Tuning Down the Pain – An Overview of Allosteric Modulation of Opioid Receptors: Mechanisms of Modulation, Allosteric Sites, Modulator Syntheses

Page: [2852 - 2865] Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

Opioid signaling plays a central role in pain perception. As such, it remains the main target in the development of antinociceptive agents, despite serious side effects involved. In recent years, hopes for improved opioid painkillers are rising, together with our understanding of allosterism and biased signaling mechanisms. In this review, we focus on recently discovered allosteric modulators of opioid receptors, insights into phenomena underlying their action, as well as on how they extend our understanding of mechanisms of previously known compounds. A brief overlook of their synthesis is also presented.

Keywords: Allostery, Allosteric modulation, Allosteric pocket, GPCRs, Opioid receptors, Probe dependence.

Graphical Abstract

[1]
Ehlert, F.J.; Ragan, P.; Chen, A.; Roeske, W.R.; Yamamura, H.I. Modulation of benzodiazepine receptor binding: insight into pharmacological efficacy. Eur. J. Pharmacol., 1982, 78(2), 249-253.
[http://dx.doi.org/10.1016/0014-2999(82)90246-1] [PMID: 6281035]
[2]
Tschammer, N. Allosteric Modulators of the Class A G Protein Coupled Receptors. Adv. Exp. Med. Biol., 2016, 917, 185-207.
[http://dx.doi.org/10.1007/978-3-319-32805-8_9]
[3]
Luttrell, L.M.; Kenakin, T.P. Refining efficacy: allosterism and bias in G protein-coupled receptor signaling. Methods Mol. Biol., 2011, 756, 3-35.
[http://dx.doi.org/10.1007/978-1-61779-160-4_1] [PMID: 21870218]
[4]
Valant, C.; Felder, C.C.; Sexton, P.M.; Christopoulos, A. Probe dependence in the allosteric modulation of a G protein-coupled receptor: implications for detection and validation of allosteric ligand effects. Mol. Pharmacol., 2012, 81(1), 41-52.
[http://dx.doi.org/10.1124/mol.111.074872] [PMID: 21989256]
[5]
Tsai, C-J.; Del Sol, A.; Nussinov, R. Protein allostery, signal transmission and dynamics: a classification scheme of allosteric mechanisms. Mol. Biosyst., 2009, 5(3), 207-216.
[http://dx.doi.org/10.1039/b819720b] [PMID: 19225609]
[6]
Santos, R.; Ursu, O.; Gaulton, A.; Bento, A.P.; Donadi, R.S.; Bologa, C.G.; Karlsson, A.; Al-Lazikani, B.; Hersey, A.; Oprea, T.I.; Overington, J.P. A comprehensive map of molecular drug targets. Nat. Rev. Drug Discov., 2017, 16(1), 19-34.
[http://dx.doi.org/10.1038/nrd.2016.230] [PMID: 27910877]
[7]
Marti-Solano, M.; Kaczor, A.A.; Guixà-González, R.; Selent, J. Computational strategies to incorporate gpcr complexity in drug design.InFrontiers in Computational Chemistry; Ul-Haq, Z.; Madura, J.D., Eds.; Bentham Science Publishers: Sharjah, 2015, pp. 3-43.
[http://dx.doi.org/10.2174/9781608058648115010003]
[8]
Jacobson, K.A. New paradigms in GPCR drug discovery. Biochem. Pharmacol., 2015, 98(4), 541-555.
[http://dx.doi.org/10.1016/j.bcp.2015.08.085] [PMID: 26265138]
[9]
Smith, N.J.; Bennett, K.A.; Milligan, G. When simple agonism is not enough: emerging modalities of GPCR ligands. Mol. Cell. Endocrinol., 2011, 331(2), 241-247.
[http://dx.doi.org/10.1016/j.mce.2010.07.009] [PMID: 20654693]
[10]
Christopoulos, A. Advances in G protein-coupled receptor allostery: from function to structure. Mol. Pharmacol., 2014, 86(5), 463-478.
[http://dx.doi.org/10.1124/mol.114.094342] [PMID: 25061106]
[11]
Langmead, C.J.; Christopoulos, A. Functional and structural perspectives on allosteric modulation of GPCRs. Curr. Opin. Cell Biol., 2014, 27, 94-101.
[http://dx.doi.org/10.1016/j.ceb.2013.11.007] [PMID: 24680434]
[12]
Conn, P.J.; Lindsley, C.W.; Meiler, J.; Niswender, C.M. Opportunities and challenges in the discovery of allosteric modulators of GPCRs for treating CNS disorders. Nat. Rev. Drug Discov., 2014, 13(9), 692-708.
[http://dx.doi.org/10.1038/nrd4308] [PMID: 25176435]
[13]
Wold, E.A.; Chen, J.; Cunningham, K.A.; Zhou, J. Allosteric modulation of class a gpcrs: targets, agents, and emerging concepts. J. Med. Chem., 2019, 62(1), 88-127.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00875] [PMID: 30106578]
[14]
Vadivelu, N.; Kai, A.M.; Kodumudi, V.; Sramcik, J.; Kaye, A.D. The opioid crisis: A comprehensive overview. Curr. Pain Headache Rep., 2018, 22(3), 16.
[http://dx.doi.org/10.1007/s11916-018-0670-z] [PMID: 29476358]
[15]
Stanczyk, M.A.; Livingston, K.E.; Chang, L.; Weinberg, Z.Y.; Puthenveedu, M.A.; Traynor, J.R. The δ-opioid receptor positive allosteric modulator BMS 986187 is a G-protein-biased allosteric agonist. Br. J. Pharmacol., 2019, 176(11), 1649-1663.
