Synthesis and Biological Evaluation of Novel Thionucleosides

Page: [1717 - 1762] Pages: 46

  • * (Excluding Mailing and Handling)

Abstract

The search for novel nucleosides has been a major research focus in medicinal chemistry for several decades, particularly given their proven track record in the treatment of viral infections and cancer. As bioisosteres of natural nucleosides, thionucleosides are especially attractive targets as they often display improved biological activity. Furthermore, the replacement of oxygen with sulfur may sometimes be accompanied by interesting changes in pharmacological effect. This update covers recent advances in the preparation of novel thionucleosides, grouped by synthetic strategy. The biological properties of the target thionucleosides are also summarised, in addition to any reported structure activity relationships.

Keywords: Thionucleosides, nucleosides, sulfur, anti-virals, synthesis, glycosylation.

Graphical Abstract

[1]
Prusoff, W.H. Synthesis and biological activities of iododeoxyuridine, an analog of thymidine. Biochim. Biophys. Acta, 1959, 32(1), 295-296.
[http://dx.doi.org/10.1016/0006-3002(59)90597-9 ] [PMID: 13628760]
[2]
Lamberth, C. Nucleosides with a carbon bridge between sugar and nucleobase: the chemistry of 1′-homonucleosides and reversed nucleosides. A review. Org. Prep. Proc., 2002, 34(2), 149-167.
[http://dx.doi.org/10.1080/00304940209355752]
[3]
Huang, R.M.; Chen, Y.N.; Zeng, Z.; Gao, C.H.; Su, X.; Peng, Y. Marine nucleosides: structure, bioactivity, synthesis and biosynthesis. Mar. Drugs, 2014, 12(12), 5817-5838.
[http://dx.doi.org/10.3390/md12125817 ] [PMID: 25474189]
[4]
Mathé, C.; Gosselin, G. L-nucleoside enantiomers as antivirals drugs: a mini-review. Antiviral Res., 2006, 71(2-3), 276-281.
[http://dx.doi.org/10.1016/j.antiviral.2006.04.017 ] [PMID: 16797735]
[5]
Périgaud, C.; Gosselin, G.; Imbach, J.L. Nucleoside analogues as chemotherapeutic agents: a review. Nucleos. Nucleot. Nucl., 1992, 11(2-4), 903-945.
[http://dx.doi.org/10.1080/07328319208021748]
[6]
Clercq, E.D.; Holý, A. Acyclic nucleoside phosphonates: a key class of antiviral drugs. Nat. Rev. Drug Discov., 2005, 4(11), 928-940.
[http://dx.doi.org/10.1038/nrd1877 ] [PMID: 16264436]
[7]
Ichikawa, E.; Kato, K. Sugar-modified nucleosides in past 10 years, a review. Curr. Med. Chem., 2001, 8(4), 385-423.
[http://dx.doi.org/10.2174/0929867013373471 ] [PMID: 11172696]
[8]
Reist, E.J.; Gueffroy, D.E.; Goodman, L. Synthesis of 4-thio-D- and -L-ribofuranose and the corresponding adenine nucleosides. J. Am. Chem. Soc., 1964, 86(24), 5658-5663.
[http://dx.doi.org/10.1021/ja01078a050]
[9]
Gunaga, P.; Moon, H.R.; Choi, W.J.; Shin, D.H.; Park, J.G.; Jeong, L.S. Recent advances in 4′-thionucleosides as potential antiviral and antitumor agents. Curr. Med. Chem., 2004, 11(19), 2585-2637.
[http://dx.doi.org/10.2174/0929867043364478 ] [PMID: 15544465]
[10]
Madern, J.M.; Hansen, T.; van Rijssel, E.R.; Kistemaker, H.A.V.; Vorm, S.V.D.; Overkleeft, H.S.; Marel, G.A.V.D.; Filippov, D.V.; Codée, J.D.C. Synthesis, reactivity, and stereoselectivity of 4-thiofuranosides. J. Org. Chem., 2019, 84(3), 1218-1227.
[http://dx.doi.org/10.1021/acs.joc.8b02536 ] [PMID: 30605336]
[11]
Otter, G.P.; Elzagheid, M.I.; Jones, G.D.; MacCulloch, A.C.; Walker, R.T.; Oivanen, M.; Klika, K.D. Synthesis and hydrolytic stability of the α and β anomers of 4′-thio-2′-deoxyuridine and their 5-substituted analogs. Competition between the acid-catalysed depyrimidination and isomerisation to a 5-thiopyranoside nucleoside. J. Chem. Soc., Perkin Trans. 2, 1998, 2, 2343-2350.
[http://dx.doi.org/10.1039/a806276e]
[12]
Elzagheid, M.I.; Oivanen, M.; Walker, R.T.; Secrist, J.A. Kinetics for the acid-catalyzed hydrolysis of purine and cytosine 2′-deoxy-4′-thionucleosides. Nucleos. Nucleot.Nucl., 1999, 18(2), 181-186.
