Stimulator of Interferon Genes Signaling Pathway and its Role in Anti-tumor Immune Therapy

Page: [3085 - 3095] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Stimulator of interferon genes is an important innate immune signaling molecule in the body and is involved in the innate immune signal transduction pathway induced by pathogen-associated molecular patterns or damage-associated molecular patterns. Stimulator of interferon genes promotes the production of type I interferon and thus plays an important role in the innate immune response to infection. In addition, according to a recent study, the stimulator of interferon genes pathway also contributes to anti-inflammatory and anti-tumor reactions. In this paper, current researches on the Stimulator of interferon genes signaling pathway and its relationship with tumor immunity are reviewed. Meanwhile, a series of critical problems to be addressed in subsequent studies are discussed as well.

Keywords: STING, innate immune response, type I interferon, cGAMP, cGAS, anti-tumor immunity.

[1]
Ishikawa H, Barber GN. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 2008; 455(7213): 674-8.
[http://dx.doi.org/10.1038/nature07317] [PMID: 18724357]
[2]
Huang Z, Chen X, Yu B, Chen D. Cloning and functional characterization of rat stimulator of interferon genes (STING) regulated by miR-24. Dev Comp Immunol 2012; 37(3-4): 414-20.
[http://dx.doi.org/10.1016/j.dci.2012.02.010] [PMID: 22387590]
[3]
Zhong B, Yang Y, Li S, et al. The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation. Immunity 2008; 29(4): 538-50.
[http://dx.doi.org/10.1016/j.immuni.2008.09.003] [PMID: 18818105]
[4]
Ouyang S, Song X, Wang Y, et al. Structural analysis of the STING adaptor protein reveals a hydrophobic dimer interface and mode of cyclic di-GMP binding. Immunity 2012; 36(6): 1073-86.
[http://dx.doi.org/10.1016/j.immuni.2012.03.019] [PMID: 22579474]
[5]
Jin L, Waterman PM, Jonscher KR, Short CM, Reisdorph NA, Cambier JC. MPYS, a novel membrane tetraspanner, is associated with major histocompatibility complex class II and mediates transduction of apoptotic signals. Mol Cell Biol 2008; 28(16): 5014-26.
[http://dx.doi.org/10.1128/MCB.00640-08] [PMID: 18559423]
[6]
Sun W, Li Y, Chen L, et al. ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization. Proc Natl Acad Sci USA 2009; 106(21): 8653-8.
[http://dx.doi.org/10.1073/pnas.0900850106] [PMID: 19433799]
[7]
Su YC, Tu ZL, Yang CY, et al. Crystallization studies of the murine c-di-GMP sensor protein STING. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68(Pt 8): 906-10.
[http://dx.doi.org/10.1107/S1744309112024372] [PMID: 22869119]
[8]
Ishikawa H, Barber GN. The STING pathway and regulation of innate immune signaling in response to DNA pathogens. Cell Mol Life Sci 2011; 68(7): 1157-65.
[http://dx.doi.org/10.1007/s00018-010-0605-2] [PMID: 21161320]
[9]
Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell 2010; 140(6): 805-20.
[http://dx.doi.org/10.1016/j.cell.2010.01.022] [PMID: 20303872]
[10]
Fuertes MB, Woo SR, Burnett B, Fu YX, Gajewski TF. Type I interferon response and innate immune sensing of cancer. Trends Immunol 2013; 34(2): 67-73.
[http://dx.doi.org/10.1016/j.it.2012.10.004] [PMID: 23122052]
[11]
Stark GR, Kerr IM, Williams BR, Silverman RH, Schreiber RD. How cells respond to interferons. Annu Rev Biochem 1998; 67: 227-64.
[http://dx.doi.org/10.1146/annurev.biochem.67.1.227] [PMID: 9759489]
[12]
Kwon Y, Park OJ, Kim J, Cho JH, Yun CH, Han SH. Cyclic dinucleotides inhibit osteoclast differentiation through stingmediated interferon-beta signaling. J Bone Mineral Research: the official journal of the American Society for Bone and Mineral Research 2019; 34(7): 1366-75.
[13]
Zhang Y, Yeruva L, Marinov A, et al. The DNA sensor, cyclic GMP-AMP synthase, is essential for induction of IFN-beta during Chlamydia trachomatis infection. J Immunol (Baltimore, Md: 1950) 2014; 193(5): 2394-404.
[14]
Ishikawa H, Ma Z, Barber GN. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature 2009; 461(7265): 788-92.
[http://dx.doi.org/10.1038/nature08476] [PMID: 19776740]
[15]
Ran Y, Shu HB, Wang YY. MITA/STING: a central and multifaceted mediator in innate immune response. Cytokine Growth Factor Rev 2014; 25(6): 631-9.
[http://dx.doi.org/10.1016/j.cytogfr.2014.05.003] [PMID: 24929887]
[16]
Yoneyama M, Kikuchi M, Natsukawa T, et al. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol 2004; 5(7): 730-7.