[http://dx.doi.org/10.1111/bph.14602] [PMID: 30710458]
[16]
Schmid, C.L.; Kennedy, N.M.; Ross, N.C.; Lovell, K.M.; Yue, Z.; Morgenweck, J.; Cameron, M.D.; Bannister, T.D.; Bohn, L.M. Bias factor and therapeutic window correlate to predict safer opioid analgesics. Cell, 2017, 171(5), 1165-1175.
[http://dx.doi.org/10.1016/j.cell.2017.10.035] [PMID: 29149605]
[17]
Livingston, K.E.; Traynor, J.R. Allostery at opioid receptors: modulation with small molecule ligands. Br. J. Pharmacol., 2018, 175(14), 2846-2856.
[http://dx.doi.org/10.1111/bph.13823] [PMID: 28419415]
[18]
Remesic, M.; Hruby, V.J.; Porreca, F.; Lee, Y.S. Recent advances in the realm of allosteric modulators for opioid receptors for future therapeutics. ACS Chem. Neurosci., 2017, 8(6), 1147-1158.
[http://dx.doi.org/10.1021/acschemneuro.7b00090] [PMID: 28368571]
[19]
Bhattacharya, S.; Salomon-Ferrer, R.; Lee, S.; Vaidehi, N. Conserved mechanism of conformational stability and dynamics in g-protein-coupled receptors. J. Chem. Theory Comput., 2016, 12(11), 5575-5584.
[http://dx.doi.org/10.1021/acs.jctc.6b00618] [PMID: 27709935]
[20]
Bartuzi, D.; Kaczor, A.A.; Matosiuk, D. Signaling within allosteric machines: signal transmission pathways inside g protein-coupled receptors. Molecules, 2017, 22(7), 1188.
[http://dx.doi.org/10.3390/molecules22071188] [PMID: 28714871]
[21]
Lu, S.; Zhang, J. Small molecule allosteric modulators of g-protein-coupled receptors: drug-target interactions. J. Med. Chem., 2019, 62(1), 24-45.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01844] [PMID: 29457894]
[22]
Kruse, A.C.; Ring, A.M.; Manglik, A.; Hu, J.; Hu, K.; Eitel, K.; Hübner, H.; Pardon, E.; Valant, C.; Sexton, P.M.; Christopoulos, A.; Felder, C.C.; Gmeiner, P.; Steyaert, J.; Weis, W.I.; Garcia, K.C.; Wess, J.; Kobilka, B.K. Activation and allosteric modulation of a muscarinic acetylcholine receptor. Nature, 2013, 504(7478), 101-106.
[http://dx.doi.org/10.1038/nature12735] [PMID: 24256733]
[23]
Tan, Q.; Zhu, Y.; Li, J.; Chen, Z.; Han, G.W.; Kufareva, I.; Li, T.; Ma, L.; Fenalti, G.; Li, J.; Zhang, W.; Xie, X.; Yang, H.; Jiang, H.; Cherezov, V.; Liu, H.; Stevens, R.C.; Zhao, Q.; Wu, B. Structure of the CCR5 chemokine receptor-HIV entry inhibitor maraviroc complex. Science, 2013, 341(6152), 1387-1390.
[http://dx.doi.org/10.1126/science.1241475] [PMID: 24030490]
[24]
Byrne, E.F.X.; Sircar, R.; Miller, P.S.; Hedger, G.; Luchetti, G.; Nachtergaele, S.; Tully, M.D.; Mydock-McGrane, L.; Covey, D.F.; Rambo, R.P.; Sansom, M.S.P.; Newstead, S.; Rohatgi, R.; Siebold, C. Structural basis of Smoothened regulation by its extracellular domains. Nature, 2016, 535(7613), 517-522.
[http://dx.doi.org/10.1038/nature18934] [PMID: 27437577]
[25]
Doré, A.S.; Okrasa, K.; Patel, J.C.; Serrano-Vega, M.; Bennett, K.; Cooke, R.M.; Errey, J.C.; Jazayeri, A.; Khan, S.; Tehan, B.; Weir, M.; Wiggin, G.R.; Marshall, F.H. Structure of class C GPCR metabotropic glutamate receptor 5 transmembrane domain. Nature, 2014, 511(7511), 557-562.
[http://dx.doi.org/10.1038/nature13396] [PMID: 25042998]
[26]
Wu, H.; Wang, C.; Gregory, K.J.; Han, G.W.; Cho, H.P.; Xia, Y.; Niswender, C.M.; Katritch, V.; Meiler, J.; Cherezov, V.; Conn, P.J.; Stevens, R.C. Structure of a class C GPCR metabotropic glutamate receptor 1 bound to an allosteric modulator. Science, 2014, 344(6179), 58-64.
[http://dx.doi.org/10.1126/science.1249489] [PMID: 24603153]
[27]
Hollenstein, K.; Kean, J.; Bortolato, A.; Cheng, R.K.Y.; Doré, A.S.; Jazayeri, A.; Cooke, R.M.; Weir, M.; Marshall, F.H. Structure of class B GPCR corticotropin-releasing factor receptor 1. Nature, 2013, 499(7459), 438-443.
[http://dx.doi.org/10.1038/nature12357] [PMID: 23863939]
[28]
Ortiz Zacarías, N.V.; Lenselink, E.B.; IJzerman, A.P.; Handel, T.M.; Heitman, L.H. Intracellular receptor modulation: novel approach to target GPCRs. Trends Pharmacol. Sci., 2018, 39(6), 547-559.
