.; Dong, X.; Hanson, E.; Goldsmith, P.; Affinito, J.; Mahableshwarkar, A.R. A phase 2, randomized, placebo-controlled study of the efficacy and safety of TAK-063 in subjects with an acute exacerbation of schizophrenia. Schizophr. Res., 2019, 204, 289-294.
[http://dx.doi.org/10.1016/j.schres.2018.08.028 ] [PMID: 30190165]
[145]
Kunitomo, J.; Yoshikawa, M.; Fushimi, M.; Kawada, A.; Quinn, J.F.; Oki, H.; Kokubo, H.; Kondo, M.; Nakashima, K.; Kamiguchi, N.; Suzuki, K.; Kimura, H.; Taniguchi, T. Discovery of 1-[2-fluoro-4-(1H-pyrazol-1-yl)phenyl]-5-methoxy-3-(1-phenyl-1H-pyrazol-5-yl)pyridazin-4(1H)-one (TAK-063), a highly potent, selective, and orally active phosphodiesterase 10A (PDE10A) inhibitor. J. Med. Chem., 2014, 57(22), 9627-9643.
[http://dx.doi.org/10.1021/jm5013648 ] [PMID: 25384088]
[146]
Schizophrenia.com. Omeros Reports Positive Results from New Medication Phase 2 Clinical Trial for Schizophrenia. 2014. Available from: http://schizophrenia.com/?p=40 (Accessed October 31, 2019)
[147]
Clinical trial study found in clinical trials for OMS643762: NCT01952132. https://clinicaltrials.gov/ct2/show/NCT01952132 (Accessed October 31, 2019).
[148]
Clinical trial study found in clinical trials for EVP-6308 NCT02037074https://clinicaltrials.gov/ct2/show/NCT02037074 (Accessed October 31, 2019)
[149]
Chen, S.; Knight, W.E.; Yan, C. Roles of PDE1 in pathological cardiac remodeling and dysfunction. J. Cardiovasc. Dev. Dis., 2018, 5(2), 22.
[http://dx.doi.org/10.3390/jcdd5020022 ] [PMID: 29690591]
[150]
Cardinale, A.; Fusco, F.R. Inhibition of phosphodiesterases as a strategy to achieve neuroprotection in Huntington’s disease. CNS Neurosci. Ther., 2018, 24(4), 319-328.
[http://dx.doi.org/10.1111/cns.12834 ] [PMID: 29500937]
[151]
Hashimoto, T.; Kim, G.E.; Tunin, R.S.; Adesiyun, T.; Hsu, S.; Nakagawa, R.; Zhu, G.; O’Brien, J.J.; Hendrick, J.P.; Davis, R.E.; Yao, W.; Beard, D.; Hoxie, H.R.; Wennogle, L.P.; Lee, D.I.; Kass, D.A. Acute enhancement of cardiac function by phosphodiesterase type 1 inhibition: translational study in the dog and rabbit. Circulation, 2018, 138(18), 1974-1987.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.117.030490 ] [PMID: 30030415]
[152]
Clinical trial study found in clinical trials for ITI-214: NCT03257046. https://clinicaltrials.gov/ct2/show/NCT03257046 (Accessed April 24, 2020)
[153]
Clinical trial study found in clinical trials for ITI-214: NCT03387215 https://clinicaltrials.gov/ct2/show/NCT03387215 (Accessed April 24, 2020).
[154]
Zhang, C.; Yu, Y.; Ruan, L.; Wang, C.; Pan, J.; Klabnik, J.; Lueptow, L.; Zhang, H-T.; O’Donnell, J.M.; Xu, Y. The roles of phosphodiesterase 2 in the central nervous and peripheral systems. Curr. Pharm. Des., 2015, 21(3), 274-290.
[http://dx.doi.org/10.2174/1381612820666140826115245 ] [PMID: 25159070]
[155]
Prickaerts, J.; Heckman, P.R.A.; Blokland, A. Investigational phosphodiesterase inhibitors in phase I and phase II clinical trials for Alzheimer’s disease. Expert Opin. Investig. Drugs, 2017, 26(9), 1033-1048.
[http://dx.doi.org/10.1080/13543784.2017.1364360 ] [PMID: 28772081]
[156]
Clinical trial study found in clinical trials for PF-05180999: NCT01981486 https://clinicaltrials.gov/ct2/show/NCT01981486 (Accessed April 26, 2020)
[157]
Clinical trial study found in clinical trials for PF-05180999: NCT01981499 https://clinicaltrials.gov/ct2/show/NCT01981499 (Accessed April 26, 2020)
[158]
Houslay, M.D. Underpinning compartmentalised cAMP signalling through targeted cAMP breakdown. Trends Biochem. Sci., 2010, 35(2), 91-100.
[http://dx.doi.org/10.1016/j.tibs.2009.09.007 ] [PMID: 19864144]
[159]
Phillips, J.E. Inhaled Phosphodiesterase 4 (PDE4) Inhibitors for inflammatory respiratory diseases. Front. Pharmacol., 2020, 11, 259.
[http://dx.doi.org/10.3389/fphar.2020.00259 ] [PMID: 32226383]
[160]
Keating, G.M. Apremilast: a review in psoriasis and psoriatic arthritis. Drugs, 2017, 77(4), 459-472.
[http://dx.doi.org/10.1007/s40265-017-0709-1 ] [PMID: 28213862]
[161]
Shao, Y.X.; Huang, M.; Cui, W.; Feng, L-J.; Wu, Y.; Cai, Y.; Li, Z.; Zhu, X.; Liu, P.; Wan, Y.; Ke, H.; Luo, H.B. Discovery of a phosphodiesterase 9A inhibitor as a potential hypoglycemic agent. J. Med. Chem., 2014, 57(24), 10304-10313.
[http://dx.doi.org/10.1021/jm500836h ] [PMID: 25432025]
[162]
Clinical trial study found in clinical trials for PF-04447943: NCT00930059 https://www.clinicaltrials.gov/ct2/show/ NCT00930059 (Accessed April 26, 2020)
[163]
Giampà, C.; Laurenti, D.; Anzilotti, S.; Bernardi, G.; Menniti, F.S.; Fusco, F.R. Inhibition of the striatal specific phosphodiesterase PDE10A ameliorates striatal and cortical pathology in R6/2 mouse model of Huntington’s disease. PLoS One, 2010, 5(10)e13417
[http://dx.doi.org/10.1371/journal.pone.0013417 ] [PMID: 20976216]
[164]
Clinical trial study found in clinical trials for Pf-02545920 NCT02342548https://www.clinicaltrials.gov/ct2/show/ NCT02342548 (Accessed April 26, 2020)
[165]
Hankir, M.K.; Kranz, M.; Gnad, T.; Weiner, J.; Wagner, S.; Deuther-Conrad, W.; Bronisch, F.; Steinhoff, K.; Luthardt, J.; Klöting, N.; Hesse, S.; Seibyl, J.P.; Sabri, O.; Heiker, J.T.; Blüher, M.; Pfeifer, A.; Brust, P.; Fenske, W.K. A novel thermoregulatory role for PDE10A in mouse and human adipocytes. EMBO Mol. Med., 2016, 8(7), 796-812.
[http://dx.doi.org/10.15252/emmm.201506085 ] [PMID: 27247380]