Visible Light Assisted Photocatalytic Degradation of Methylene Blue Dye and Mixture of Dyes Using ZrO2-TiO2 Nanocomposites

Page: [120 - 129] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Background: Different photocatalysts such as TiO2, ZnO and WO3 have been used for the degradation of organic pollutants. However, these materials have some limitations, which have been affected the catalytic efficiency in the various transformations. The composites of these materials with other oxides can produce better results by tuning structural as well as optoelectrical properties. The composite of TiO2 with ZrO2 has attracted attention due to its use in different areas, as ZrO2 and TiO2 have similar physicochemical features.

Methods: This research contains the preparation of ZrO2-TiO2 nanocomposites by hydrothermal method and analysis of photocatalytic activity for the degradation of methylene blue and a mixture of dyes under visible light irradiation.

Results: Physicochemical characterization of ZrO2-TiO2 nanocomposites has been studied by using different techniques. Prepared catalysts has shown anatase phase of TiO2 and tetragonal phase of ZrO2. XRD, FESEM and HRTEM have supported the nanocrystalline nature of the composites. The photocatalytic activity of composites and bare TiO2 samples were demonstrated for the degradation of methylene blue dye. Enhanced activity has been shown by composite having Ti:Zr 3:1 molar proportion, i.e., Ti3Zr. Effect of concentration of methylene blue, pH of the solution and catalyst loading have been studied by using Ti3Zr. In addition, the degradation of a mixture of three dyes, namely methylene blue, rhodamine B and methyl orange, has been studied.

Conclusion: In summary, prepared ZrO2-TiO2 composites found to be nanocrystalline and visible light active. These catalysts have shown activity for photocatalytic degradation of methylene blue and a mixture of dyes.

Keywords: Nanocomposite, photocatalysts, hydrothermal, dye degradation, visible light irradiation, TiO2.