[http://dx.doi.org/10.1016/j.tips.2018.03.002] [PMID: 29653834]
[29]
Zheng, Y.; Qin, L.; Zacarías, N.V.O.; de Vries, H.; Han, G.W.; Gustavsson, M.; Dabros, M.; Zhao, C.; Cherney, R.J.; Carter, P.; Stamos, D.; Abagyan, R.; Cherezov, V.; Stevens, R.C.; IJzerman, A.P.; Heitman, L.H.; Tebben, A.; Kufareva, I.; Handel, T.M. Structure of CC chemokine receptor 2 with orthosteric and allosteric antagonists. Nature, 2016, 540(7633), 458-461.
[http://dx.doi.org/10.1038/nature20605] [PMID: 27926736]
[30]
Jaeger, K.; Bruenle, S.; Weinert, T.; Guba, W.; Muehle, J.; Miyazaki, T.; Weber, M.; Furrer, A.; Haenggi, N.; Tetaz, T.; Huang, C-Y.; Mattle, D.; Vonach, J-M.; Gast, A.; Kuglstatter, A.; Rudolph, M.G.; Nogly, P.; Benz, J.; Dawson, R.J.P.; Standfuss, J. Structural basis for allosteric ligand recognition in the human cc chemokine receptor 7. Cell, 2019, 178(5), 1222-1230.
[http://dx.doi.org/10.1016/j.cell.2019.07.028] [PMID: 31442409]
[31]
Oswald, C.; Rappas, M.; Kean, J.; Doré, A.S.; Errey, J.C.; Bennett, K.; Deflorian, F.; Christopher, J.A.; Jazayeri, A.; Mason, J.S.; Congreve, M.; Cooke, R.M.; Marshall, F.H. Intracellular allosteric antagonism of the CCR9 receptor. Nature, 2016, 540(7633), 462-465.
[http://dx.doi.org/10.1038/nature20606] [PMID: 27926729]
[32]
Liu, X.; Ahn, S.; Kahsai, A.W.; Meng, K-C.; Latorraca, N.R.; Pani, B.; Venkatakrishnan, A.J.; Masoudi, A.; Weis, W.I.; Dror, R.O.; Chen, X.; Lefkowitz, R.J.; Kobilka, B.K. Mechanism of intracellular allosteric β2AR antagonist revealed by X-ray crystal structure. Nature, 2017, 548(7668), 480-484.
[http://dx.doi.org/10.1038/nature23652] [PMID: 28813418]
[33]
Lu, J.; Byrne, N.; Wang, J.; Bricogne, G.; Brown, F.K.; Chobanian, H.R.; Colletti, S.L.; Di Salvo, J.; Thomas-Fowlkes, B.; Guo, Y.; Hall, D.L.; Hadix, J.; Hastings, N.B.; Hermes, J.D.; Ho, T.; Howard, A.D.; Josien, H.; Kornienko, M.; Lumb, K.J.; Miller, M.W.; Patel, S.B.; Pio, B.; Plummer, C.W.; Sherborne, B.S.; Sheth, P.; Souza, S.; Tummala, S.; Vonrhein, C.; Webb, M.; Allen, S.J.; Johnston, J.M.; Weinglass, A.B.; Sharma, S.; Soisson, S.M. Structural basis for the cooperative allosteric activation of the free fatty acid receptor GPR40. Nat. Struct. Mol. Biol., 2017, 24(7), 570-577.
[http://dx.doi.org/10.1038/nsmb.3417] [PMID: 28581512]
[34]
Zhang, D.; Gao, Z-G.; Zhang, K.; Kiselev, E.; Crane, S.; Wang, J.; Paoletta, S.; Yi, C.; Ma, L.; Zhang, W.; Han, G.W.; Liu, H.; Cherezov, V.; Katritch, V.; Jiang, H.; Stevens, R.C.; Jacobson, K.A.; Zhao, Q.; Wu, B. Two disparate ligand-binding sites in the human P2Y1 receptor. Nature, 2015, 520(7547), 317-321.
[http://dx.doi.org/10.1038/nature14287] [PMID: 25822790]
[35]
Cheng, R.K.Y.; Fiez-Vandal, C.; Schlenker, O.; Edman, K.; Aggeler, B.; Brown, D.G.; Brown, G.A.; Cooke, R.M.; Dumelin, C.E.; Doré, A.S.; Geschwindner, S.; Grebner, C.; Hermansson, N-O.; Jazayeri, A.; Johansson, P.; Leong, L.; Prihandoko, R.; Rappas, M.; Soutter, H.; Snijder, A.; Sundström, L.; Tehan, B.; Thornton, P.; Troast, D.; Wiggin, G.; Zhukov, A.; Marshall, F.H.; Dekker, N. Structural insight into allosteric modulation of protease-activated receptor 2. Nature, 2017, 545(7652), 112-115.
[http://dx.doi.org/10.1038/nature22309] [PMID: 28445455]
[36]
Song, G.; Yang, D.; Wang, Y.; de Graaf, C.; Zhou, Q.; Jiang, S.; Liu, K.; Cai, X.; Dai, A.; Lin, G.; Liu, D.; Wu, F.; Wu, Y.; Zhao, S.; Ye, L.; Han, G.W.; Lau, J.; Wu, B.; Hanson, M.A.; Liu, Z-J.; Wang, M-W.; Stevens, R.C. Human GLP-1 receptor transmembrane domain structure in complex with allosteric modulators. Nature, 2017, 546(7657), 312-315.
