Seeds of Mung Bean (Vigna radiata (L.) R.Wilczek): Taxonomy, Phytochemistry, Medicinal Uses and Pharmacology

Page: [220 - 233] Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

Background: Seeds of Mung bean (Vigna radiata (L.) R.Wilczek) have been recognized as a 'Green pearl' of Asian cuisine due to abundance of dietary fibres, protein, minerals,vitamins and wide variety of bioactive agents.

Methods: Literature has been collected through SciFinder, Web of Science, Google Scholar, Pubmed, and a library. This review shares updated information on the botany, distribution, health benefits, phytochemistry and pharmacology of Mung bean seeds.

Results: Bioactive components of mung bean seeds exhibited a wide array of activities such as anticancer, antihyperlipidemic, antihypertensive, antidiabetic, anti-microbial, antioxidant, treatment of alcoholism, reducing obesity, increasing muscular strength, rheumatism, piles, liver and neurological diseases. This curative potential highlighted its various beneficial outcomes in the field of drug research and increasing scientific interest in the identification of bioactive compounds responsible for various pharmacological activities. This legume is gaining importance for its use in the pharmaceutical, food and cosmetic products.

Conclusion: Existing literature authenticates the potential benefits of mung bean seeds from nutritional as well as medicinal perspective. This food grain needs to be explored for identification, isolation, and characterization of bioactive compounds against varied ailments.

Keywords: Mung Bean, botany, phytochemistry, nutritional legume, food nutrient, pantothenic acid.