[http://dx.doi.org/10.1038/ni1087] [PMID: 15208624]
[17]
Y C.. Mycobacterium tuberculosis-induced IFN-β production requires cytosolic DNA and RNA sensing pathways. J Exp Med 2018; 215(11): 2919-35.
[18]
Maringer K, Fernandez-Sesma A. Message in a bottle: lessons learned from antagonism of STING signalling during RNA virus infection. Cytokine Growth Factor Rev 2014; 25(6): 669-79.
[http://dx.doi.org/10.1016/j.cytogfr.2014.08.004] [PMID: 25212897]
[19]
Aguirre S, Maestre AM, Pagni S, et al. DENV inhibits type I IFN production in infected cells by cleaving human STING. PLoS Pathog 2012; 8(10)e1002934
[http://dx.doi.org/10.1371/journal.ppat.1002934] [PMID: 23055924]
[20]
Christensen MH, Paludan SR. Viral evasion of DNA-stimulated innate immune responses. Cell Mol Immunol 2017; 14(1): 4-13.
[http://dx.doi.org/10.1038/cmi.2016.06] [PMID: 26972769]
[21]
Medzhitov R, Janeway CA Jr. Innate immunity: the virtues of a nonclonal system of recognition. Cell 1997; 91(3): 295-8.
[http://dx.doi.org/10.1016/S0092-8674(00)80412-2] [PMID: 9363937]
[22]
Paladino P, Cummings DT, Noyce RS, Mossman KL. The IFNindependent response to virus particle entry provides a first line of antiviral defense that is independent of TLRs and retinoic acidinducible gene I. J Immunol (Baltimore, Md : 1950) 2006; 177(11): 8008-16.
[23]
Wang X, Smith C, Yin H. Targeting Toll-like receptors with small molecule agents. Chem Soc Rev 2013; 42(12): 4859-66.
[http://dx.doi.org/10.1039/c3cs60039d] [PMID: 23503527]
[24]
Cheng L, Sun J, Xu W, Dong L, Hu Y, Zhou M. OAHG: an integrated resource for annotating human genes with multi-level ontologies. Sci Rep 2016; 6: 34820.
[http://dx.doi.org/10.1038/srep34820] [PMID: 27703231]
[25]
Cheng L, Jiang Y, Ju H, et al. InfAcrOnt: calculating cross-ontology term similarities using information flow by a random walk. BMC Genomics 2018; 19(Suppl. 1): 919.
[http://dx.doi.org/10.1186/s12864-017-4338-6] [PMID: 29363423]
[26]
Cheng L, Hu Y, Sun J, Zhou M, Jiang Q. DincRNA: a comprehensive web-based bioinformatics toolkit for exploring disease associations and ncRNA function. Bioinformatics 2018; 34(11): 1953-6.
[http://dx.doi.org/10.1093/bioinformatics/bty002] [PMID: 29365045]
[27]
Cheng L, Yang H, Zhao H, et al. MetSigDis: a manually curated resource for the metabolic signatures of diseases. Brief Bioinform 2019; 20(1): 203-9.
[http://dx.doi.org/10.1093/bib/bbx103] [PMID: 28968812]
[28]
Cheng L, Wang P, Tian R, et al. LncRNA2Target v2.0: a comprehensive database for target genes of lncRNAs in human and mouse. Nucleic Acids Res 2019; 47(D1): D140-4.
[http://dx.doi.org/10.1093/nar/gky1051] [PMID: 30380072]
[29]
Sun L, Wu J, Du F, Chen X, Chen ZJ. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 2013; 339(6121): 786-91.
[http://dx.doi.org/10.1126/science.1232458] [PMID: 23258413]
[30]
Parker D, Martin FJ, Soong G, et al. Streptococcus pneumoniae DNA initiates type I interferon signaling in the respiratory tract. MBio 2011; 2(3): e00016-11.
[http://dx.doi.org/10.1128/mBio.00016-11] [PMID: 21586648]
[31]
Zhang Z, Yuan B, Bao M, Lu N, Kim T, Liu YJ. The helicase DDX41 senses intracellular DNA mediated by the adaptor STING in dendritic cells. Nat Immunol 2011; 12(10): 959-65.
[http://dx.doi.org/10.1038/ni.2091] [PMID: 21892174]
[32]
Unterholzner L, Keating SE, Baran M, et al. IFI16 is an innate immune sensor for intracellular DNA. Nat Immunol 2010; 11(11): 997-1004.
[http://dx.doi.org/10.1038/ni.1932] [PMID: 20890285]
[33]
Thompson MR, Sharma S, Atianand M, et al. Interferon γ-inducible protein (IFI) 16 transcriptionally regulates type i interferons and other interferon-stimulated genes and controls the interferon response to both DNA and RNA viruses. J Biol Chem 2014; 289(34): 23568-81.
[http://dx.doi.org/10.1074/jbc.M114.554147] [PMID: 25002588]
[34]
Brubaker SW, Bonham KS, Zanoni I, Kagan JC. Innate immune pattern recognition: a cell biological perspective. Annu Rev Immunol 2015; 33: 257-90.