[http://dx.doi.org/10.1038/nature22378] [PMID: 28514449]
[37]
Jazayeri, A.; Doré, A.S.; Lamb, D.; Krishnamurthy, H.; Southall, S.M.; Baig, A.H.; Bortolato, A.; Koglin, M.; Robertson, N.J.; Errey, J.C.; Andrews, S.P.; Teobald, I.; Brown, A.J.H.; Cooke, R.M.; Weir, M.; Marshall, F.H. Extra-helical binding site of a glucagon receptor antagonist. Nature, 2016, 533(7602), 274-277.
[http://dx.doi.org/10.1038/nature17414] [PMID: 27111510]
[38]
Ivetac, A.; McCammon, J.A. Mapping the druggable allosteric space of G-protein coupled receptors: a fragment-based molecular dynamics approach. Chem. Biol. Drug Des., 2010, 76(3), 201-217.
[http://dx.doi.org/10.1111/j.1747-0285.2010.01012.x] [PMID: 20626410]
[39]
Miao, Y.; Nichols, S.E.; McCammon, J.A. Mapping of allosteric druggable sites in activation-associated conformers of the M2 muscarinic receptor. Chem. Biol. Drug Des., 2014, 83(2), 237-246.
[http://dx.doi.org/10.1111/cbdd.12233] [PMID: 24112716]
[40]
Caliman, A.D.; Miao, Y.; McCammon, J.A. Mapping the allosteric sites of the A2A adenosine receptor. Chem. Biol. Drug Des., 2018, 91(1), 5-16.
[http://dx.doi.org/10.1111/cbdd.13053] [PMID: 28639411]
[41]
Bartuzi, D.; Kaczor, A.A.; Matosiuk, D. Activation and allosteric modulation of human μ opioid receptor in molecular dynamics. J. Chem. Inf. Model., 2015, 55(11), 2421-2434.
[http://dx.doi.org/10.1021/acs.jcim.5b00280] [PMID: 26517559]
[42]
Bartuzi, D.; Kaczor, A.A.; Matosiuk, D. Interplay between two allosteric sites and their influence on agonist binding in human μ opioid receptor. J. Chem. Inf. Model., 2016, 56(3), 563-570.
[http://dx.doi.org/10.1021/acs.jcim.5b00705] [PMID: 26863088]
[43]
Bartuzi, D.; Kaczor, A.A.; Matosiuk, D. Molecular mechanisms of allosteric probe dependence in μ opioid receptor. J. Biomol. Struct. Dyn., 2019, 37(1), 36-47.
[http://dx.doi.org/10.1080/07391102.2017.1417914] [PMID: 29241414]
[44]
Draper-Joyce, C.J.; Michino, M.; Verma, R.K.; Klein Herenbrink, C.; Shonberg, J.; Kopinathan, A.; Scammells, P.J.; Capuano, B.; Thal, D.M.; Javitch, J.A.; Christopoulos, A.; Shi, L.; Lane, J.R. The structural determinants of the bitopic binding mode of a negative allosteric modulator of the dopamine D2 receptor. Biochem. Pharmacol., 2018, 148, 315-328.
[http://dx.doi.org/10.1016/j.bcp.2018.01.002] [PMID: 29325769]
[45]
Katritch, V.; Fenalti, G.; Abola, E.E.; Roth, B.L.; Cherezov, V.; Stevens, R.C. Allosteric sodium in class A GPCR signaling. Trends Biochem. Sci., 2014, 39(5), 233-244.
[http://dx.doi.org/10.1016/j.tibs.2014.03.002] [PMID: 24767681]
[46]
Kathmann, M.; Flau, K.; Redmer, A.; Tränkle, C.; Schlicker, E. Cannabidiol is an allosteric modulator at mu- and delta-opioid receptors. Naunyn Schmiedebergs Arch. Pharmacol., 2006, 372(5), 354-361.
[http://dx.doi.org/10.1007/s00210-006-0033-x] [PMID: 16489449]
[47]
Rothman, R.B.; Murphy, D.L.; Xu, H.; Godin, J.A.; Dersch, C.M.; Partilla, J.S.; Tidgewell, K.; Schmidt, M.; Prisinzano, T.E.; Salvinorin, A. Salvinorin A: allosteric interactions at the mu-opioid receptor. J. Pharmacol. Exp. Ther., 2007, 320(2), 801-810.
[http://dx.doi.org/10.1124/jpet.106.113167] [PMID: 17060492]
[48]
Shattock, P.; Whiteley, P. Biochemical aspects in autism spectrum disorders: updating the opioid-excess theory and presenting new opportunities for biomedical intervention. Expert Opin. Ther. Targets, 2002, 6(2), 175-183.
[http://dx.doi.org/10.1517/14728222.6.2.175] [PMID: 12223079]
[49]
Lázaro, C.P.; Pondé, M.P.; Rodrigues, L.E.A. Opioid peptides and gastrointestinal symptoms in autism spectrum disorders. Br. J. Psychiatry, 2016, 38(3), 243-246.
[http://dx.doi.org/10.1590/1516-4446-2015-1777] [PMID: 27304256]
[50]
Ohbuchi, K.; Miyagi, C.; Suzuki, Y.; Mizuhara, Y.; Mizuno, K.; Omiya, Y.; Yamamoto, M.; Warabi, E.; Sudo, Y.; Yokoyama, A.; Miyano, K.; Hirokawa, T.; Uezono, Y. Ignavine: a novel allosteric modulator of the μ opioid receptor. Sci. Rep., 2016, 6, 31748.
[http://dx.doi.org/10.1038/srep31748] [PMID: 27530869]
[51]
Ballesteros, J.A.; Weinstein, H. Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in g protein-coupled receptors.In Methods in Neurosciences; Academic Press: San Diego, CA, 1995, Vol. 25, pp. 366-428.