Graphical Abstract

[1]
El-Nemr, A. Impact, Monitoring, and Management of Environmental Pollution (Pollution Science, Technology & Abatement Series); Nova Science Publishers Incorporated, 2010.
[2]
El-Nemr, A. Textiles: Types, Uses, and Production Methods; Nova Science Publishers, 2012.
[3]
Houas, A.; Lachheb, H.; Ksibi, M.; Elaloui, E.; Guillard, C.; Herrmann, J.M. Photocatalytic degradation pathway of methylene blue in water. Appl. Catal. B, 2001, 31, 145-157.
[http://dx.doi.org/10.1016/S0926-3373(00)00276-9]
[4]
Arami, M.; Limaee, N.Y.; Mahmoodi, N.M.; Tabrizi, N.S. Equilibrium and kinetics studies for the adsorption of direct and acid dyes from aqueous solution by soy meal hull. J. Hazard. Mater., 2006, 135(1-3), 171-179.
[http://dx.doi.org/10.1016/j.jhazmat.2005.11.044] [PMID: 16442216]
[5]
Yang, W.; Wu, D.; Fu, R. Effect of surface chemistry on the adsorption of basic dyes on carbon aerogels. Colloids Surf. A Physicochem. Eng. Asp., 2008, 312, 118-124.
[http://dx.doi.org/10.1016/j.colsurfa.2007.06.037]
[6]
Helmy, E.T.; El Nemr, A.; Mousa, M.; Arafa, E.; Eldafrawy, S. Photocatalytic degradation of organic dyes pollutants in the industrial textile wastewater by using synthesized TiO2, C-doped TiO2, S-doped TiO2 and C, S co-doped TiO2 nanoparticles. J. Water Environ. Nanotechnol., 2018, 3, 116-227.
[7]
Ibhadon, A.; Fitzpatrick, P. Heterogeneous photocatalysis: recent advances and applications. Catalysts, 2013, 3, 189-218.
[http://dx.doi.org/10.3390/catal3010189]
[8]
Chong, M.N.; Jin, B.; Chow, C.W.; Saint, C. Recent developments in photocatalytic water treatment technology: a review. Water Res., 2010, 44(10), 2997-3027.
[http://dx.doi.org/10.1016/j.watres.2010.02.039] [PMID: 20378145]
[9]
Abhang, R.; Kumar, D.; Taralkar, S. Design of photocatalytic reactor for degradation of phenol in wastewater. Int. J. Chem. Eng. Appl., 2011, 2, 337-341.
[http://dx.doi.org/10.7763/IJCEA.2011.V2.130]
[10]
Zhang, F.; Wang, X.; Liu, H.; Liu, C.; Wan, Y.; Long, Y.; Cai, Z. Recent advances and applications of semiconductor photocatalytic technology. Appl. Sci. (Basel), 2019, 9, 2489.
[http://dx.doi.org/10.3390/app9122489]
[11]
Barkul, R.; Shaikh, F.; Delekar, S.; Patil, M. Visible light active Ce-doped TiO2 nanoparticles for photocatalytic degradation of methylene blue. Curr. Nanosci., 2017, 13, 110-116.
[http://dx.doi.org/10.2174/1573413712666160824151102]
[12]
Barkul, R.; Koli, V.; Shewale, V.; Patil, M.; Delekar, S. Visible active nanocrystalline N-doped anatase TiO2 particles for photocatalytic mineralization studies. Mater. Chem. Phys., 2016, 173, 42-51.
[http://dx.doi.org/10.1016/j.matchemphys.2016.01.035]
[13]
Patil, S.; Dhodamani, A.; Vanalakar, S.; Deshmukh, S.; Delekar, S. Multi-applicative tetragonal TiO2/SnO2 nanocomposites for photocatalysis and gas sensing. J. Phys. Chem. Solids, 2018, 115, 127-136.
[http://dx.doi.org/10.1016/j.jpcs.2017.12.020]
[14]
Zhou, W.; Liu, K.; Fu, H.; Pan, K.; Zhang, L.; Wang, L.; Sun, C.C. Multi-modal mesoporous TiO2-ZrO2 composites with high photocatalytic activity and hydrophilicity. Nanotechnology, 2008, 19(3)035610
[http://dx.doi.org/10.1088/0957-4484/19/03/035610] [PMID: 21817584]
[15]
Neppolian, B.; Wang, Q.; Yamashita, H.; Choi, H. Synthesis and characterization of ZrO2-TiO2 binary oxide semiconductor nanoparticles: application and interparticle electron transfer process. Appl. Catal. A Gen., 2007, 333, 264-271.
[http://dx.doi.org/10.1016/j.apcata.2007.09.026]
[16]
Fu, X.; Clark, L.A.; Yang, Q.; Anderson, M.A. Enhanced photocatalytic performance of titania-based binary metal oxides: TiO2/SiO2 and TiO2/ZrO2. Environ. Sci. Technol., 1996, 30, 647-653.
[http://dx.doi.org/10.1021/es950391v]
[17]
Wang, X.; Yu, J.C.; Chen, Y.; Wu, L.; Fu, X. ZrO2-modified mesoporous nanocrystalline TiO2-xNx as efficient visible light photocatalysts. Environ. Sci. Technol., 2006, 40(7), 2369-2374.
[http://dx.doi.org/10.1021/es052000a] [PMID: 16646476]
[18]
Sasikala, R.; Shirole, A.R.; Bharadwaj, S.R. Enhanced photocatalytic hydrogen generation over ZrO2-TiO2-CdS hybrid structure. J. Colloid Interface Sci., 2013, 409, 135-140.