[http://dx.doi.org/10.1146/annurev-immunol-032414-112240] [PMID: 25581309]
[35]
Civril F, Deimling T, de Oliveira Mann CC, et al. Structural mechanism of cytosolic DNA sensing by cGAS. Nature 2013; 498(7454): 332-7.
[http://dx.doi.org/10.1038/nature12305] [PMID: 23722159]
[36]
Zhang X, Shi H, Wu J, et al. Cyclic GMP-AMP containing mixed phosphodiester linkages is an endogenous high-affinity ligand for STING. Mol Cell 2013; 51(2): 226-35.
[http://dx.doi.org/10.1016/j.molcel.2013.05.022] [PMID: 23747010]
[37]
Shang G, Zhang C, Chen ZJ, Bai XC, Zhang X. Cryo-EM structures of STING reveal its mechanism of activation by cyclic GMP-AMP. Nature 2019; 567(7748): 389-93.
[http://dx.doi.org/10.1038/s41586-019-0998-5] [PMID: 30842659]
[38]
Liu S, Cai X, Wu J, et al. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science 2015; 347(6227)aaa2630
[http://dx.doi.org/10.1126/science.aaa2630] [PMID: 25636800]
[39]
Schoggins JW, MacDuff DA, Imanaka N, et al. Pan-viral specificity of IFN-induced genes reveals new roles for cGAS in innate immunity. Nature 2014; 505(7485): 691-5.
[http://dx.doi.org/10.1038/nature12862] [PMID: 24284630]
[40]
B G. K P, J A, N M S B, TM S. Emerging alphaviruses are sensitive to cellular states induced by a novel small-molecule agonist of the STING pathway. J Virol 2018; 92(6)
[41]
Ma Z, Jacobs SR, West JA, et al. Modulation of the cGAS-STING DNA sensing pathway by gammaherpesviruses. Proc Natl Acad Sci USA 2015; 112(31): E4306-15.
[http://dx.doi.org/10.1073/pnas.1503831112] [PMID: 26199418]
[42]
Orzalli MH, Broekema NM, Diner BA, et al. cGAS-mediated stabilization of IFI16 promotes innate signaling during herpes simplex virus infection. Proc Natl Acad Sci USA 2015; 112(14): E1773-81.
[http://dx.doi.org/10.1073/pnas.1424637112] [PMID: 25831530]
[43]
Almine JF, O'Hare CA, Dunphy G, et al. IFI16 and cGAS cooperate in the activation of STING during DNA sensing in human keratinocytes 2017; 8 14392.
[44]
Gluck S, Guey B, Gulen MF, et al. Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence. Nature Cell Biol 2017; 19(9): 1061-70.
[45]
Stavrou S, Aguilera AN, Blouch K, Ross SR. DDX41 Recognizes RNA/DNA retroviral reverse transcripts and is critical for in vivo control of murine leukemia virus infection. mbio 2018;; 9(3) e00923.
[46]
Lai JH, Wang MY, Huang CY, et al. Infection with the dengue RNA virus activates TLR9 signaling in human dendritic cells. EMBO Rep 2018; 19(8)e46182
[http://dx.doi.org/10.15252/embr.201846182]
[47]
Mankan AK, Schmidt T, Chauhan D, et al. Cytosolic RNA:DNA hybrids activate the cGAS-STING axis. EMBO J 2014; 33(24): 2937-46.
[http://dx.doi.org/10.15252/embj.201488726] [PMID: 25425575]
[48]
Bridgeman A, Maelfait J, Davenne T, et al. Viruses transfer the antiviral second messenger cGAMP between cells. Science 2015; 349(6253): 1228-32.
[http://dx.doi.org/10.1126/science.aab3632] [PMID: 26229117]
[49]
Gentili M, Kowal J, Tkach M, et al. Transmission of innate immune signaling by packaging of cGAMP in viral particles. Science 2015; 349(6253): 1232-6.
[http://dx.doi.org/10.1126/science.aab3628] [PMID: 26229115]
[50]
Chiu YH, Macmillan JB, Chen ZJ. RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-I pathway. Cell 2009; 138(3): 576-91.
[http://dx.doi.org/10.1016/j.cell.2009.06.015] [PMID: 19631370]
[51]
Unterholzner L. The interferon response to intracellular DNA: why so many receptors? Immunobiology 2013; 218(11): 1312-21.
[http://dx.doi.org/10.1016/j.imbio.2013.07.007] [PMID: 23962476]
[52]
Burdette DL, Monroe KM, Sotelo-Troha K, et al. STING is a direct innate immune sensor of cyclic di-GMP. Nature 2011; 478(7370): 515-8.
[http://dx.doi.org/10.1038/nature10429] [PMID: 21947006]
[53]
Larabi A, Devos JM, Ng SL, et al. Crystal structure and mechanism of activation of TANK-binding kinase 1. Cell Rep 2013; 3(3): 734-46.