[http://dx.doi.org/10.1080/15257779908043065]
[13]
Shelton, J.; Lu, X.; Hollenbaugh, J.A.; Cho, J.H.; Amblard, F.; Schinazi, R.F. Metabolism, biochemical actions, and chemical synthesis of anticancer nucleosides, nucleotides, and base analogs. Chem. Rev., 2016, 116(23), 14379-14455.
[http://dx.doi.org/10.1021/acs.chemrev.6b00209 ] [PMID: 27960273]
[14]
Meanwell, N.A. Synopsis of some recent tactical application of bioisosteres in drug design. J. Med. Chem., 2011, 54(8), 2529-2591.
[http://dx.doi.org/10.1021/jm1013693 ] [PMID: 21413808]
[15]
Lima, L.M.; Barreiro, E.J. Bioisosterism: a useful strategy for molecular modification and drug design. Curr. Med. Chem., 2005, 12(1), 23-49.
[http://dx.doi.org/10.2174/0929867053363540 ] [PMID: 15638729]
[16]
Patani, G.A.; LaVoie, E.J. Bioisosterism: a rational approach in drug design. Chem. Rev., 1996, 96(8), 3147-3176.
[http://dx.doi.org/10.1021/cr950066q ] [PMID: 11848856]
[17]
Yokoyama, M. Synthesis and biological activity of thionucleosides. Synthesis, 2000, 2000(12), 1637-1655.
[http://dx.doi.org/10.1055/s-2000-8194]
[18]
Boryski, J. Transglycosylation reactions of purine nucleosides. A review. Nucleos. Nucleot. Nucl., 1996, 15(1-3), 771-791.
[http://dx.doi.org/10.1080/07328319608002422]
[19]
Manvar, A.; Shah, A. Continuous flow and microwave assisted Vorbrüggen glycosylations: historical perspective to high-throughput strategies. Asian J. Org. Chem., 2014, 3(11), 1134-1149.
[http://dx.doi.org/10.1002/ajoc.201402119]
[20]
Niedballa, U.; Vorbrüggen, H. A general synthesis of pyrimidine nucleosides. Angew. Chem. Int. Ed. Engl., 1970, 9(6), 461-462.
[http://dx.doi.org/10.1002/anie.197004612 ] [PMID: 4988014]
[21]
Miller, J.A.; Pugh, A.W.; Ullah, G.M.; Gutteridge, C. A novel synthesis of 4′-thionucleosides and a potential stereospecific route to pyrimidine nucleosides. Tetrahedron Lett., 2000, 41(51), 10099-10105.
[http://dx.doi.org/10.1016/S0040-4039(00)01796-2]
[22]
Trost, B.M.; Nübling, C. An asymmetric approach to 2-deoxynucleosides via organosulfur building blocks as chemical chameleons. Carbohydr. Res., 1990, 202, 1-12.
[http://dx.doi.org/10.1016/0008-6215(90)84067-5 ] [PMID: 2224884]
[23]
Yamagata, K.; Yamagiwa, Y.; Kamikawa, T. Perkin communications. Synthesis of chiral long-chain α-hydroxy acids from L-ascorbic acid. Useful components for the synthesis of cerebrosides. J. Chem. Soc., Perkin Trans. 1, 1990, 1990(12), 3355-3357.
[http://dx.doi.org/10.1039/P19900003355]
[24]
Rahim, S.G.; Trivedi, N.; Batchelor, M.V.B.; Hardy, G.W.; Mills, G.; Selway, J.W.T.; Snowden, W.; Littler, E.; Coe, P.L.; Basnak, I.; Whale, R.F.; Walker, R.T. Synthesis and anti-herpes virus activity of 2′-deoxy-4′-thiopyrimidine nucleosides. J. Med. Chem., 1996, 39(3), 789-795.
[http://dx.doi.org/10.1021/jm950029r ] [PMID: 8576922]
[25]
Tiwari, K.N.; Cappellacci, L.; Montgomery, J.A.; Secrist, J.A. Synthesis and anti-cancer activity of some novel 5-azacytosine nucleosides. Nucleos. Nucleot. Nucl., 2003, 22(12), 2161-2170.
[http://dx.doi.org/10.1081/NCN-120026872 ] [PMID: 14714764]
[26]
Secrist, J.A.; Tiwari, K.N.; Riordan, J.M.; Montgomery, J.A. Synthesis and biological activity of 2′-deoxy-4′-thio pyrimidine nucleosides. J. Med. Chem., 1991, 34(8), 2361-2366.
[http://dx.doi.org/10.1021/jm00112a007 ] [PMID: 1652015]
[27]
Tiwari, K.N.; Montgomery, J.A.; Secrist, J.A. The synthesis and biological activity of 1-(2-deoxy-4-thio-α;-L-threo-pentofuranosyl) thymine. Nucleos. Nucleot. Nucl., 1993, 12(8), 841-846.
[http://dx.doi.org/10.1080/07328319308018554]
[28]
Liu, J.; Aerschot, A.V.; Luyten, I.; Wigerinck, P.; Pannecouque, C.; Balzarini, J.; Clercq, E.D.; Herdewijn, P. Synthesis and antiviral activities of some new 5-heteroaromatic substituted derivatives of 2′-deoxyuridine. Nucleos. Nucleot. Nucl., 1995, 14(3-5), 525-528.
