Upscaling Anodic Synthesis of TiO2 Nanotubes Film as Potential Material for Photoelectrocatalytic Applications: Influence of Electrolyte Overheating and Aging on Nanotube Morphology and Stability

Page: [43 - 49] Pages: 7

  • * (Excluding Mailing and Handling)

Abstract

Background: Among Advanced oxidation processes, heterogeneous photocatalysis have a great interest, because it uses only light has a source of energy. One of the main limiting processes in photocatalysis is the high probability of electron-hole pair’s recombination in the volume or at the surface of the photocatalyst particles. TiO2 nanotubes grown by anodic synthesis are widely studied because of the large number of potential practical applications especially in photocatalytic or photoelectrochemical applications. However, the preparation of these electrodes at large scale is still challenging due to some technological obstacles such as the electrochemical cell design or the precise control of nanotubes morphology, especially regarding electrolyte ageing and overheating during the synthesis.

Objectives: This study examines the electrochemical synthesis of TiO2 nanotubes supported on large titanium electrodes.

Methods and Results: By understanding heat dissipation phenomenon during the synthesis, an optimized electrochemical cell was designed to prepare 6x4 cm 2 anodes. Then we aimed to control precisely the length of the nanotubes independently of electrolyte ageing. Indeed, It was previously observed that the electrolyte composition evolves (ageing) during the nanotubes synthesis and hence leads to nonreproducible nanotubes morphologies under time-controlled potentiostatic anodization conditions.

Conclusion and Perspectives: To overcome this issue, we developed a Coulometric approach that allows to synthesize, reusing the same electrolyte, several electrodes with a great precision and reproducibility on the length of the nanotubes (2,7 μm ± 160 nm) despite electrolyte ageing. Subsequently, these electrodes can be integrated in a photocatalytic or photoelectrocatalytic process in a real wastewater treatment sector would be very relevant.

Keywords: TiO2 nanotubes, upscaling, electrolyte aging, ph, anodization, coulometric.