[http://dx.doi.org/10.1016/j.celrep.2013.01.034] [PMID: 23453971]
[54]
Goncalves A, Bürckstümmer T, Dixit E, et al. Functional dissection of the TBK1 molecular network. PLoS One 2011; 6(9)e23971
[http://dx.doi.org/10.1371/journal.pone.0023971] [PMID: 21931631]
[55]
Pomerantz JL, Baltimore D. NF-kappaB activation by a signaling complex containing TRAF2, TANK and TBK1, a novel IKK-related kinase. EMBO J 1999; 18(23): 6694-704.
[http://dx.doi.org/10.1093/emboj/18.23.6694] [PMID: 10581243]
[56]
Sharma S, tenOever BR, Grandvaux N, Zhou GP, Lin R, Hiscott J. Triggering the interferon antiviral response through an IKK-related pathway. Science 2003; 300(5622): 1148-51.
[http://dx.doi.org/10.1126/science.1081315] [PMID: 12702806]
[57]
Ishii KJ, Kawagoe T, Koyama S, et al. TANK-binding kinase-1 delineates innate and adaptive immune responses to DNA vaccines. Nature 2008; 451(7179): 725-9.
[http://dx.doi.org/10.1038/nature06537] [PMID: 18256672]
[58]
H.C H. JE H. Chemistry BAJTJob cytosolic DNA promotes signal transducer and activator of transcription 3 (STAT3) phosphorylation by TANK-binding Kinase 1 (TBK1) to restrain STAT3 activity. J Biol Chem 2017; 292(13): 5405-17.
[59]
Juang YT, Lowther W, Kellum M, et al. Primary activation of interferon A and interferon B gene transcription by interferon regulatory factor 3. Proc Natl Acad Sci USA 1998; 95(17): 9837-42.
[http://dx.doi.org/10.1073/pnas.95.17.9837] [PMID: 9707562]
[60]
Novoselova EG, Khrenov MO, Parfenyuk SB, Novoselova TV, Lunin SM, Fesenko EE. The NF-kappaB, IRF3, and SAPK/JNK signaling cascades of animal immune cells and their role in the progress of type 1 diabetes mellitus. Doklady biological sciences: proceedings of the Academy of Sciences of the USSR, Biological sciences sections 2014; 457(1): 255-7..
[61]
Becher PM, Hinrichs S, Fluschnik N, et al. Role of Toll-like receptors and interferon regulatory factors in different experimental heart failure models of diverse etiology: IRF7 as novel cardiovascular stress-inducible factor. PLoS One 2018; 13(3)e0193844
[http://dx.doi.org/10.1371/journal.pone.0193844] [PMID: 29538462]
[62]
Wang YY, Ye ZY, Zhao ZS, Tao HQ, Li SG. Systems biology approach to identification of biomarkers for metastatic progression in gastric cancer. J Cancer Res Clin Oncol 2010; 136(1): 135-41.
[http://dx.doi.org/10.1007/s00432-009-0644-y] [PMID: 19649653]
[63]
Rustagi A, Gale M Jr. Innate antiviral immune signaling, viral evasion and modulation by HIV-1. J Mol Biol 2014; 426(6): 1161-77.
[http://dx.doi.org/10.1016/j.jmb.2013.12.003] [PMID: 24326250]
[64]
Takahasi K, Suzuki NN, Horiuchi M, et al. X-ray crystal structure of IRF-3 and its functional implications. Nat Struct Biol 2003; 10(11): 922-7.
[http://dx.doi.org/10.1038/nsb1001] [PMID: 14555995]
[65]
Qin BY, Liu C, Lam SS, et al. Crystal structure of IRF-3 reveals mechanism of autoinhibition and virus-induced phosphoactivation. Nat Struct Biol 2003; 10(11): 913-21.
[http://dx.doi.org/10.1038/nsb1002] [PMID: 14555996]
[66]
Jin L, Hill KK, Filak H, et al. MPYS is required for IFN response factor 3 activation and type I IFN production in the response of cultured phagocytes to bacterial second messengers cyclic-di-AMP and cyclic-di-GMP. Journal of immunology (Baltimore, Md : 1950) 2011; 187(5): 2595-601..
[http://dx.doi.org/10.4049/jimmunol.1100088]
[67]
Schoggins JW, Rice CM. Interferon-stimulated genes and their antiviral effector functions. Curr Opin Virol 2011; 1(6): 519-25.
[http://dx.doi.org/10.1016/j.coviro.2011.10.008] [PMID: 22328912]
[68]
Akira S, Saitoh T, Kawai T. [Nucleic acids recognition by innate immunity]. Uirusu 2012; 62(1): 39-45.
[http://dx.doi.org/10.2222/jsv.62.39] [PMID: 23189823]
[69]
Tsuchida T, Zou J, Saitoh T, et al. The ubiquitin ligase TRIM56 regulates innate immune responses to intracellular double-stranded DNA. Immunity 2010; 33(5): 765-76.