[http://dx.doi.org/10.1080/15257779508012418]
[29]
Clercq, E.D.; Walker, R.T. Chemotherapeutic agents for herpesvirus infections.Progress In Medicinal Chemistry; Ellis, G.P.; West, G.B., Eds.; Elsevier: Amsterdam, 1986, Vol. 23, pp. 187-218.
[30]
Maslen, H.L.; Hughes, D.; Hursthouse, M.; Clercq, E.D.; Balzarini, J.; Simons, C. 6-azapyrimidine-2′-deoxy-4′-thionucleosides: antiviral agents against TK+ and TK- HSV and VZV strains. J. Med. Chem., 2004, 47(22), 5482-5491.
[http://dx.doi.org/10.1021/jm049806q ] [PMID: 15481985]
[31]
Dyson, M.R.; Coe, P.L.; Walker, R.T. An improved synthesis of benzyl 3,5-di-O-benzyl-2-deoxy-1,4-dithio-D-erythro-pentofuranoside, an intermediate in the synthesis of 4′-thionucleosides. Carbohydr. Res., 1991, 216, 237-248.
[http://dx.doi.org/10.1016/0008-6215(92)84165-O]
[32]
Kim, C.U.; Misco, P.F. Facile, highly stereoselective synthesis of 2′,3′-dideoxy-and 2′,3′-didehydro-2′,3t′-dideoxy nucleosides via a furanoid glycal intermediate. Tetrahedron Lett., 1992, 33(39), 5733-5736.
[http://dx.doi.org/10.1016/0040-4039(92)89018-8]
[33]
Jasamai, M.; Balzarini, J.; Simons, C. 6-Azathymidine-4′-thionucleosides: synthesis and antiviral evaluation. J. Enzyme Inhib. Med. Chem., 2008, 23(1), 56-61.
[http://dx.doi.org/10.1080/14756360701442340 ] [PMID: 18341254]
[34]
Barton, D.H.; McCombie, S.W. A new method for the deoxygenation of secondary alcohols. J. Chem. Soc., Perkin Trans. 1, 1975, (16), 1574-1585.
[http://dx.doi.org/10.1039/p19750001574]
[35]
Choo, H.; Chong, Y.; Choi, Y.; Mathew, J.; Schinazi, R.F.; Chu, C.K. Synthesis, anti-HIV activity, and molecular mechanism of drug resistance of L-2′,3′-didehydro-2′,3′-dideoxy-2′-fluoro-4′-thionucleosides. J. Med. Chem., 2003, 46(3), 389-398.
[http://dx.doi.org/10.1021/jm020376i ] [PMID: 12540238]
[36]
Pejanović, V.; Stokić, Z.; Stojanović, B.; Piperski, V.; Popsavin, M.; Popsavin, V. Synthesis and biological evaluation of some novel 4′-thio-L-ribonucleosides with modified nucleobase moieties. Bioorg. Med. Chem. Lett., 2003, 13(11), 1849-1852.
[http://dx.doi.org/10.1016/S0960-894X(03)00289-0 ] [PMID: 12749882]
[37]
Jeong, L.S.; Gunaga, P.; Kim, H.O.; Tosh, D.K.; Lee, H.W.; Choe, S.A.; Moon, H.R.; Gao, Z-G.; Jacobson, K.A.; Chun, M.W. Stereoselective synthesis of 1′-functionalized-4′-thionucleosides. Nucleos. Nucleot. Nucl., 2007, 26(8-9), 1011-1014.
[http://dx.doi.org/10.1080/15257770701508588 ] [PMID: 18058527]
[38]
Jeong, L.S.; Lee, H.W.; Jacobson, K.A.; Kim, H.O.; Shin, D.H.; Lee, J.A.; Gao, Z-G.; Lu, C.; Duong, H.T.; Gunaga, P.; Lee, S.K.; Jin, D.Z.; Chun, M.W.; Moon, H.R. Structure-activity relationships of 2-chloro-N6-substituted-4′-thioadenosine-5′-uronamides as highly potent and selective agonists at the human A3 adenosine receptor. J. Med. Chem., 2006, 49(1), 273-281.
[http://dx.doi.org/10.1021/jm050595e ] [PMID: 16392812]
[39]
Jeong, L.S.; Choe, S.A.; Gunaga, P.; Kim, H.O.; Lee, H.W.; Lee, S.K.; Tosh, D.K.; Patel, A.; Palaniappan, K.K.; Gao, Z.G.; Jacobson, K.A.; Moon, H.R. Discovery of a new nucleoside template for human A3 adenosine receptor ligands: D-4′-thioadenosine derivatives without 4′-hydroxymethyl group as highly potent and selective antagonists. J. Med. Chem., 2007, 50(14), 3159-3162.