[http://dx.doi.org/10.1016/j.jcis.2013.07.047] [PMID: 23962580]
[19]
Tauster, S.; Fung, S.; Garten, R.L. Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide. J. Am. Chem. Soc., 1978, 100, 170-175.
[http://dx.doi.org/10.1021/ja00469a029]
[20]
Tauster, S.J.; Fung, S.C.; Baker, R.T.; Horsley, J.A. Strong interactions in supported-metal catalysts. Science, 1981, 211(4487), 1121-1125.
[http://dx.doi.org/10.1126/science.211.4487.1121] [PMID: 17755135]
[21]
Yanqing, Z.; Erwei, S.; Zhizhan, C.; Wenjun, L.; Xingfang, H. Influence of solution concentration on the hydrothermal preparation of titania crystallites. J. Mater. Chem., 2001, 11, 1547-1551.
[http://dx.doi.org/10.1039/b009203g]
[22]
Wang, I.; Chang, W.F.; Shiau, R.J.; Wu, J.C.; Chung, C.S. Nonoxidative dehydrogenation of ethylbenzene over TiO2-ZrO2 catalysts: I. Effect of composition on surface properties and catalytic activities. J. Catal., 1983, 83, 428-436.
[http://dx.doi.org/10.1016/0021-9517(83)90067-2]
[23]
Wu, J.C.; Chung, C.S.; Ay, C.L.; Wang, I. Nonoxidative dehydrogenation of ethylbenzene over TiO2-ZrO2 catalysts: II. The effect of pretreatment on surface properties and catalytic activities. J. Catal., 1984, 87, 98-107.
[http://dx.doi.org/10.1016/0021-9517(84)90172-6]
[24]
Wang, M.L.; Wu, H.S. Effects of the structure of the polymer support on the substitution reaction in a triphase catalysis. Ind. Eng. Chem. Res., 1992, 31, 490-496.
[http://dx.doi.org/10.1021/ie00002a007]
[25]
Wang, J.; Yu, Y.; Li, S.; Guo, L.; Wang, E.; Cao, Y. Doping behavior of Zr4+ ions in Zr4+-doped TiO2 nanoparticles. J. Phys. Chem. C, 2013, 117, 27120-27126.
[http://dx.doi.org/10.1021/jp407662d]
[26]
Chang, S.M.; Doong, R.A. Characterization of Zr-doped TiO2 nanocrystals prepared by a nonhydrolytic sol-gel method at high temperatures. J. Phys. Chem. B, 2006, 110(42), 20808-20814.
[http://dx.doi.org/10.1021/jp0626566] [PMID: 17048891]
[27]
Xie, H.; Lu, J.; Shekhar, M.; Elam, J.W.; Delgass, W.N.; Ribeiro, F.H.; Weitz, E.; Poeppelmeier, K.R. Synthesis of Na-stabilized nonporous t-ZrO2 supports and Pt/t-ZrO2 catalysts and application to water-gas-shift reaction. ACS Catal., 2012, 3, 61-73.
[http://dx.doi.org/10.1021/cs300596q]
[28]
Reddy, K.M.; Baruwati, B.; Jayalakshmi, M.; Rao, M.M. Manorama, S.V.S. -N-and C-doped titanium dioxide nanoparticles: synthesis, characterization and redox charge transfer study. J. Solid State Chem., 2005, 178, 3352-3358.
[http://dx.doi.org/10.1016/j.jssc.2005.08.016]
[29]
Lukac, J.; Klementova, M.; Bezdicka, P.; Bakardjieva, S.; Subrt, J.; Szatmary, L.; Basti, Z.; Jirkovský, J. Influence of Zr as TiO2 doping ion on photocatalytic degradation of 4-chlorophenol. Appl. Catal. B, 2007, 74, 83-91.
[http://dx.doi.org/10.1016/j.apcatb.2007.01.014]
[30]
Duan, N.; Lin, H.; Li, L.; Hu, J.; Bi, L.; Lu, H.; Weng, X.; Xie, J.; Deng, L. ZrO2-TiO2 thin films: a new material system for mid-infrared integrated photonics. Opt. Mater. Express, 2013, 3, 1537-1545.
[http://dx.doi.org/10.1364/OME.3.001537]
[31]
Khan, S.A.; Khan, S.B.; Asiri, A.M.; Ahmad, I. Zirconia-based catalyst for the one-pot synthesis of coumarin through Pechmann reaction. Nanoscale Res. Lett., 2016, 11(1), 345.
[http://dx.doi.org/10.1186/s11671-016-1525-3] [PMID: 27460593]
[32]
Chen, Y.F.; Lee, C.Y.; Yeng, M.Y.; Chiu, H.T. The effect of calcination temperature on the crystallinity of TiO2 nanopowders. J. Cryst. Growth, 2003, 247, 363-370.
[http://dx.doi.org/10.1016/S0022-0248(02)01938-3]
[33]
Watson, S.; Beydoun, D.; Scott, J.; Amal, R. Preparation of nanosized crystalline TiO2 particles at low temperature for photocatalysis. J. Nanopart. Res., 2004, 6, 193-207.
[http://dx.doi.org/10.1023/B:NANO.0000034623.33083.71]
[34]
Pingmuang, K.; Chen, J.; Kangwansupamonkon, W.; Wallace, G.G.; Phanichphant, S.; Nattestad, A. Composite photocatalysts containing BiVO4 for degradation of cationic dyes. Sci. Rep., 2017, 7(1), 8929.
[http://dx.doi.org/10.1038/s41598-017-09514-5] [PMID: 28827594]