[http://dx.doi.org/10.1016/j.immuni.2010.10.013] [PMID: 21074459]
[70]
Zhang J, Hu MM, Wang YY, Shu HB. TRIM32 protein modulates type I interferon induction and cellular antiviral response by targeting MITA/STING protein for K63-linked ubiquitination. J Biol Chem 2012; 287(34): 28646-55.
[http://dx.doi.org/10.1074/jbc.M112.362608] [PMID: 22745133]
[71]
Zhong B, Zhang L, Lei C, et al. The ubiquitin ligase RNF5 regulates antiviral responses by mediating degradation of the adaptor protein MITA. Immunity 2009; 30(3): 397-407.
[http://dx.doi.org/10.1016/j.immuni.2009.01.008] [PMID: 19285439]
[72]
Qin Y, Zhou MT, Hu MM, et al. RNF26 temporally regulates virus-triggered type I interferon induction by two distinct mechanisms. PLoS Pathog 2014; 10(9)e1004358
[http://dx.doi.org/10.1371/journal.ppat.1004358] [PMID: 25254379]
[73]
Heaton SM, Borg NA, Dixit VM. Ubiquitin in the activation and attenuation of innate antiviral immunity. J Exp Med 2016; 213(1): 1-13.
[http://dx.doi.org/10.1084/jem.20151531] [PMID: 26712804]
[74]
Konno H, Konno K, Barber GN. Cyclic dinucleotides trigger ULK1 (ATG1) phosphorylation of STING to prevent sustained innate immune signaling. Cell 2013; 155(3): 688-98.
[http://dx.doi.org/10.1016/j.cell.2013.09.049] [PMID: 24119841]
[75]
Tanaka Y, Chen ZJ. STING specifies IRF3 phosphorylation by TBK1 in the cytosolic DNA signaling pathway. Sci Signal 2012; 5(214): ra20.
[http://dx.doi.org/10.1126/scisignal.2002521] [PMID: 22394562]
[76]
Z H. , XC, BY. Developmental CDJ, immunology c Cloning and functional characterization of rat stimulator of interferon genes (STING) regulated by miR-24 2012; 37: 414-20..
[77]
Wang G, Yan Y, Zheng Z, Zhang T. The mechanism of hsa-miR-424-5 combining PD-1 through mTORC signaling pathway to stimulate immune effect and participate in type 1 diabetes 2020.40(3): BSR20193800.
[78]
Ablasser A, Hertrich C, Waßermann R, Hornung V. Nucleic acid driven sterile inflammation. Clin Immunol 2013; 147(3): 207-15.
[http://dx.doi.org/10.1016/j.clim.2013.01.003] [PMID: 23419883]
[79]
Pokatayev V, Hasin N, Chon H, et al. RNase H2 catalytic core Aicardi-Goutières syndrome-related mutant invokes cGAS-STING innate immune-sensing pathway in mice. J Exp Med 2016; 213(3): 329-36.
[http://dx.doi.org/10.1084/jem.20151464] [PMID: 26880576]
[80]
Toda S, Nishi C, Yanagihashi Y, Segawa K, Nagata S. Clearance of apoptotic cells and pyrenocytes. Curr Top Dev Biol 2015; 114: 267-95.
[http://dx.doi.org/10.1016/bs.ctdb.2015.07.017] [PMID: 26431571]
[81]
Barber GN. STING: infection, inflammation and cancer. Nat Rev Immunol 2015; 15(12): 760-70.
[http://dx.doi.org/10.1038/nri3921] [PMID: 26603901]
[82]
Ahn J, Ruiz P, Barber GN. Intrinsic self-DNA triggers inflammatory disease dependent on STING. J Immunol (Baltimore, Md : 1950) 2014; 193(9): 4634-2..
[http://dx.doi.org//10.4049/jimmunol.1401337]
[83]
Ahn J, Konno H, Barber GN. Diverse roles of STING-dependent signaling on the development of cancer. Oncogene 2015; 34(41): 5302-8.
[http://dx.doi.org/10.1038/onc.2014.457] [PMID: 25639870]
[84]
DH OD. Mao Y, Mele DA. The next generation of pattern recognition receptor agonists: improving response rates in cancer immunotherapy. Curr Med Chem 2019. Online ahead of print.
[85]
Cui J, Chen Y, Wang HY, Wang RF. Mechanisms and pathways of innate immune activation and regulation in health and cancer. Hum Vaccin Immunother 2014; 10(11): 3270-85.
[http://dx.doi.org/10.4161/21645515.2014.979640] [PMID: 25625930]
[86]
An X, Zhu Y, Zheng T, et al. An analysis of the expression and association with immune cell infiltration of the cgas/sting pathway in pan-cancer. Mol Ther Nucleic Acids 2019; 14: 80-9.
[http://dx.doi.org/10.1016/j.omtn.2018.11.003] [PMID: 30583098]
[87]
Ohkuri T, Ghosh A, Kosaka A, et al. STING contributes to antiglioma immunity via triggering type I IFN signals in the tumor microenvironment. Cancer Immunol Res 2014; 2(12): 1199-208.