[http://dx.doi.org/10.1021/jm070259t ] [PMID: 17555308]
[40]
Qu, S.; Mulamoottil, V.A.; Nayak, A.; Ryu, S.; Hou, X.; Song, J.; Yu, J.; Sahu, P.K.; Zhao, L.X.; Choi, S.; Lee, S.K.; Jeong, L.S. Design, synthesis, and anticancer activity of C8-substituted-4′-thionucleosides as potential HSP90 inhibitors. Bioorg. Med. Chem., 2016, 24(16), 3418-3428.
[http://dx.doi.org/10.1016/j.bmc.2016.05.041 ] [PMID: 27283788]
[41]
Tsoukala, E.; Manta, S.; Tzioumaki, N.; Agelis, G.; Komiotis, D. A concise synthesis of 3-fluoro-5-thio-xylo- and glucopyranoses, useful precursors towards their corresponding pyranonucleoside derivatives. Carbohydr. Res., 2008, 343(6), 1099-1103.
[http://dx.doi.org/10.1016/j.carres.2008.02.004 ] [PMID: 18313037]
[42]
Tsoukala, E.; Agelis, G.; Dolinšek, J.; Botić, T.; Cencič, A.; Komiotis, D. An efficient synthesis of 3-fluoro-5-thio-xylofuranosyl nucleosides of thymine, uracil, and 5-fluorouracil as potential antitumor or/and antiviral agents. Bioorg. Med. Chem., 2007, 15(9), 3241-3247.
[http://dx.doi.org/10.1016/j.bmc.2007.02.031 ] [PMID: 17337193]
[43]
Tsoukala, E.; Manta, S.; Tzioumaki, N.; Kiritsis, C.; Komiotis, D. Keto-fluorothiopyranosyl nucleosides: a convenient synthesis of 2- and 4-keto-3-fluoro-5-thioxylopyranosyl thymine analogs. Carbohydr. Res., 2011, 346(13), 2011-2015.
[http://dx.doi.org/10.1016/j.carres.2011.05.013 ] [PMID: 21665196]
[44]
Takahashi, M.; Daidouji, S.; Shiro, M.; Minakawa, N.; Matsuda, A. Synthesis and crystal structure of 2′-deoxy-2′-fluoro-4′-thioribonucleosides: substrates for the synthesis of novel modified RNAs. Tetrahedron, 2008, 64(19), 4313-4324.
[http://dx.doi.org/10.1016/j.tet.2008.02.071]
[45]
Takahashi, M.; Minakawa, N.; Matsuda, A. Synthesis and characterization of 2′-modified-4′-thioRNA: a comprehensive comparison of nuclease stability. Nucleic Acids Res., 2009, 37(4), 1353-1362.
[http://dx.doi.org/10.1093/nar/gkn1088 ] [PMID: 19151085]
[46]
Naka, T.; Minakawa, N.; Abe, H.; Kaga, D.; Matsuda, A. The stereoselective synthesis of 4′-β-thioribonucleosides via the Pummerer reaction. J. Am. Chem. Soc., 2000, 122(30), 7233-7243.
[http://dx.doi.org/10.1021/ja000541o]
[47]
O’Neil, I.A.; Hamilton, K.M. A novel method for the coupling of nucleoside bases with tetramethylene sulphoxide. Synlett, 1992, 1992(10), 791-792.
[http://dx.doi.org/10.1055/s-1992-21491]
[48]
Jeong, L.S.; Lee, H.W.; Kim, H.O.; Jung, J.Y.; Gao, Z-G.; Duong, H.T.; Rao, S.; Jacobson, K.A.; Shin, D.H.; Lee, J.A.; Gunaga, P.; Lee, S.K.; Jin, D.Z.; Chun, M.W.; Moon, H.R. Design, synthesis, and biological activity of N6-substituted-4′-thioadenosines at the human A3 adenosine receptor. Bioorg. Med. Chem., 2006, 14(14), 4718-4730.
[http://dx.doi.org/10.1016/j.bmc.2006.03.030 ] [PMID: 16603368]
[49]
Choi, W.J.; Lee, H.W.; Kim, H.O.; Chinn, M.; Gao, Z.G.; Patel, A.; Jacobson, K.A.; Moon, H.R.; Jung, Y.H.; Jeong, L.S. Design and synthesis of N6-substituted-4′-thioadenosine-5′-uronamides as potent and selective human A3 adenosine receptor agonists. Bioorg. Med. Chem., 2009, 17(23), 8003-8011.
[http://dx.doi.org/10.1016/j.bmc.2009.10.011 ] [PMID: 19879151]
[50]
Jeong, L.S.; Lee, H.W.; Kim, H.O.; Tosh, D.K.; Pal, S.; Choi, W.J.; Gao, Z-G.; Patel, A.R.; Williams, W.; Jacobson, K.A.; Kim, H.D. Structure-activity relationships of 2-chloro-N6-substituted-4′-thioadenosine-5′-N,N-dialkyluro-namides as human A3 adenosine receptor antagonists. Bioorg. Med. Chem. Lett., 2008, 18(5), 1612-1616.