Graphical Abstract

[1]
Nozik, A.J.; Memming, R. Physical chemistry of semiconductor-liquid interfaces. J. Phys. Chem., 1996, 100, 13061-13078.
[http://dx.doi.org/10.1021/jp953720e]
[2]
Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 1972, 238, 37-38.
[3]
Daghrir, R.; Drogui, P.; Robert, D. Photoelectrocatalytic technologies for environmental applications. J. Photoch. Photobio. A, 2012, 238, 41-52.
[4]
Lai, Y.; Lin, L.; Pan, F.; Huang, J.; Song, R.; Huang, Y.; Lin, C.; Fuchs, H.; Chi, L. Bioinspired patterning with extreme wettability contrast on TiO2 nanotube array surface: a versatile platform for biomedical applications. Small, 2013, 9(17), 2945-2953.
[http://dx.doi.org/10.1002/smll.201300187] [PMID: 23420792]
[5]
Das, K.; Bose, S.; Bandyopadhyay, A. TiO2 nanotubes on Ti: Influence of nanoscale morphology on bone cell-materials interaction. J. Biomed. Mater. Res. A, 2009, 90(1), 225-237.
[http://dx.doi.org/10.1002/jbm.a.32088] [PMID: 18496867]
[6]
Ronzani, C.; Cottineau, T.; Gonzalez-Valls, I.; Keller, V.; Picaud, S.; Keller, N.; Roux, M.J. High-frequency stimulation of normal and blind mouse retinas using TiO2 nanotubes. Adv. Funct. Mater., 2018, 28 1804639
[http://dx.doi.org/10.1002/adfm.201804639]
[7]
Chen, B.; Hou, J.; Lu, K. Formation mechanism of TiO2 nanotubes and their applications in photoelectrochemical water splitting and supercapacitors. Langmuir, 2013, 29(19), 5911-5919.
[http://dx.doi.org/10.1021/la400586r] [PMID: 23594047]
[8]
Salian, G.D.; Koo, B.M.; Lefevre, C.; Cottineau, T.; Lebouin, C.; Tesfaye, A.T.; Knauth, P. Niobium alloying of self-organized TiO2 nanotubes as an anode for lithium-ion microbatteries. Adv. Mater. Technol., 2017, 3 1700274
[9]
Lu, H.F.; Li, F.; Liu, G.; Chen, Z.G.; Wang, D.W.; Fang, H.T.; Lu, G.Q.; Jiang, Z.H.; Cheng, H.M. Amorphous TiO(2) nanotube arrays for low-temperature oxygen sensors. Nanotechnology, 2008, 19(40) 405504
[http://dx.doi.org/10.1088/0957-4484/19/40/405504] [PMID: 21832620]
[10]
Liu, H.; Ding, D.; Ning, C.; Li, Z. Wide-range hydrogen sensing with Nb-doped TiO2 nanotubes. Nanotechnology, 2012, 23(1) 015502
[http://dx.doi.org/10.1088/0957-4484/23/1/015502] [PMID: 22156054]
[11]
Spitzer, D.; Cottineau, T.; Piazzon, N.; Josset, S.; Schnell, F.; Pronkin, S.N.; Savinova, E.R.; Keller, V. Bio-inspired nanostructured sensor for the detection of ultralow concentrations of explosives. Angew. Chem. Int. Ed. Engl., 2012, 51(22), 5334-5338.
[http://dx.doi.org/10.1002/anie.201108251] [PMID: 22544684]
[12]
Biapo, U.; Ghisolfi, A.; Gerer, G.; Spitzer, D.; Keller, V.; Cottineau, T. Functionalized TiO2 nanorods on a microcantilever for the detection of organophosphorus chemical agents in air. ACS Appl. Mater. Interfaces, 2019, 11(38), 35122-35131.
[http://dx.doi.org/10.1021/acsami.9b11504] [PMID: 31468957]
[13]
Mor, G.K.; Shankar, K.; Paulose, M.; Varghese, O.K.; Grimes, C.A. Enhanced photocleavage of water using titania nanotube arrays. Nano Lett., 2005, 5(1), 191-195.
[http://dx.doi.org/10.1021/nl048301k] [PMID: 15792438]
[14]
Favet, T.; Keller, V.; Cottineau, T.; El Khakani, M.A. Enhanced visible-light-photoconversion efficiency of TiO2 nanotubes decorated by pulsed laser deposited CoNi nanoparticles Inter. J. of Hydrogen Energy, 2019, 44, 28656-28667.
[http://dx.doi.org/10.1016/j.ijhydene.2019.08.179]
[15]
Varghese, O.K.; Maggie Paulose, M.; Grimes, C.A. Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells. Nature Nanotech., 2009, 4, 592-597.
[16]
Gonzalez-Valls, I.; Mirloup, A.; Le Bahers, T.; Keller, N.; Cottineau, T.; Sautet, P. Characterization and charge transfer properties of organic BODIPY dyes integrated in TiO2 nanotube based dye-sensitized solar cells. RSC Ad, 2016, 6, 91529-91540.
[17]
Wang, W.; Li, F.; Zhang, D.; Leung, D.Y.C.; Li, G. Photoelectrocatalytic hydrogen generation and simultaneous degradation of organic pollutant via CdSe/TiO2 nanotube arrays. Appl. Surf. Sci., 2016, 362, 490-497.
[http://dx.doi.org/10.1016/j.apsusc.2015.11.228]
[18]
Paramasivam, I.; Jha, H. A review of photocatalysis using self‐organized TiO2 nanotubes and journal ordered oxide nanostructures. Small, 2012, 8, 3073-3103.
[19]
Zhou, X.; Liu, N.; Schmuki, P. Photocatalysis with TiO2 Nanotubes: “colorful” reactivity and designing site-specific photocatalytic centers into TiO2 nanotubes. ACS Catal., 2017, 7, 3210-3235.
[http://dx.doi.org/10.1021/acscatal.6b03709]