[http://dx.doi.org/10.1158/2326-6066.CIR-14-0099] [PMID: 25300859]
[88]
Ohkuri T, Kosaka A, Ishibashi K, et al. Intratumoral administration of cGAMP transiently accumulates potent macrophages for anti-tumor immunity at a mouse tumor site. Cancer Immunol Immunother 2017; 66(6): 705-16.
[http://dx.doi.org/10.1007/s00262-017-1975-1] [PMID: 28243692]
[89]
Della-Corte CM, Shen T, Gay CM, et al. STING pathway expression identifies non-small cell lung cancers with an immune-responsive phenotype. J Thorac Oncol 2020; 15(5): 777-91.
[90]
Sharma A, Johnson A. Exosome DNA: Critical regulator of tumor immunity and a diagnostic biomarker. J Cell Physiol 2020; 235(3): 1921-32.
[91]
Härtlova A, Erttmann SF, Raffi FA, et al. DNA damage primes the type I interferon system via the cytosolic DNA sensor STING to promote anti-microbial innate immunity. Immunity 2015; 42(2): 332-43.
[http://dx.doi.org/10.1016/j.immuni.2015.01.012] [PMID: 25692705]
[92]
Woo SR, Fuertes MB, Corrales L, et al. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity 2014; 41(5): 830-42.
[http://dx.doi.org/10.1016/j.immuni.2014.10.017] [PMID: 25517615]
[93]
Diamond MS, Kinder M, Matsushita H, et al. Type I interferon is selectively required by dendritic cells for immune rejection of tumors. J Exp Med 2011; 208(10): 1989-2003.
[http://dx.doi.org/10.1084/jem.20101158] [PMID: 21930769]
[94]
Barry M, Bleackley RC. Cytotoxic T lymphocytes: all roads lead to death. Nat Rev Immunol 2002; 2(6): 401-9.
[http://dx.doi.org/10.1038/nri819] [PMID: 12093006]
[95]
Deng L, Liang H, Xu M, et al. STING-dependent cytosolic DNA sensing promotes radiation-induced type i interferon-dependent antitumor immunity in immunogenic tumors. Immunity 2014; 41(5): 843-52.
[http://dx.doi.org/10.1016/j.immuni.2014.10.019] [PMID: 25517616]
[96]
Demaria O, De Gassart A, Coso S, et al. STING activation of tumor endothelial cells initiates spontaneous and therapeutic antitumor immunity. Proc Natl Acad Sci USA 2015; 112(50): 15408-13.
[http://dx.doi.org/10.1073/pnas.1512832112] [PMID: 26607445]
[97]
Koshy ST, Cheung AS, Gu L, Graveline AR, Mooney DJ. Liposomal delivery enhances immune activation by sting agonists for cancer immunotherapy. Adv Biosyst 2017; 1(1-2)1600013
[http://dx.doi.org/10.1002/adbi.201600013] [PMID: 30258983]
[98]
Corrales L, Gajewski TF. 2015.
[99]
Berges C, Naujokat C, Tinapp S, et al. A cell line model for the differentiation of human dendritic cells. Biochem Biophys Res Commun 2005; 333(3): 896-907.
[http://dx.doi.org/10.1016/j.bbrc.2005.05.171] [PMID: 15963458]
[100]
Corrales L, Matson V, Flood B, Spranger S, Gajewski TF. Innate immune signaling and regulation in cancer immunotherapy. Cell Res 2017; 27(1): 96-108.
[http://dx.doi.org/10.1038/cr.2016.149] [PMID: 27981969]
[101]
Corrales L, McWhirter SM, Dubensky TW Jr, Gajewski TF. The host STING pathway at the interface of cancer and immunity. J Clin Invest 2016; 126(7): 2404-11.
[http://dx.doi.org/10.1172/JCI86892] [PMID: 27367184]
[102]
Gravekamp C, Chandra D. Targeting STING pathways for the treatment of cancer. OncoImmunology 2015; 4(12)e988463
[http://dx.doi.org/10.4161/2162402X.2014.988463] [PMID: 26587334]
[103]
Falahat R, Perez-Villarroel P, Mailloux AW, et al. STING signaling in melanoma cells shapes antigenicity and can promote antitumor T-cell activity. Cancer Immunol Res 2019; 7(11): 1837-48.
[http://dx.doi.org/10.1158/2326-6066.CIR-19-0229] [PMID: 31462408]
[104]
Zhu Q, Man SM, Gurung P, et al. 2014.
[105]
Lu S, Concha-Benavente F, Shayan G, et al. STING activation enhances cetuximab-mediated NK cell activation and DC maturation and correlates with HPV+ status in head and neck cancer. Oral Oncol 2018; 78: 186-93.
[http://dx.doi.org/10.1016/j.oraloncology.2018.01.019] [PMID: 29496049]
[106]
Sen T, Rodriguez BL, Chen L, et al. Targeting DNA damage response promotes antitumor immunity through sting-mediated t-cell activation in small cell lung cancer. Cancer Discov 2019; 9(5): 646-61.