[http://dx.doi.org/10.1016/j.bmcl.2008.01.070 ] [PMID: 18255292]
[51]
Jeong, L.S.; Jin, D.Z.; Kim, H.O.; Shin, D.H.; Moon, H.R.; Gunaga, P.; Chun, M.W.; Kim, Y.C.; Melman, N.; Gao, Z.G.; Jacobson, K.A. N6-substituted D-4′-thioadenosine-5′-methyluronamides: potent and selective agonists at the human A3 adenosine receptor. J. Med. Chem., 2003, 46(18), 3775-3777.
[http://dx.doi.org/10.1021/jm034098e ] [PMID: 12930138]
[52]
Lee, H.W.; Shin, D.H.; Jeong, J.Y.; Kim, H.O.; Chun, M.W.; Melman, N.; Gao, Z.G.; Jacobson, K.A.; Jeong, L.S. D-4′-thioadenosine derivatives as highly potent and selective agonists at the human A3 adenosine receptor. Nucl. Nucleot. Nucl., 2005, 24(5-7), 607-609.
[http://dx.doi.org/10.1081/NCN-200061827 ] [PMID: 16247997]
[53]
Corsaro, A.; Pistarà, V.; Chiacchio, M.A.; Vittorino, E.; Romeo, R. Synthesis of 4′-thionucleosides by 1,3-dipolar cycloadditions of the simplest thiocarbonyl ylide with alkenes bearing electron-withdrawing groups. Tetrahedron Lett., 2007, 48(28), 4915-4918.
[http://dx.doi.org/10.1016/j.tetlet.2007.05.080]
[54]
Haraguchi, K.; Takahashi, H.; Shiina, N.; Horii, C.; Yoshimura, Y.; Nishikawa, A.; Sasakura, E.; Nakamura, K.T.; Tanaka, H. Stereoselective synthesis of the β-anomer of 4′-thionucleosides based on electrophilic glycosidation to 4-thiofuranoid glycals. J. Org. Chem., 2002, 67(17), 5919-5927.
[http://dx.doi.org/10.1021/jo020037x ] [PMID: 12182623]
[55]
Haraguchi, K.; Takahashi, H.; Tanaka, H. 4-Thiofuranoid glycals: versatile synthons for stereoselective synthesis of 4′-thionucleosides. Nucleos. Nucleot. Nucl., 2003, 22(5-8), 763-765.
[http://dx.doi.org/10.1081/NCN-120022629 ] [PMID: 14565273]
[56]
Haraguchi, K.; Takahashi, H.; Tanaka, H.; Hayakawa, H.; Ashida, N.; Nitanda, T.; Baba, M. Synthesis and antiviral activities of 1′-carbon-substituted 4′-thiothymidines. Bioorg. Med. Chem., 2004, 12(20), 5309-5316.
[http://dx.doi.org/10.1016/j.bmc.2004.07.057 ] [PMID: 15388158]
[57]
Haraguchi, K.; Shimada, H.; Tanaka, H.; Hamasaki, T.; Baba, M.; Gullen, E.A.; Dutschman, G.E.; Cheng, Y.C. Synthesis and anti-HIV activity of 4′-substituted 4′-thiothymidines: a new entry based on nucleophilic substitution of the 4′-acetoxy group. J. Med. Chem., 2008, 51(6), 1885-1893.
[http://dx.doi.org/10.1021/jm070824s ] [PMID: 18311897]
[58]
Batra, H.; Moriarty, R.M.; Penmasta, R.; Sharma, V.; Stanciuc, G.; Staszewski, J.P.; Tuladhar, S.M.; Walsh, D.A.; Datla, S.; Krishnaswamy, S.; Concise, A. Efficient and production-scale synthesis of a protected L-lyxonolactone derivative: an important aldonolactone core. Org. Process Res. Dev., 2006, 10(3), 484-486.
[http://dx.doi.org/10.1021/op050222n]
[59]
Kotoulas, S.S.; Kojić, V.V.; Bogdanović, G.M.; Koumbis, A.E. Synthesis and cytotoxic evaluation of novel pyrimidine deoxyapiothionucleosides. Bioorg. Med. Chem. Lett., 2013, 23(11), 3364-3367.
[http://dx.doi.org/10.1016/j.bmcl.2013.03.091 ] [PMID: 23591117]
[60]
Kiso, M.; Hasegawa, A. Acetonation of some pentoses with 2,2-dimethoxypropane-N,N-dimethylformamide-p-toluenesulfonic acid. Carbohydr. Res., 1976, 52(1), 95-101.
[http://dx.doi.org/10.1016/S0008-6215(00)85950-9]
[61]
Koumbis, A.E.; Kaitaidis, A.D.; Kotoulas, S.S. Concise synthesis of enantiopure erythro-saccharinic acid lactone and potassium (2R,3R)-2,3,4-trihydroxy-2-methylbutanoate. Tetrahedron Lett., 2006, 47(48), 8479-8481.