[http://dx.doi.org/10.1016/S1043-9471(05)80049-7]
[52]
Harding, W.W.; Tidgewell, K.; Byrd, N.; Cobb, H.; Dersch, C.M.; Butelman, E.R.; Rothman, R.B.; Prisinzano, T.E. Neoclerodane diterpenes as a novel scaffold for mu opioid receptor ligands. J. Med. Chem., 2005, 48(15), 4765-4771.
[http://dx.doi.org/10.1021/jm048963m] [PMID: 16033256]
[53]
Marmolejo-Valencia, A.F.; Martínez-Mayorga, K. Allosteric modulation model of the mu opioid receptor by herkinorin, a potent not alkaloidal agonist. J. Comput. Aided Mol. Des., 2017, 31(5), 467-482.
[http://dx.doi.org/10.1007/s10822-017-0016-7] [PMID: 28364251]
[54]
Burford, N.T.; Clark, M.J.; Wehrman, T.S.; Gerritz, S.W.; Banks, M.; O’Connell, J.; Traynor, J.R.; Alt, A. Discovery of positive allosteric modulators and silent allosteric modulators of the μ-opioid receptor. Proc. Natl. Acad. Sci. USA, 2013, 110(26), 10830-10835.
[http://dx.doi.org/10.1073/pnas.1300393110] [PMID: 23754417]
[55]
Bisignano, P.; Burford, N.T.; Shang, Y.; Marlow, B.; Livingston, K.E.; Fenton, A.M.; Rockwell, K.; Budenholzer, L.; Traynor, J.R.; Gerritz, S.W.; Alt, A.; Filizola, M. Ligand-based discovery of a new scaffold for allosteric modulation of the μ-opioid receptor. J. Chem. Inf. Model., 2015, 55(9), 1836-1843.
[http://dx.doi.org/10.1021/acs.jcim.5b00388] [PMID: 26347990]
[56]
Burford, N.T.; Livingston, K.E.; Canals, M.; Ryan, M.R.; Budenholzer, L.M.L.; Han, Y.; Shang, Y.; Herbst, J.J.; O’Connell, J.; Banks, M.; Zhang, L.; Filizola, M.; Bassoni, D.L.; Wehrman, T.S.; Christopoulos, A.; Traynor, J.R.; Gerritz, S.W.; Alt, A. Discovery, synthesis, and molecular pharmacology of selective positive allosteric modulators of the δ-opioid receptor. J. Med. Chem., 2015, 58(10), 4220-4229.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00007] [PMID: 25901762]
[57]
Livingston, K.E.; Stanczyk, M.A.; Burford, N.T.; Alt, A.; Canals, M.; Traynor, J.R. Pharmacologic evidence for a putative conserved allosteric site on opioid receptors. Mol. Pharmacol., 2018, 93(2), 157-167.
[http://dx.doi.org/10.1124/mol.117.109561] [PMID: 29233847]
[58]
Livingston, K.E.; Traynor, J.R. Disruption of the Na+ ion binding site as a mechanism for positive allosteric modulation of the mu-opioid receptor. Proc. Natl. Acad. Sci. USA, 2014, 111(51), 18369-18374.
[http://dx.doi.org/10.1073/pnas.1415013111] [PMID: 25489080]
[59]
Yuan, S.; Filipek, S.; Palczewski, K.; Vogel, H. Activation of G-protein-coupled receptors correlates with the formation of a continuous internal water pathway. Nat. Commun., 2014, 5, 4733.
[http://dx.doi.org/10.1038/ncomms5733] [PMID: 25203160]
[60]
Hothersall, J.D.; Torella, R.; Humphreys, S.; Hooley, M.; Brown, A.; McMurray, G.; Nickolls, S.A. Residues W320 and Y328 within the binding site of the μ-opioid receptor influence opiate ligand bias. Neuropharmacology, 2017, 118, 46-58.
[http://dx.doi.org/10.1016/j.neuropharm.2017.03.007] [PMID: 28283391]
[61]
Vaidehi, N.; Bhattacharya, S. Allosteric communication pipelines in G-protein-coupled receptors. Curr. Opin. Pharmacol., 2016, 30, 76-83.
[http://dx.doi.org/10.1016/j.coph.2016.07.010] [PMID: 27497048]
[62]
Wu, G.; Lu, Z.H.; Ledeen, R.W. Interaction of the delta-opioid receptor with GM1 ganglioside: conversion from inhibitory to excitatory mode. Brain Res. Mol. Brain Res., 1997, 44(2), 341-346.
[http://dx.doi.org/10.1016/S0169-328X(96)00281-1] [PMID: 9073176]
[63]
Wang, H-Y.; Burns, L.H. Gbetagamma that interacts with adenylyl cyclase in opioid tolerance originates from a Gs protein. J. Neurobiol., 2006, 66(12), 1302-1310.
[http://dx.doi.org/10.1002/neu.20286] [PMID: 16967511]
[64]
Wang, H-Y.; Frankfurt, M.; Burns, L.H. High-affinity naloxone binding to filamin a prevents mu opioid receptor-Gs coupling underlying opioid tolerance and dependence. PLoS One, 2008, 3(2)e1554
[http://dx.doi.org/10.1371/journal.pone.0001554] [PMID: 18253501]
[65]
Largent-Milnes, T.M.; Guo, W.; Wang, H-Y.; Burns, L.H.; Vanderah, T.W. Oxycodone plus ultra-low-dose naltrexone attenuates neuropathic pain and associated mu-opioid receptor-Gs coupling. J. Pain, 2008, 9(8), 700-713.
