Development of Sustained Release Oseltamivir Phosphate Dry Powder Inhaler: In-Vitro Characterization and In-Vivo Toxicological Studies

Page: [703 - 710] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Background: Oseltamivir Phosphate (OP) is an ethyl ester prodrug prescribed for the treatment of influenza virus infection. Current marketed formulations of OP have been observed to be supplemented with an adverse effect during post-marketing surveillance. These prerequisites are sufficed by developing a sustained release Dry Powder for Inhalation (DPI).

Objective: The objective of the present study was to develop OP-DPI by an innovative formulation approach comprising of Immediate (IR) and Sustained (SR) Release portions.

Methods: DPI formulation comprising IR and SR portions were prepared by spray drying technique using Hydroxy Propyl Methyl Cellulose (HPMC) as the rate-controlling polymer for SR portion. The spray-dried product was further characterized for various pharmaco-technical, in-vitro and in-vivo parameters.

Results: OP-DPI showed a burst release of 49% within 15 min further sustaining the drug release up to 9 hrs. The in-vitro aerodynamic performance of OP-DPI showed maximum deposition at stage 3 and Fine Particle Dose (FPD) of 1.08 mg indicating deposition in the upper respiratory tract. Solid-state characterization by DSC and XRD indicated the partial amorphization of OP due to spray drying. In-vivo toxicological examination revealed no sign of inflammation, indicating the safety of the developed formulation. Accelerated stability study as per ICH guidelines displayed no significant change in the solid-state characterization and drug-related performance of OP-DPI.

Conclusion: Prepared novel and scalable OP-DPI may have the potential to overcome the problems associated with existing marketed dosage forms of OP. Further, localized drug delivery of the antiviral drug through the pulmonary route might be clinically beneficial in controlling the viral proliferation.

Keywords: Sustained pulmonary delivery, HPMC, L-leucine, particle engineering, spray drying, FPD.