[http://dx.doi.org/10.1016/j.tetlet.2006.09.156]
[62]
Koumbis, A.E.; Kotoulas, S.S.; Gallos, J.K. A convenient synthesis of 2-C-methyl-d-erythritol 4-phosphate and isotopomers of its precursor. Tetrahedron, 2007, 63(10), 2235-2243.
[http://dx.doi.org/10.1016/j.tet.2006.12.078]
[63]
Kotoulas, S.S.; Kojić, V.V.; Bogdanović, G.M.; Koumbis, A.E. Synthesis of novel pyrimidine apiothionucleosides and in vitro evaluation of their cytotoxicity. Tetrahedron, 2015, 71(21), 3396-3403.
[http://dx.doi.org/10.1016/j.tet.2015.03.089]
[64]
Lee, W.W.; Benitez, A.; Goodman, L.; Baker, B.R. Potential Anticancer Agents. Synthesis of the β-anomer of (D-arabinofuranosyl)-adenine. J. Am. Chem. Soc., 1960, 82(10), 2648-2649.
[http://dx.doi.org/10.1021/ja01495a070]
[65]
Nishizono, N.; Akama, Y.; Agata, M.; Sugo, M.; Yamaguchi, Y.; Oda, K. Synthesis of thietane nucleoside with an anomeric hydroxymethyl group. Tetrahedron, 2011, 67(2), 358-363.
[http://dx.doi.org/10.1016/j.tet.2010.11.038]
[66]
Yoshimura, Y.; Kuze, T.; Ueno, M.; Komiya, F.; Haraguchi, K.; Tanaka, H.; Kano, F.; Yamada, K.; Asami, K.; Kaneko, N.; Takahata, H. A practical synthesis of 4′-thioribonucleosides. Tetrahedron Lett., 2006, 47(4), 591-594.
[http://dx.doi.org/10.1016/j.tetlet.2005.11.049]
[67]
Yoshimura, Y.; Yamazaki, Y.; Kawahata, M.; Yamaguchi, K.; Takahata, H. Design and synthesis of a novel ring-expanded 4′-thio-apio-nucleoside derivatives. Tetrahedron Lett., 2007, 48(26), 4519-4522.
[http://dx.doi.org/10.1016/j.tetlet.2007.04.139]
[68]
McDougal, P.G.; Rico, J.G.; Oh, Y.I.; Condon, B.D. A convenient procedure for the monosilylation of symmetric 1,n-diols. J. Org. Chem., 1986, 51(17), 3388-3390.
[http://dx.doi.org/10.1021/jo00367a033]
[69]
Yoshimura, Y.; Yamazaki, Y.; Saito, Y.; Takahata, H. Synthesis of 1-(5,6-dihydro-2H-thiopyran-2-yl)uracil by a Pummerer-type thioglycosylation reaction: the regioselectivity of allylic substitution. Tetrahedron, 2009, 65(45), 9091-9102.
[http://dx.doi.org/10.1016/j.tet.2009.09.046]
[70]
Caputo, R.; Guaragna, A.; Palumbo, G.; Pedatella, S. Asymmetric synthesis of 1,3-dithiolane nucleoside analogues. Eur. J. Org. Chem., 2003, 2003(2), 346-350.
[http://dx.doi.org/10.1002/ejoc.200390040]
[71]
Efimtseva, E.V.; Mikhailov, S.N.; Meshkov, S.; Hankamaki, T.; Oivanen, M.; Lonnberg, H. Dioxolane nucleosides and their phosphonate derivatives: synthesis and hydrolytic stability. J. Chem. Soc., Perkin Trans. 1, 1995, (11), 1409-1415.
[http://dx.doi.org/10.1039/P19950001409]
[72]
Caputo, R.; Ferreri, C.; Palumbo, G. A new ready, high-yielding, general procedure for acetalization of carbonyl compounds. Synthesis, 1987, 1987(04), 386-389.
[http://dx.doi.org/10.1055/s-1987-27955]
[73]
Furia, F.D.; Licini, G.; Modena, G. Enantioselective oxidation of cyclic dithioacetals and dithioketals. ChemInform, 1990, 21(36), 165-170.
[74]
Minakawa, N.; Kaga, D.; Kato, Y.; Endo, K.; Tanaka, M.; Sasaki, T.; Matsuda, A. Synthesis and structural elucidation of 1-(3-C-ethynyl-4-thio-b-D-ribofuranosyl)cytosine (4′-thioECyd). J. Chem. Soc., Perkin Trans. 1, 2002, 2002(19), 2182-2189.
[http://dx.doi.org/10.1039/B204993G]
[75]
Hoshika, S.; Minakawa, N.; Matsuda, A. Synthesis and physical and physiological properties of 4′-thioRNA: application to post-modification of RNA aptamer toward NF-kappaB. Nucleic Acids Res., 2004, 32(13), 3815-3825.
[http://dx.doi.org/10.1093/nar/gkh705 ] [PMID: 15263062]
[76]
Inoue, N.; Kaga, D.; Minakawa, N.; Matsuda, A. Practical synthesis of 2′-deoxy-4′-thioribonucleosides: substrates for the synthesis of 4′-thioDNA. J. Org. Chem., 2005, 70(21), 8597-8600.