[http://dx.doi.org/10.1016/j.jpain.2008.03.005] [PMID: 18468954]
[66]
Wang, D.; Zeng, J.; Li, Q.; Huang, J.; Couture, R.; Hong, Y. Contribution of adrenomedullin to the switch of G protein-coupled μ-opioid receptors from Gi to Gs in the spinal dorsal horn following chronic morphine exposure in rats. Br. J. Pharmacol., 2016, 173(7), 1196-1207.
[http://dx.doi.org/10.1111/bph.13419] [PMID: 26750148]
[67]
Chakrabarti, S.; Chang, A.; Liu, N-J.; Gintzler, A.R. Chronic opioid treatment augments caveolin-1 scaffolding: relevance to stimulatory μ-opioid receptor adenylyl cyclase signaling. J. Neurochem., 2016, 139(5), 737-747.
[http://dx.doi.org/10.1111/jnc.13852] [PMID: 27726130]
[68]
Chakrabarti, S.; Liu, N-J.; Gintzler, A.R. Phosphorylation of unique C-terminal sites of the Mu-opioid receptor variants 1B2 and 1C1 influences their Gs association following chronic morphine. J. Neurochem., 2019, 152(4), 449-467.
[PMID: 31479519]
[69]
Yuan, S.; Vogel, H.; Filipek, S. The role of water and sodium ions in the activation of the μ-opioid receptor. Angew. Chem. Int. Ed. Engl., 2013, 52(38), 10112-10115.
[http://dx.doi.org/10.1002/anie.201302244] [PMID: 23904331]
[70]
Selent, J.; Sanz, F.; Pastor, M.; De Fabritiis, G. Induced effects of sodium ions on dopaminergic G-protein coupled receptors. PLOS Comput. Biol., 2010, 6(8), 6.
[http://dx.doi.org/10.1371/journal.pcbi.1000884] [PMID: 20711351]
[71]
Fenalti, G.; Giguere, P.M.; Katritch, V.; Huang, X-P.; Thompson, A.A.; Cherezov, V.; Roth, B.L.; Stevens, R.C. Molecular control of δ-opioid receptor signalling. Nature, 2014, 506(7487), 191-196.
[http://dx.doi.org/10.1038/nature12944] [PMID: 24413399]
[72]
Ye, L.; Neale, C.; Sljoka, A.; Lyda, B.; Pichugin, D.; Tsuchimura, N.; Larda, S.T.; Pomès, R.; García, A.E.; Ernst, O.P.; Sunahara, R.K.; Prosser, R.S. Mechanistic insights into allosteric regulation of the A2A adenosine G protein-coupled receptor by physiological cations. Nat. Commun., 2018, 9(1), 1372.
[http://dx.doi.org/10.1038/s41467-018-03314-9] [PMID: 29636462]
[73]
Hu, X.; Provasi, D.; Ramsey, S.; Filizola, M. Mechanism of μ-opioid receptor-magnesium interaction and positive allosteric modulation. Biophys. J., 2019, 118(4), 909-921.
[PMID: 31676132]
[74]
Meguro, Y.; Miyano, K.; Hirayama, S.; Yoshida, Y.; Ishibashi, N.; Ogino, T.; Fujii, Y.; Manabe, S.; Eto, M.; Nonaka, M.; Fujii, H.; Ueta, Y.; Narita, M.; Sata, N.; Yada, T.; Uezono, Y. Neuropeptide oxytocin enhances μ opioid receptor signaling as a positive allosteric modulator. J. Pharmacol. Sci., 2018, 137(1), 67-75.
[http://dx.doi.org/10.1016/j.jphs.2018.04.002] [PMID: 29716811]
[75]
Shang, Y.; Yeatman, H.R.; Provasi, D.; Alt, A.; Christopoulos, A.; Canals, M.; Filizola, M. Proposed Mode of Binding and Action of Positive Allosteric Modulators at Opioid Receptors. ACS Chem. Biol., 2016, 11(5), 1220-1229.
[http://dx.doi.org/10.1021/acschembio.5b00712] [PMID: 26841170]
[76]
Schrage, R.; Kostenis, E. Functional selectivity and dualsteric/bitopic GPCR targeting. Curr. Opin. Pharmacol., 2017, 32, 85-90.
[http://dx.doi.org/10.1016/j.coph.2016.12.001] [PMID: 28027487]
[77]
Portoghese, P.S. Bivalent ligands and the message-address concept in the design of selective opioid receptor antagonists. Trends Pharmacol. Sci., 1989, 10(6), 230-235.
[http://dx.doi.org/10.1016/0165-6147(89)90267-8] [PMID: 2549665]
[78]
Bird, M.F.; Vardanyan, R.S.; Hruby, V.J.; Calò, G.; Guerrini, R.; Salvadori, S.; Trapella, C.; McDonald, J.; Rowbotham, D.J.; Lambert, D.G. Development and characterisation of novel fentanyl-delta opioid receptor antagonist based bivalent ligands. Br. J. Anaesth., 2015, 114(4), 646-656.
[http://dx.doi.org/10.1093/bja/aeu454] [PMID: 25680364]
[79]
Qian, M.; Vasudevan, L.; Huysentruyt, J.; Risseeuw, M.D.P.; Stove, C.; Vanderheyden, P.M.L.; Van Craenenbroeck, K.; Van Calenbergh, S. Design, synthesis, and biological evaluation of bivalent ligands targeting dopamine d2 -like receptors and the μ-opioid receptor. ChemMedChem, 2018, 13(9), 944-956.