[http://dx.doi.org/10.1158/2159-8290.CD-18-1020] [PMID: 30777870]
[107]
Bui JD, Schreiber RD. Cancer immunosurveillance, immunoediting and inflammation: independent or interdependent processes? Curr Opin Immunol 2007; 19(2): 203-8.
[http://dx.doi.org/10.1016/j.coi.2007.02.001] [PMID: 17292599]
[108]
Junkins RD, Gallovic MD, Johnson BM, et al. 2018.
[109]
Yi G, Brendel VP, Shu C, Li P, Palanathan S, Cheng Kao C. Single nucleotide polymorphisms of human STING can affect innate immune response to cyclic dinucleotides. PLoS One 2013; 8(10)e77846
[http://dx.doi.org/10.1371/journal.pone.0077846] [PMID: 24204993]
[110]
Sauer JD, Sotelo-Troha K, von Moltke J, et al. The N-ethyl-N-nitrosourea-induced Goldenticket mouse mutant reveals an essential function of Sting in the in vivo interferon response to Listeria monocytogenes and cyclic dinucleotides. Infect Immun 2011; 79(2): 688-94.
[http://dx.doi.org/10.1128/IAI.00999-10] [PMID: 21098106]
[111]
Kim YJ. STINGing the Tumor’s immune evasion mechanism. OncoImmunology 2018; 7(4)e1083673
[http://dx.doi.org/10.1080/2162402X.2015.1083673] [PMID: 29632707]
[112]
Fu J, Kanne DB, Leong M, et al. STING agonist formulated cancer vaccines can cure established tumors resistant to PD-1 blockade. Sci Transl Med 2015; 7(283)283ra52
[http://dx.doi.org/10.1126/scitranslmed.aaa4306] [PMID: 25877890]
[113]
Spranger S, Koblish HK, Horton B, Scherle PA, Newton R, Gajewski TF. Mechanism of tumor rejection with doublets of CTLA-4, PD-1/PD-L1, or IDO blockade involves restored IL-2 production and proliferation of CD8(+) T cells directly within the tumor microenvironment. J Immunother Cancer 2014; 2: 3.
[http://dx.doi.org/10.1186/2051-1426-2-3] [PMID: 24829760]
[114]
Ghaffari A, Peterson N, Khalaj K, et al. STING agonist therapy in combination with PD-1 immune checkpoint blockade enhances response to carboplatin chemotherapy in high-grade serous ovarian cancer. Br J Cancer 2018; 119(4): 440-9.
[http://dx.doi.org/10.1038/s41416-018-0188-5] [PMID: 30046165]
[115]
Liu D, Wu H, Wang C, et al. STING directly activates autophagy to tune the innate immune response. Cell Death Differ 2019; 26(9): 1735-49.
[http://dx.doi.org/10.1038/s41418-018-0251-z] [PMID: 30568238]
[116]
Gui X, Yang H, Li T, et al. Autophagy induction via STING trafficking is a primordial function of the cGAS pathway. Nature 2019; 567(7747): 262-6.
[http://dx.doi.org/10.1038/s41586-019-1006-9] [PMID: 30842662]
[117]
Diner BA, Lum KK, Toettcher JE, Cristea IM. Viral DNA sensors ifi16 and cyclic gmp-amp synthase possess distinct functions in regulating viral gene expression, immune defenses, and apoptotic responses during herpesvirus infection. MBio 2016; 7(6): e01553-16.
[http://dx.doi.org/10.1128/mBio.01553-16] [PMID: 27935834]
[118]
Ohkuri T, Ghosh A, Kosaka A, Sarkar SN, Okada H. Protective role of STING against gliomagenesis: Rational use of STING agonist in anti-glioma immunotherapy. OncoImmunology 2015; 4(4)e999523
[http://dx.doi.org/10.1080/2162402X.2014.999523] [PMID: 26137417]
[119]
Watkins-Schulz R, Tiet P, Gallovic MD, et al. A microparticle platform for STING-targeted immunotherapy enhances natural killer cell- and CD8+ T cell-mediated anti-tumor immunity. Biomaterials 2019; 205: 94-105.
[http://dx.doi.org/10.1016/j.biomaterials.2019.03.011] [PMID: 30909112]
[120]
Shae D, Becker KW, Christov P, et al. Endosomolytic polymersomes increase the activity of cyclic dinucleotide STING agonists to enhance cancer immunotherapy. Nat Nanotechnol 2019; 14(3): 269-78.
[http://dx.doi.org/10.1038/s41565-018-0342-5] [PMID: 30664751]
[121]
Leach DG, Dharmaraj N, Piotrowski SL, et al. STINGel: Controlled release of a cyclic dinucleotide for enhanced cancer immunotherapy. Biomaterials 2018; 163: 67-75.
[http://dx.doi.org/10.1016/j.biomaterials.2018.01.035] [PMID: 29454236]
[122]
Yang H, Lee WS, Kong SJ, et al. STING activation reprograms tumor vasculatures and synergizes with VEGFR2 blockade. J Clin Invest 2019; 129(10): 4350-64.