[http://dx.doi.org/10.1021/jo051248f ] [PMID: 16209618]
[77]
Inoue, N.; Minakawa, N.; Matsuda, A. Synthesis and properties of 4′-ThioDNA: unexpected RNA-like behavior of 4′-ThioDNA. Nucleic Acids Res., 2006, 34(12), 3476-3483.
[http://dx.doi.org/10.1093/nar/gkl491 ] [PMID: 16855286]
[78]
Kikuchi, Y.; Yamazaki, N.; Tarashima, N.; Furukawa, K.; Takiguchi, Y.; Itoh, K.; Minakawa, N. Gene suppression via U1 small nuclear RNA interference (U1i) machinery using oligonucleotides containing 2′-modified-4′-thionucleosides. Bioorg. Med. Chem., 2013, 21(17), 5292-5296.
[http://dx.doi.org/10.1016/j.bmc.2013.06.023 ] [PMID: 23871495]
[79]
Kaga, D.; Minakawa, N.; Matsuda, A. Nucleosides and nucleotides. 232. Synthesis of 2′-C-methyl-4′-thiocytidine: unexpected anomerization of the 2′-keto-4′-thionucleoside precursor. Nucleos. Nucleot. Nucl., 2005, 24(10-12), 1789-1800.
[http://dx.doi.org/10.1080/15257770500267204 ] [PMID: 16438048]
[80]
Parikh, J.R.; Doering, W.E. Sulfur trioxide in the oxidation of alcohols by dimethyl sulfoxide. J. Am. Chem. Soc., 1967, 89(21), 5505-5507.
[http://dx.doi.org/10.1021/ja00997a067]
[81]
Matsuda, A.; Itoh, H.; Takenuki, K.; Sasaki, T.; Ueda, T. Alkyl addition reaction of pyrimidine 2′-ketonucleosides: synthesis of 2′-branched-chain sugar pyrimidine nucleosides: nucleosides and nucleotides. LXXXI. Chem. Pharm. Bull. (Tokyo), 1988, 36(3), 945-953.
[http://dx.doi.org/10.1248/cpb.36.945 ] [PMID: 3409411]
[82]
Matsuda, A.; Takenuki, K.; Sasaki, T.; Ueda, T. Nucleosides and nucleotides. 94. Radical deoxygenation of tert-alcohols in 1-(2-Calkylpentofuranosyl) pyrimidines: synthesis of (2′S)-2′-deoxy-2′-C-methylcytidine, an antileukemic nucleoside. J. Med. Chem., 1991, 34(1), 234-239.
[http://dx.doi.org/10.1021/jm00105a037 ] [PMID: 1992123]
[83]
Haraguchi, K.; Itoh, Y.; Tanaka, H.; Yamaguchi, K.; Miyasaka, T. Anomeric manipulation of nucleosides: stereosepecific entry to 1′-C-branched uracil nucleosides. Tetrahedron Lett., 1993, 34(43), 6913-6916.
[http://dx.doi.org/10.1016/S0040-4039(00)91829-X]
[84]
Itoh, Y.; Haraguchi, K.; Tanaka, H.; Gen, E.; Miyasaka, T. Divergent and stereocontrolled approach to the synthesis of uracil nucleosides branched at the anomeric position. J. Org. Chem., 1995, 60(3), 656-662.
[http://dx.doi.org/10.1021/jo00108a031]
[85]
Haraguchi, K.; Takeda, S.; Tanaka, H.; Nitanda, T.; Baba, M.; Dutschman, G.E.; Cheng, Y.C. Synthesis of a highly active new anti-HIV agent 2′,3′-didehydro-3′-deoxy-4′-ethynylthymidine. Bioorg. Med. Chem. Lett., 2003, 13(21), 3775-3777.
[http://dx.doi.org/10.1016/j.bmcl.2003.07.009 ] [PMID: 14552777]
[86]
Dutschman, G.E.; Grill, S.P.; Gullen, E.A.; Haraguchi, K.; Takeda, S.; Tanaka, H.; Baba, M.; Cheng, Y.C. Novel 4′-substituted stavudine analog with improved anti-human immunodeficiency virus activity and decreased cytotoxicity. Antimicrob. Agents Chemother., 2004, 48(5), 1640-1646.
[http://dx.doi.org/10.1128/AAC.48.5.1640-1646.2004 ] [PMID: 15105115]
[87]
Kumamoto, H.; Nakai, T.; Haraguchi, K.; Nakamura, K.T.; Tanaka, H.; Baba, M.; Cheng, Y.C. Synthesis and anti-human immunodeficiency virus activity of 4′-branched (+/-)-4′-thiostavudines. J. Med. Chem., 2006, 49(26), 7861-7867.
[http://dx.doi.org/10.1021/jm060980j ] [PMID: 17181169]
[88]
Woodward, R.B.; Eastman, R.H. Tetrahydrothiophene (thiophane) derivatives. J. Am. Chem. Soc., 1946, 68(11), 2229-2235.