Graphical Abstract

[1]
Doyle, J.J. Phylogeny of the Legume Family: An Approach to Understanding the Origins of Nodulation; Annual Review of Ecology and Systematics. Annual Reviews Inc., 1994, pp. 325-349.
[2]
NAS(National Academy of Sciences). Tropical Legumes: Resources for the future; Washington DC, 1979, pp. 300-330.
[3]
Vigna radiata - ILDIS LegumeWeb. Available from: https://ildis.org/cgi-bin/Araneus.pl [Accessed Mar 10, 2020].
[4]
Wilson, K.A. Proteinases involved in the degradation of trypsin inhibitor in germinating of Mung beans. Acta Biochim Pol., 1983, 30(2), 139-48.
[5]
Ramos-Ruiz, R.; Poirot, E.; Flores-Mosquera, M. GABA, a non-protein amino acid ubiquitous in food matrices. Cogent Food Agric., 2018, 4(1)
[http://dx.doi.org/10.1080/23311932.2018.1534323]
[6]
Tang, D.; Dong, Y.; Ren, H.; Li, L.; He, C. A review of phytochemistry, metabolite changes, and medicinal uses of the common food mung bean and its sprouts (Vigna radiata). Chem. Cent. J., 2014, 8(1), 4.
[http://dx.doi.org/10.1186/1752-153X-8-4] [PMID: 24438453]
[7]
Liyanage, R.; Kiramage, C.; Visvanathan, R.; Jayathilake, C.; Weththasinghe, P.; Bangamuwage, R.; Chaminda Jayawardana, B.; Vidanarachchi, J. Hypolipidemic and hypoglycemic potential of raw, boiled, and sprouted mung beans (Vigna Radiata L. Wilczek) in Rats. J. Food Biochem., 2018, 42(1)
[http://dx.doi.org/10.1111/jfbc.12457]
[8]
Thompson, E.W. The amino acid sequence of Phaseolus aureus L, (Mung -Bean) Cytochrome C. Biochem. J., 1969, 183-192.
[9]
Carbonaro, M.; Maselli, P.; Nucara, A. Structural aspects of legume proteins and nutraceutical properties. Food Res. Int., 2015, 76
[http://dx.doi.org/10.1016/j.foodres.2014.11.007]
[10]
Shi, Z.; Yao, Y.; Zhu, Y.; Ren, G. Nutritional composition and antioxidant activity of twenty mung bean cultivars in China. Crop J., 2016, 4(5), 398-406.
[http://dx.doi.org/10.1016/j.cj.2016.06.011]
[11]
Mitra, R.; Mitchell, B.; Agricola, S.; Gray, C.; Baskaran, K.; Morley, D.; Muralitharan, S. Medicinal Plants of India; , 2007, Vol. 11, .
[12]
Akpapunam, M. Mung Bean (Vigna radiata (L.) Wilczek). In: Food and Feed from Legumes and Oilseeds; Springer US, 1996; pp. 209-215.
[13]
Dahiya, P.K.; Linnemann, A.R.; Van Boekel, M.A.J.S.; Khetarpaul, N.; Grewal, R.B.; Nout, M.J.R. Mung bean: Technological and nutritional potential. Crit. Rev. Food Sci. Nutr., 2015, 55(5), 670-688.
[http://dx.doi.org/10.1080/10408398.2012.671202] [PMID: 24915360]
[14]
Cao, D.; Li, H.; Yi, J.; Zhang, J.; Che, H.; Cao, J.; Yang, L.; Zhu, C.; Jiang, W. Antioxidant properties of the mung bean flavonoids on alleviating heat stress. PLoS One, 2011, 6(6), e21071.
[http://dx.doi.org/10.1371/journal.pone.0021071] [PMID: 21695166]
[15]
Sosulski, F.W.; Dabrowski, K.J. Composition of free and hydrolyzable phenolic acids in the flours and hulls of ten legume species. J. Agric. Food Chem., 1984, 32(1), 131-133.
[http://dx.doi.org/10.1021/jf00121a033]
[16]
Bai, Y.; Chang, J.; Xu, Y.; Cheng, D.; Liu, H.; Zhao, Y.; Yu, Z. Antioxidant and myocardial preservation activities of natural phytochemicals from mung bean (Vigna radiata L.) Seeds. J. Agric. Food Chem., 2016, 64(22), 4648-4655.
[http://dx.doi.org/10.1021/acs.jafc.6b01538] [PMID: 27184346]
[17]
Hou, D.; Yousaf, L.; Xue, Y.; Hu, J.; Wu, J.; Hu, X.; Feng, N.; Shen, Q. Mung Bean (Vigna Radiata L.) bioactive polyphenols, polysaccharides, peptides, and health benefits. Nutrients, 2019,
[18]
Ganesan, K.; Xu, B. A critical review on phytochemical profile and health promoting effects of mung bean (Vigna radiata). Food Sci. Hum. Wellness, 2018, 7(1), 11-33.
[http://dx.doi.org/10.1016/j.fshw.2017.11.002]
[19]
Lambrides, C.J.; Godwin, I.D. Mungbean. In: Pulses, Sugar and Tuber Crops; 69-90.
[20]
Zhang, J.; Liu, B.; Li, J.; Zhang, L.; Wang, Y.; Zheng, H.; Lu, M.; Chen, J. Hsf and Hsp gene families in Populus: Genome-wide identification, organization and correlated expression during development and in stress responses. BMC Genomics, 2015, 16(1), 181.
[http://dx.doi.org/10.1186/s12864-015-1398-3] [PMID: 25887520]
[21]