[20]
Roy, P.; Berger, S.; Schmuki, P. TiO2 nanotubes: synthesis and applications. Angew. Chem. Int. Ed. Engl., 2011, 50(13), 2904-2939.
[http://dx.doi.org/10.1002/anie.201001374] [PMID: 21394857]
[21]
Lee, K.; Mazare, A.; Schmuki, P. One-dimensional titanium dioxide nanomaterials: nanotubes. Chem. Rev., 2014, 114(19), 9385-9454.
[http://dx.doi.org/10.1021/cr500061m] [PMID: 25121734]
[22]
Mor, G.K.; Grimes, C.A. TiO2 Nanotube arrays: Synthesis, Properties and Applications; Springer: Boston, MA, 2009.
[23]
Ghicov, A.; Schmuki, P. Self-ordering electrochemistry: a review on growth and functionality of TiO2 nanotubes and other self-aligned MO(x) structures. Chem. Commun. (Camb.), 2009, 28(20), 2791-2808.
[http://dx.doi.org/10.1039/b822726h] [PMID: 19436878]
[24]
Song, Y.Y.; Lynch, R.; Kim, D.; Roy, P.; Schmuki, P. TiO2 nanotubes: efficient suppression of top etching during anodic growth key to improved high aspect ratio geometries. Electrochem. Solid-State Lett., 2009, 12, C17-C20.
[http://dx.doi.org/10.1149/1.3126500]
[25]
Raja, K.S.; Misra, M.; Paramguru, K. Formation of self-ordered nano-tubular structure of anodic oxide layer on titanium. Electrochim. Acta, 2005, 51, 154-165.
[http://dx.doi.org/10.1016/j.electacta.2005.04.011]
[26]
Paulose, M.; Prakasam, H.E.; Varghese, O.K.; Peng, L.; Popat, K.C.; Mor, G.K.; Desai, T.A. TiO2 nanotube arrays of 1000 μm length by anodization of titanium foil: Phenol red diffusion. J. Phys. Chem. C, 2007, 111, 14992-14997.
[http://dx.doi.org/10.1021/jp075258r]
[27]
Pathinettam, P.D.; Henry, R.D. Synthesis of various generations titania nanotube arrays by electrochemical anodization for H2 production. Energy Procedia, 2011, 22, 88-95.
[28]
Berger, S.; Kunze, J.; Schmuki, P.; Valota, A.T.; LeClere, D.J.; Skeldon, P.; Thompson, G.E. Influence of water content on the growth of anodic TiO2 nanotubes in fluoride-containing ethylene glycol electrolytes. J. Electrochem. Soc., 2010, 157, C18-C23.
[http://dx.doi.org/10.1149/1.3251338]
[29]
Marien, C.B.D.; Cottineau, T.; Robert, D.; Drogui, P. TiO2 Nanotube arrays: Influence of tube length on the photocatalytic degradation of paraquat Appl. Catal. Biol. Environ., 2016, 194, 1-6.
[30]
Berger, S.; Hahn, R.; Roy, P.; Schmuki, P. Self-organized TiO2 nanotubes: factors affecting their morphology and properties. Phys. Status Solidi Basic Res., 2010, 247, 2424-2436.
[http://dx.doi.org/10.1002/pssb.201046373]
[31]
Sulka, G.D.; Kapusta-Kołodziej, J.; Brzózka, A.; Jaskuła, M. Anodic growth of TiO2 nanopore arrays at various temperatures. Electrochim. Acta, 2013, 104, 526-535.
[http://dx.doi.org/10.1016/j.electacta.2012.12.121]
[32]
Yang, S.; Aoki, Y.; Habazaki, H. Effect of electrolyte temperature on the formation of self- organized anodic niobium oxide microcones in hot phosphate–glycerol electrolyte. Appl. Surf. Sci., 2011, 257, 8190-8195.
[http://dx.doi.org/10.1016/j.apsusc.2011.01.041]
[33]
Zhong, X.; Yu, D.; Song, Y.; Li, D.; Xiao, H.; Yang, C.; Lu, L.; Ma, W.; Zhu, X. Fabrication of large diameter TiO2 nanotubes for improved photoelectrochemical performance mater. Res. Bull. (Int. Comm. Northwest Atl. Fish.), 2014, 60, 348-352.
[34]
Kim, H.I.; Kim, D.; Kim, K.; Ha, Y.C.; Sim, S.J.; Kim, S.; Choi, W. Anodic TiO2 nanotube layer directly formed on the inner surface of Ti pipe for a tubular photocatalytic reactor. Appl. Catal. A Gen., 2016, 521, 174-181.
[http://dx.doi.org/10.1016/j.apcata.2015.10.039]
[35]
Mena, E.; Martin de Vidales, M.J.; Mesones, S.; Marugan, J. Influence of anodization mode on the morphology and photocatalytic activity of TiO2-NT array large size electrodes. Catal. Today, 2018, 313, 33-39.
[http://dx.doi.org/10.1016/j.cattod.2017.12.036]
[36]
Sopha, H.; Baudys, M.; Krbal, M.; Zazpe, R.; Prikryl, J.; Krysa, J.; Macak, J.M. Scaling up anodic TiO2 nanotube layers for gas phase photocatalysis. Electrochem. Commun., 2018, 97, 91-95.
[http://dx.doi.org/10.1016/j.elecom.2018.10.025]
[37]
Sopha, H.; Hromadko, L.; Nechvilova, K.; Macak, J.M. Effect of electrolyte age and potential changes on the morphology of TiO2 nanotubes. J. Electroanal. Chem. (Lausanne Switz.), 2015, 759, 122-128.
[http://dx.doi.org/10.1016/j.jelechem.2015.11.002]
[38]
Macak, J.M.; Albu, S.P.; Schmuki, P. Towards ideal hexagonal self‐ordering of TiO2 nanotubes. Phys. Status Solidi Rapid Res. Lett., 2007, 1, 181-183.
[http://dx.doi.org/10.1002/pssr.200701148]