[http://dx.doi.org/10.1021/ja01215a034 ] [PMID: 21002227]
[89]
Luche, J.L. Lanthanides in organic chemistry. 1. Selective 1,2-reductions of conjugated ketones. J. Am. Chem. Soc., 1978, 100(7), 2226-2227.
[http://dx.doi.org/10.1021/ja00475a040]
[90]
Luche, J.L.; Hahn, L.R.; Crabbé, P. Reduction of natural enones in the presence of cerium trichloride. J. Chem. Soc. Chem. Commun., 1978, 1978(14), 601-602.
[http://dx.doi.org/10.1039/C39780000601]
[91]
Haraguchi, K.; Takahashi, H.; Tanaka, H. Stereoselective entry to 1′-C-branched 4′-thionucleosides from 4-thiofuranoid glycal: synthesis of 4′-thioangustmycin C. Tetrahedron Lett., 2002, 43(32), 5657-5660.
[http://dx.doi.org/10.1016/S0040-4039(02)01131-0]
[92]
Haraguchi, K.; Shiina, N.; Yoshimura, Y.; Shimada, H.; Hashimoto, K.; Tanaka, H. Novel stereoselective entry to 2′-β-carbon-substituted 2′-deoxy-4′-thionucleosides from 4-thiofuranoid glycals. Org. Lett., 2004, 6(16), 2645-2648.
[http://dx.doi.org/10.1021/ol040035u ] [PMID: 15281734]
[93]
Young, R.J.; Shaw-Ponter, S.; Thomson, J.B.; Miller, J.A.; Cumming, J.G.; Pugh, A.W.; Rider, P. Synthesis and antiviral evaluation of enantiomeric 2′,3′-dideoxy- and 2′,3′-didehydro-2′,3′-dideoxy-4′-thionucleosides. Bioorg. Med. Chem. Lett., 1995, 5(22), 2599-2604.
[http://dx.doi.org/10.1016/0960-894X(95)00472-6]
[94]
Wu, Y.Y.; Zhang, X.; Meng, W.D.; Qing, F.L. Synthesis of new 2′,3′-dideoxy-6′,6′-difluoro-3′-thionucleoside from gem-difluorohomoallyl alcohol. Org. Lett., 2004, 6(22), 3941-3944.
[http://dx.doi.org/10.1021/ol048423j ] [PMID: 15496069]
[95]
Yue, X.; Wu, Y.Y.; Qing, F.L. Synthesis of a series of novel 2′,3′-dideoxy-6′,6′-difluoro-3′-thionucleosides. Tetrahedron, 2007, 63(7), 1560-1567.
[http://dx.doi.org/10.1016/j.tet.2006.12.014]
[96]
Shaw, G.; Warrener, R.N. 33. Purines, pyrimidines, and glyoxalines. Part VIII. New syntheses of uracils and thymines. J. Chem. Soc., 1958, 1958, 157-161.
[http://dx.doi.org/10.1039/jr9580000157]
[97]
Chapdelaine, D.; David, B.C.; Prévost, M.; Gagnon, M.; Thumin, I.; Guindon, Y. A stereoselective approach to nucleosides and 4′-thioanalogues from acyclic precursors. J. Am. Chem. Soc., 2009, 131(47), 17242-17245.
[http://dx.doi.org/10.1021/ja905452f ] [PMID: 19902939]
[98]
Wirsching, J.; Voss, J. Preparation of 2,3,5-tri-O-benzyl-4-thio-L-arabino-furanosides and the corresponding 4′-thionucleoside analogues. Eur. J. Org. Chem., 1999, 1999(3), 691-696.
[http://dx.doi.org/10.1002/(SICI)1099-0690(199903)1999:3<691::AIDEJOC691>3.0.CO;2-J]
[99]
Dong, L.; Hu, S.; Gao, J. Discovering drugs to treat coronavirus disease 2019 (COVID-19). Drug Discov. Ther., 2020, 14(1), 58-60.
[http://dx.doi.org/10.5582/ddt.2020.01012 ] [PMID: 32147628]
[100]
Amirian, E.S.; Levy, J.K. Current knowledge about the antivirals remdesivir (GS-5734) and GS-441524 as therapeutic options for coronaviruses. One Health, 2020, 9100128
[http://dx.doi.org/10.1016/j.onehlt.2020.100128 ] [PMID: 32258351]
[101]
Timothy, P. Sheahan, T.P.; Sims, A.C.; Zhou, S.; Graham, R.L.; Pruijssers, A.J.; Agostini, M.L.; Leist, S.R.; Schäfer, A.; Dinnon, K.H.; Stevens, L.J.; Chappell, J.D.; Lu, X.; Hughes, T.M.; George, A.S.; Hill, C.S.; Montgomery, S.A.; Brown, A.J.; Bluemling, G.R.; Natchus, M.G.; Saindane, M.; Kolykhalov, A.A.; Painter, G.; Harcourt, J.; Tamin, A.; Thornburg, N.J.; Swanstrom, R.; Denison, M.R.; Baric, R.S. An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice. Sci. Transl. Med., 2020, 12(541), 5883.