[http://dx.doi.org/10.1002/cmdc.201700787] [PMID: 29451744]
[80]
Zaidi, S.A.; Arnatt, C.K.; He, H.; Selley, D.E.; Mosier, P.D.; Kellogg, G.E.; Zhang, Y. Binding mode characterization of 6α- and 6β-N-heterocyclic substituted naltrexamine derivatives via docking in opioid receptor crystal structures and site-directed mutagenesis studies: application of the ‘message-address’ concept in development of mu opioid receptor selective antagonists. Bioorg. Med. Chem., 2013, 21(21), 6405-6413.
[http://dx.doi.org/10.1016/j.bmc.2013.08.042] [PMID: 24055076]
[81]
Wang, H.; Reinecke, B.A.; Zhang, Y. Computational insights into the molecular mechanisms of differentiated allosteric modulation at the mu opioid receptor by structurally similar bitopic modulators. J. Comput. Aided Mol. Des., 2020, 118(4), 909-921.
[http://dx.doi.org/10.1007/s10822-020-00309-x] [PMID: 32193867]
[82]
Obeng, S.; Wang, H.; Jali, A.; Stevens, D.L.; Akbarali, H.I.; Dewey, W.L.; Selley, D.E.; Zhang, Y. Structure-activity relationship studies of 6α- and 6β-indolylacetamidonaltrexamine derivatives as bitopic mu opioid receptor modulators and elaboration of the “message-address concept” to comprehend their functional conversion. ACS Chem. Neurosci., 2019, 10(3), 1075-1090.
[http://dx.doi.org/10.1021/acschemneuro.8b00349] [PMID: 30156823]
[83]
Scheerer, J.R.; Lawrence, J.F.; Wang, G.C.; Evans, D.A. Asymmetric synthesis of salvinorin A, a potent κ opioid receptor agonist. J. Am. Chem. Soc., 2007, 129(29), 8968-8969.
[http://dx.doi.org/10.1021/ja073590a] [PMID: 17602636]
[84]
Nozawa, M.; Suka, Y.; Hoshi, T.; Suzuki, T.; Hagiwara, H. Total synthesis of the hallucinogenic neoclerodane diterpenoid salvinorin A. Org. Lett., 2008, 10(7), 1365-1368.
[http://dx.doi.org/10.1021/ol800101v] [PMID: 18311991]
[85]
Hagiwara, H.; Suka, Y.; Nojima, T.; Hoshi, T.; Suzuki, T. Second-generation synthesis of salvinorin A. Tetrahedron, 2009, 65, 4820-4825.
[http://dx.doi.org/10.1016/j.tet.2009.04.053]
[86]
Line, N.J.; Burns, A.C.; Butler, S.C.; Casbohm, J.; Forsyth, C.J. Total synthesis of (-)-salvinorin A. Chemistry, 2016, 22(50), 17983-17986.
[http://dx.doi.org/10.1002/chem.201604853] [PMID: 27758012]
[87]
Mechoulam, R.; Gaoni, Y. A total synthesis of dl-δ1-tetrahydrocannabinol, the active constituent of hashish1. J. Am. Chem. Soc., 1965, 87, 3273-3275.
[http://dx.doi.org/10.1021/ja01092a065] [PMID: 14324315]
[88]
Crombie, L.; Crombie, W.M.L.; Jamieson, S.V.; Palmer, C.J. Acid-catalysed terpenylations of olivetol in the synthesis of cannabinoids. J. Chem. Soc., Perkin Trans. 1, 1988, 1243-1250.
[http://dx.doi.org/10.1039/p19880001243]
[89]
Petrzilka, T.; Haefliger, W.; Sikemeier, C.; Ohloff, G.; Eschenmoser, A. Synthese und chiralität des (-)-cannabidiols. Helv. Chim. Acta, 1967, 50(2), 719-723.
[http://dx.doi.org/10.1002/hlca.19670500235] [PMID: 5587099]
[90]
Razdan, R.K.; Dalzell, H.C.; Handrick, G.R. Hashish. A simple one-step synthesis of (-)-delta1-tetrahydrocannabinol (THC) from p-mentha-2,8-dien-1-ol and olivetol. J. Am. Chem. Soc., 1974, 96(18), 5860-5865.
[http://dx.doi.org/10.1021/ja00825a026] [PMID: 4413630]
[91]
Stoss, P.; Merrath, P. a useful approach towards δ9-tetrahydrocannabinol. Synlett, 1991, 1991, 553-554.
[http://dx.doi.org/10.1055/s-1991-20793]
[92]
Chan, T.H.; Chaly, T. A biomimetic synthesis of δ1-tetrahydrocannabinol. Tetrahedron Lett., 1982, 23, 2935-2938.
[http://dx.doi.org/10.1016/S0040-4039(00)87498-5]
[93]
Childers, W.E.; Pinnick, H.W. A novel approach to the synthesis of the cannabinoids. J. Org. Chem., 1984, 49, 5276-5277.
[http://dx.doi.org/10.1021/jo00200a061]
[94]
William, A.D.; Kobayashi, Y. Synthesis of tetrahydrocannabinols based on an indirect 1,4-addition strategy. J. Org. Chem., 2002, 67(25), 8771-8782.
[http://dx.doi.org/10.1021/jo020457m] [PMID: 12467388]
[95]
Evans, D.A.; Shaughnessy, E.A.; Barnes, D.M. Cationic bis(oxazoline)cu(ii) lewis acid catalysts. application to the asymmetric synthesis of ent-δ1-tetrahydrocannabinol. Tetrahedron Lett., 1997, 38, 3193-3194.