[http://dx.doi.org/10.1172/JCI125413] [PMID: 31343989]
[123]
Moore E, Clavijo PE, Davis R, et al. Established T Cell-inflamed tumors rejected after adaptive resistance was reversed by combination STING activation and PD-1 pathway blockade. Cancer Immunol Res 2016; 4(12): 1061-71.
[http://dx.doi.org/10.1158/2326-6066.CIR-16-0104] [PMID: 27821498]
[124]
Baird JR, Friedman D, Cottam B, et al. Radiotherapy combined with novel sting-targeting oligonucleotides results in regression of established tumors. Cancer Res 2016; 76(1): 50-61.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-3619] [PMID: 26567136]
[125]
Corrales L, Glickman LH, McWhirter SM, et al. Direct activation of sting in the tumor microenvironment leads to potent and systemic tumor regression and immunity. Cell Rep 2015; 11(7): 1018-30.
[http://dx.doi.org/10.1016/j.celrep.2015.04.031] [PMID: 25959818]
[126]
Weiss JM, Guérin MV, Regnier F, et al. The STING agonist DMXAA triggers a cooperation between T lymphocytes and myeloid cells that leads to tumor regression. OncoImmunology 2017; 6(10)e1346765
[http://dx.doi.org/10.1080/2162402X.2017.1346765] [PMID: 29123960]
[127]
Bähr O, Gross S, Harter PN, et al. ASA404, a vascular disrupting agent, as an experimental treatment approach for brain tumors. Oncol Lett 2017; 14(5): 5443-51.
[PMID: 29098034]
[128]
Jing W, McAllister D, Vonderhaar EP, et al. STING agonist inflames the pancreatic cancer immune microenvironment and reduces tumor burden in mouse models. J Immunother Cancer 2019; 7(1): 115.
[http://dx.doi.org/10.1186/s40425-019-0573-5] [PMID: 31036082]
[129]
Curran E, Chen X, Corrales L, et al. STING pathway activation stimulates potent immunity against acute myeloid leukemia. Cell Rep 2016; 15(11): 2357-66.
[http://dx.doi.org/10.1016/j.celrep.2016.05.023] [PMID: 27264175]
[130]
Chen D, Tong J, Yang L, et al. PUMA amplifies necroptosis signaling by activating cytosolic DNA sensors. Proc Natl Acad Sci USA 2018; 115(15): 3930-5.
[PMID: 29581256]
[131]
Laganà AS, Vitale SG, Salmeri FM, et al. Unus pro omnibus, omnes pro uno: A novel, evidence-based, unifying theory for the pathogenesis of endometriosis. Med Hypotheses 2017; 103: 10-20.
[PMID: 28571791]
[132]
Sturlese E, Salmeri FM, Retto G, et al. Dysregulation of the Fas/FasL system in mononuclear cells recovered from peritoneal fluid of women with endometriosis. J Reprod Immunol 2011; 92(1-2): 74-81.
[PMID: 21978769]
[133]
Wang H, Jin P, Sabatino M, et al. Comparison of endometrial regenerative cells and bone marrow stromal cells. J Transl Med 2012; 10: 207.
[PMID: 23038994]
[134]
Li L, Wang TL, Seckin T, Sehars J, Shih le-M. Epithelial cells in endometriosis and adenomyosis upregulate sting expression. Reprod Sci 2020; 27(5)
[135]
Laganà AS, Vitale SG, Sapia F, et al. miRNA expression for early diagnosis of preeclampsia onset: hope or hype? J Matern Fetal Neonatal Med 2018; 31(6): 817-21.
[PMID: 28282763]
[136]
Chiofalo B, Laganà AS, Vaiarelli A, et al. Do miRNAs play a role in fetal growth restriction? A fresh look to a busy corner. BioMed Res Int 2017; 20176073167
[PMID: 28466013]
[137]
2018.
[138]
Larkin B, Ilyukha V. 2017.
[139]
Kitai Y, Kawasaki T, Sueyoshi T, Kobiyama K, Ishii KJ. DNA-Containing Exosomes Derived from Cancer Cells Treated with Topotecan Activate a STING-Dependent Pathway and Reinforce Antitumor Immunity 2017; 198(4): 1649-59.
[140]
Ramanjulu JM, Pesiridis GS, Yang J, et al. Design of amidobenzimidazole STING receptor agonists with systemic activity. Nature 2018; 564(7736): 439-43.
[http://dx.doi.org/10.1038/s41586-018-0705-y] [PMID: 30405246]
[141]
Chen H, Sun H, You F, et al. Activation of STAT6 by STING is critical for antiviral innate immunity. Cell 2011; 147(2): 436-46.
[http://dx.doi.org/10.1016/j.cell.2011.09.022] [PMID: 22000020]
[142]
Wang Z, Celis E. STING activator c-di-GMP enhances the anti-tumor effects of peptide vaccines in melanoma-bearing mice. Cancer Immunol Immunother 2015; 64(8): 1057-66.
[http://dx.doi.org/10.1007/s00262-015-1713-5] [PMID: 25986168]