Graphical Abstract

[1]
Hoffmann, C. Treatment and prophylaxis. Influenza Report, 2019, 225. http://www.influenzareport.com/ir/tr.htm
[2]
Moscona, A. Neuraminidase inhibitors for influenza. N. Engl. J. Med., 2005, 353(13), 1363-1373.
[http://dx.doi.org/10.1056/NEJMra050740] [PMID: 16192481]
[3]
Davies, B.E. Pharmacokinetics of oseltamivir: an oral antiviral for the treatment and prophylaxis of influenza in diverse populations. J. Antimicrob. Chemother., 2010, 65(Suppl. 2), ii5-ii10.
[http://dx.doi.org/10.1093/jac/dkq015] [PMID: 20215135]
[4]
Jaubert, F.; Monnet, J.P.; Danel, C.; Chretien, J.; Nezelof, C. The location of non-specific esterase in human lung macrophages. An ultrastructural study. Histochemistry, 1978, 59(2), 141-147.
[http://dx.doi.org/10.1007/BF00518509] [PMID: 738911]
[5]
Tang, Y.; Zhang, H.; Lu, X.; Jiang, L.; Xi, X.; Liu, J.; Zhu, J. Development and evaluation of a dry powder formulation of liposome-encapsulated oseltamivir phosphate for inhalation. Drug Deliv., 2015, 22(5), 608-618.
[http://dx.doi.org/10.3109/10717544.2013.863526] [PMID: 24299495]
[6]
Shin, J.S.; Ku, K.B.; Jang, Y.; Yoon, Y.S.; Shin, D.; Kwon, O.S.; Go, Y.Y.; Kim, S.S.; Bae, M.A.; Kim, M. Comparison of anti-influenza virus activity and pharmacokinetics of oseltamivir free base and oseltamivir phosphate. J. Microbiol., 2017, 55(12), 979-983.
[http://dx.doi.org/10.1007/s12275-017-7371-x] [PMID: 29214495]
[7]
Taubenberger, J. Morens, D. NIH public access. Annu. Rev. Pathol., 2008, 23(1), 1-7.
[http://dx.doi.org/10.1038/jid.2014.371]
[8]
Andreani, T.; Fangueiro, J.F.; Jose, S.; Santini, A.; Silva, A.M.; Souto, E.B. Hydrophilic polymers for modified-release nanoparticles: a review of mathematical modelling for pharmacokinetic analysis. Curr. Pharm. Des., 2015, 21(22), 3090-3096.
[http://dx.doi.org/10.2174/1381612821666150531163617] [PMID: 26027576]
[9]
Souto, E.B.; Souto, S.B.; Campos, J.R.; Severino, P.; Pashirova, T.N.; Zakharova, L.Y.; Silva, A.M.; Durazzo, A.; Lucarini, M.; Izzo, A.A.; Santini, A. Nanoparticle delivery systems in the treatment of diabetes complications. Molecules, 2019, 24(23), 4209.
[http://dx.doi.org/10.3390/molecules24234209] [PMID: 31756981]
[10]
Das, S.; Tucker, I.; Stewart, P. Inhaled dry powder formulations for treating tuberculosis. Curr. Drug Deliv., 2015, 12(1), 26-39.
[http://dx.doi.org/10.2174/1567201811666140716123050] [PMID: 25030114]
[11]
Islam, N.; Gladki, E. Dry Powder Inhalers (DPIs)--a review of device reliability and innovation. Int. J. Pharm., 2008, 360(1-2), 1-11.
[http://dx.doi.org/10.1016/j.ijpharm.2008.04.044] [PMID: 18583072]
[12]
Mansour, H.M.; Rhee, Y.S.; Wu, X. Nanomedicine in pulmonary delivery. Int. J. Nanomedicine, 2009, 4, 299-319.
[http://dx.doi.org/10.2147/IJN.S4937] [PMID: 20054434]
[13]
Harush-Frenkel, O.; Bivas-Benita, M.; Nassar, T.; Springer, C.; Sherman, Y.; Avital, A.; Altschuler, Y.; Borlak, J.; Benita, S. A safety and tolerability study of differently-charged nanoparticles for local pulmonary drug delivery. Toxicol. Appl. Pharmacol., 2010, 246(1-2), 83-90.
[http://dx.doi.org/10.1016/j.taap.2010.04.011] [PMID: 20417650]
[14]
Couet, William Treatment of viral infections by pulmonary delivery of oseltamivir carboxylate. WO2017202885A1, 2017.
[15]
Kousar, S. Development of RP-HPLC method for the estimation of oseltamivir in pharmaceutical dosage form. Indian J. Res. Pharm. Biotechnol., 2017, 5(5), 345-349.
[16]
Meghana, K.; Omkar, M.; Suraj, M.; Varsha, B.; Pravin, C. Formulation and characterisation of chitosan based microspheres of salbutamol sulphate dry powder inhaler formulation. J. Drug Deliv. Ther., 2012, 2(5), 37-41.
[17]
Simon, A.; Amaro, M.I.; Cabral, L.M.; Healy, A.M.; de Sousa, V.P. Development of a novel dry powder inhalation formulation for the delivery of rivastigmine hydrogen tartrate. Int. J. Pharm., 2016, 501(1-2), 124-138.
[http://dx.doi.org/10.1016/j.ijpharm.2016.01.066] [PMID: 26836711]
[18]
Saeed, H.; Salem, H.F.; Rabea, H.; Abdelrahim, M.E.A. Effect of human error, inhalation flow, and inhalation volume on dose delivery from Ellipta® dry-powder inhaler. J. Pharm. Innov., 2019, 14, 239-244.
[http://dx.doi.org/10.1007/s12247-018-9352-y]
[19]