[http://dx.doi.org/10.1016/S0040-4039(97)00609-6]
[96]
Trost, B.M.; Dogra, K. Synthesis of (-)-Δ9-trans-tetrahydrocannabinol: stereocontrol via Mo-catalyzed asymmetric allylic alkylation reaction. Org. Lett., 2007, 9(5), 861-863.
[http://dx.doi.org/10.1021/ol063022k] [PMID: 17266321]
[97]
Pearson, E.L.; Kanizaj, N.; Willis, A.C.; Paddon-Row, M.N.; Sherburn, M.S. Experimental and computational studies into an ATPH-promoted exo-selective IMDA reaction: a short total synthesis of Δ9-THC. Chemistry, 2010, 16(28), 8280-8284.
[http://dx.doi.org/10.1002/chem.201001176] [PMID: 20589855]
[98]
Cheng, L-J.; Xie, J-H.; Chen, Y.; Wang, L-X.; Zhou, Q-L. Enantioselective total synthesis of (-)-Δ8-THC and (-)-Δ9-THC via catalytic asymmetric hydrogenation and S(N)Ar cyclization. Org. Lett., 2013, 15(4), 764-767.
[http://dx.doi.org/10.1021/ol303351y] [PMID: 23346909]
[99]
Dethe, D.H.; Erande, R.D.; Mahapatra, S.; Das, S.; Kumar, B.V. Protecting group free enantiospecific total syntheses of structurally diverse natural products of the tetrahydrocannabinoid family. Chem. Commun. (Camb.), 2015, 51(14), 2871-2873.
[http://dx.doi.org/10.1039/C4CC08562K] [PMID: 25582920]
[100]
Ametovski, A.; Lupton, D.W. Enantioselective total synthesis of (-)-δ9-tetrahydrocannabinol via n-heterocyclic carbene catalysis. Org. Lett., 2019, 21(4), 1212-1215.
[http://dx.doi.org/10.1021/acs.orglett.9b00198] [PMID: 30726088]
[101]
Minuti, L.; Ballerini, E. High-pressure access to the Δ9-cis- and Δ9-trans-tetrahydrocannabinols family. J. Org. Chem., 2011, 76(13), 5392-5403.
[http://dx.doi.org/10.1021/jo200796b] [PMID: 21563759]
[102]
Schafroth, M.A.; Zuccarello, G.; Krautwald, S.; Sarlah, D.; Carreira, E.M. Stereodivergent total synthesis of Δ9-tetrahydrocannabinols. Angew. Chem. Int. Ed. Engl., 2014, 53(50), 13898-13901.
[http://dx.doi.org/10.1002/anie.201408380] [PMID: 25303495]
[103]
Shultz, Z.P.; Lawrence, G.A.; Jacobson, J.M.; Cruz, E.J.; Leahy, J.W. Enantioselective total synthesis of cannabinoids-a route for analogue development. Org. Lett., 2018, 20(2), 381-384.
[http://dx.doi.org/10.1021/acs.orglett.7b03668] [PMID: 29293352]
[104]
Lewis, J.W.; Readhead, M.J.; Selby, I.A.; Smith, A.C.B.; Young, C.A. Novel analgesics and molecular rearrangements in the morphine–thebaine group. part xix. further diels–alder adducts of thebaine. J. Chem. Soc. C, 1971, 1158-1161.
[http://dx.doi.org/10.1039/J39710001158]
[105]
Husbands, S.M.; Lewis, J.W. Morphinan cyclic imines and pyrrolidines containing a constrained phenyl group: high affinity opioid agonists. Bioorg. Med. Chem. Lett., 1995, 5, 2969-2974.
[http://dx.doi.org/10.1016/0960-894X(95)00522-1]
[106]
Okamoto, T.; Sanjoh, H.; Yamaguchi, K.; Yoshino, A.; Kaneko, T.; Iitaka, Y.; Sakai, S. The structure of ignavine. Chem. Pharm. Bull. (Tokyo), 1982, 30, 4600-4601.
[http://dx.doi.org/10.1248/cpb.30.4600]
[107]
Mori, T.; Kuzumaki, N.; Arima, T.; Narita, M.; Tateishi, R.; Kondo, T.; Hamada, Y.; Kuwata, H.; Kawata, M.; Yamazaki, M.; Sugita, K.; Matsuzawa, A.; Baba, K.; Yamauchi, T.; Higashiyama, K.; Nonaka, M.; Miyano, K.; Uezono, Y.; Narita, M. Usefulness for the combination of G-protein- and β-arrestin-biased ligands of μ-opioid receptors: Prevention of antinociceptive tolerance. Mol. Pain, 2017, 131744806917740030
[http://dx.doi.org/10.1177/1744806917740030] [PMID: 29056067]
[108]
Cahill, C.M.; Ong, E. Evidence and function relevance of native DOR-MOR heteromers. Handb. Exp. Pharmacol., 2018, 247, 115-127.
[http://dx.doi.org/10.1007/164_2018_112] [PMID: 29633181]
[109]
Bushlin, I.; Gupta, A.; Stockton, S.D., Jr; Miller, L.K.; Devi, L.A. Dimerization with cannabinoid receptors allosterically modulates delta opioid receptor activity during neuropathic pain. PLoS One, 2012, 7(12)e49789
[http://dx.doi.org/10.1371/journal.pone.0049789] [PMID: 23272051]
[110]
Stoeber, M.; Jullié, D.; Lobingier, B.T.; Laeremans, T.; Steyaert, J.; Schiller, P.W.; Manglik, A.; von Zastrow, M. A genetically encoded biosensor reveals location bias of opioid drug action. Neuron, 2018, 98(5), 963-976.
[http://dx.doi.org/10.1016/j.neuron.2018.04.021] [PMID: 29754753]