Patil-Gadhe, A.; Kyadarkunte, A.; Patole, M.; Pokharkar, V. Montelukast-loaded nanostructured lipid carriers: part II pulmonary drug delivery and in vitro-in vivo aerosol performance. Eur. J. Pharm. Biopharm., 2014, 88(1), 169-177.
[http://dx.doi.org/10.1016/j.ejpb.2014.07.007] [PMID: 25078860]
[20]
Ooi, J.; Gill, C.; Young, P.M.; Traini, D. The effects of loaded carrier mass and formulation mass on aerosolization efficiency in dry powder inhaler devices. Curr. Drug Deliv., 2015, 12(1), 40-46.
[http://dx.doi.org/10.2174/1567201811666140822113207] [PMID: 25146438]
[21]
Shahiwala, A.; Misra, A. A preliminary pharmacokinetic study of liposomal leuprolide dry powder inhaler: a technical note. AAPS PharmSciTech, 2005, 6(3), E482-E486.
[http://dx.doi.org/10.1208/pt060360] [PMID: 16354008]
[22]
Patil-Gadhe, A.A.; Kyadarkunte, A.Y.; Pereira, M.; Jejurikar, G.; Patole, M.S.; Risbud, A.; Pokharkar, V.B. Rifapentine-proliposomes for inhalation: in vitro and in vivo toxicity. Toxicol. Int., 2014, 21(3), 275-282.
[http://dx.doi.org/10.4103/0971-6580.155361] [PMID: 25948966]
[23]
International conference on harmonisation of technical requirements for registration of pharmaceuticals for human use. 2019.Jun 26.. https://www.ich.org/products/guidelines/quality/qualitysingle/article/stability-testing-of-new-drug-substances-andproducts.html
[24]
Rowe, R.; Shaesky, P.; Quinn, M. Handbook of Pharmaceutical Excipients, 6th ed; Pharmaceutical Press, 2009.
[25]
Oh, C.M.; Heng, P.W.S.; Chan, L.W. Influence of hydroxypropyl methylcellulose on metronidazole crystallinity in spray-congealed polyethylene glycol microparticles and its impact with various additives on metronidazole release. AAPS PharmSciTech, 2015, 16(6), 1357-1367.
[http://dx.doi.org/10.1208/s12249-015-0320-2] [PMID: 25933626]
[26]
Deshmukh, R.K.; Naik, J.B. Diclofenac sodium-loaded Eudragit® microspheres: optimization using statistical experimental design. J. Pharm. Innov., 2013, 8(4), 276-287.
[http://dx.doi.org/10.1007/s12247-013-9167-9]
[27]
Microspheres, S.D.L. Asian J. Curr. Eng. Maths, 2014, 4(1), 1-7.
[http://dx.doi.org/10.15520/jpro.2014.vol4.iss1.1]
[28]
Kundawala, A.J.; Patel, V.A.; Patel, H.V.; Choudhary, D. Isoniazid loaded chitosan microspheres for pulmonary delivery : preparation and characterization. Pelagia Res. Libr., 2011, 2(5), 88-97.
[29]
Mali, A.J.; Pawar, A.P.; Purohit, R.N. Development of budesonide loaded biopolymer based dry powder inhaler: optimization, in vitro deposition, and cytotoxicity study. J. Pharm. (Cairo), 2014, 2014, 795371
[http://dx.doi.org/10.1155/2014/795371] [PMID: 26556201]
[30]
Al-Shammari, B.; Khalifa, M.; Bakheet, S.A.; Yasser, M. A mechanistic study on the amiodarone-induced pulmonary toxicity. Oxid. Med. Cell. Longev., 2016, 20166265853
[http://dx.doi.org/10.1155/2016/6265853] [PMID: 26933474]
[31]
Owoeye, O.; Edem, F.V.; Akinyoola, B.S.; Rahaman, S.; Akang, E.E.; Arinola, G.O. Histological changes in liver and lungs of rats exposed to dichlorvos before and after vitamin supplementation. Eur. J. Anat., 2012, 16(3), 190-198.
[32]
Aa, B.; Al-shammari, B.; Khalifa, M.; Bakheet, S.A.; Yasser, M.; Bhavya, M.V.; Gowda, D.V.; Srivastava, A. Stability testing of drugs. Int. J. Pharm., 2016, 2(5), 1-7.
[http://dx.doi.org/10.1016/j.ijpharm.2008.04.044]
[33]
Mali, A.J.; Pawar, A.P.; Bothiraja, C. Improved lung delivery of budesonide from biopolymer based dry powder inhaler through natural inhalation of rat. Mater. Technol., 2014, 29(6), 350-357.
[http://dx.doi.org/10.1179/1753555714Y.0000000163]
[34]
Filipović-Grcić, J.; Perissutti, B.; Moneghini, M.; Voinovich, D.; Martinac, A.; Jalšenjak, I. Spray-dried carbamazepine-loaded chitosan and HPMC microspheres: preparation and characterisation. J. Pharm. Pharmacol., 2003, 55(7), 921-931.
[http://dx.doi.org/10.1211/0022357021503] [PMID: 12906749]
[35]
SandhyaRani, S.; Manjunatha, M.; Sannappa, J.; Demappad, T. Studies of hydrogen bond between HPMC doped CdCl2 polymer using FTIR technique. Materials Today: Proc., 2018, 5(10), 22543-22546.
[36]
Selomulya, C.; Liu, W.; Wu, W.D.; Chen, X.D. Uniform Chitosan microparticles prepared by a novel spray-drying technique. Int. J. Chem. Eng., 2011, 2011, e267218
[http://dx.doi.org/10.1155/2011/267218]