Wang, H.X.; Ng, T.B. Isolation and characterization of an antifungal peptide with antiproliferative activity from seeds of Phaseolus vulgaris cv. ‘Spotted Bean’. Appl. Microbiol. Biotechnol., 2007, 74(1), 125-130.
[http://dx.doi.org/10.1007/s00253-006-0650-9] [PMID: 17177050]
[22]
Kudre, T.G.; Benjakul, S.; Kishimura, H. Comparative study on chemical compositions and properties of protein isolates from mung bean, black bean and bambara groundnut. J. Sci. Food Agric., 2013, 93(10), 2429-2436.
[http://dx.doi.org/10.1002/jsfa.6052] [PMID: 23400865]
[23]
Mubarak, A.E. Nutritional composition and antinutritional factors of mung bean seeds (Phaseolus aureus) as affected by some home traditional processes. Food Chem., 2005, 89(4), 489-495.
[http://dx.doi.org/10.1016/j.foodchem.2004.01.007]
[24]
Prokudina, E.A.; Havlíček, L.; Al-Maharik, N.; Lapčík, O.; Strnad, M.; Gruz, J. Rapid UPLC-ESI-MS/MS method for the analysis of isoflavonoids and other phenylpropanoids. J. Food Compos. Anal., 2012, 26(1–2), 36-42.
[http://dx.doi.org/10.1016/j.jfca.2011.12.001]
[25]
Guo, X.; Li, T.; Tang, K.; Liu, R.H. Effect of germination on phytochemical profiles and antioxidant activity of mung bean sprouts (Vigna radiata). J. Agric. Food Chem., 2012, 60(44), 11050-11055.
[http://dx.doi.org/10.1021/jf304443u] [PMID: 23088738]
[26]
Lawrence, P.K.; Koundal, K.R. Plant protease inhibitors in control of phytophagous insects. Electron. J. Biotechnol., 2002, 5(1), 5-6.
[http://dx.doi.org/10.2225/vol5-issue1-fulltext-3]
[27]
Pająk, P.; Socha, R.; Gałkowska, D.; Rożnowski, J.; Fortuna, T. Phenolic profile and antioxidant activity in selected seeds and sprouts. Food Chem., 2014, 143, 300-306.
[http://dx.doi.org/10.1016/j.foodchem.2013.07.064] [PMID: 24054243]
[28]
Hristov, A.N.; Hanigan, M.; Cole, A.; Todd, R.; McAllister, T.A.; Ndegwa, P.M.; Rotz, A. Review: Ammonia emissions from dairy farms and beef feedlots. Canadian J. Animal Sci., 2011, 91(1), 1-35.
[29]
Gan, R-Y.; Lui, W-Y.; Wang, M-F.; Corke, H. Solvent-soluble and solvent-insoluble distribution of 2 antioxidant capacity and phenolic composition. Int. J. Mol. Sci., 2016.
[30]
Randhir, R.; Shetty, K. Mung beans processed by solid-state bioconversion improves phenolic content and functionality relevant for diabetes and ulcer management. Innov. Food Sci. Emerg. Technol., 2007, 8(2), 197-204.
[http://dx.doi.org/10.1016/j.ifset.2006.10.003]
[31]
Giusti, F.; Caprioli, G.; Ricciutelli, M.; Torregiani, E.; Vittori, S.; Sagratini, G. Analysis of 17 polyphenolic compounds in organic and conventional legumes by High-Performance Liquid Chromatography-Diode Array Detection (HPLC-DAD) and evaluation of their antioxidant activity. Int. J. Food Sci. Nutr., 2018, 69(5), 557-565.
[http://dx.doi.org/10.1080/09637486.2017.1399258] [PMID: 29117733]
[32]
Robinson, D.S.; Rickels, K.; Feighner, J.; Fabre, L.F., Jr; Gammans, R.E.; Shrotriya, R.C.; Alms, D.R.; Andary, J.J.; Messina, M.E. Clinical effects of the 5-HT1A partial agonists in depression: A composite analysis of buspirone in the treatment of depression. J. Clin. Psychopharmacol., 1990, 10(3)(Suppl.), 67S-76S.
[http://dx.doi.org/10.1097/00004714-199006001-00013] [PMID: 2198303]
[33]
Lee, J.H.; Jeon, J.K.; Kim, S.G.; Kim, S.H.; Chun, T.; Imm, J-Y. Comparative analyses of total phenols, flavonoids, saponins and antioxidant activity in yellow soy beans and mung beans. Int. J. Food Sci. Technol., 2011, 46(12), 2513-2519.
[http://dx.doi.org/10.1111/j.1365-2621.2011.02775.x]
[34]
Kim, S.J.; Lee, H.; Lee, G.; Oh, S.J.; Shin, M.K.; Shim, I.; Bae, H. CD4+CD25+ regulatory T cell depletion modulates anxiety and depression-like behaviors in mice. PLoS One, 2012, 7(7), e42054.
[http://dx.doi.org/10.1371/journal.pone.0042054] [PMID: 22860054]
[35]
Wang, J.; Wang, L.; Lou, G.H.; Zeng, H.R.; Hu, J.; Huang, Q.W.; Peng, W.; Yang, X.B. Coptidis rhizoma: A comprehensive review of its traditional uses, botany, phytochemistry, pharmacology and toxicology. Pharmaceut. Biol., 2019, 57(1), 193-225.
[36]
Liu, H.; Liu, H.; Yan, L.; Cheng, X.; Kang, Y. Functional properties of 8S globulin fractions from 15 mung bean (Vigna radiata (L.) Wilczek) cultivars. Int. J. Food Sci. Technol., 2015, 50(5)
[http://dx.doi.org/10.1111/ijfs.12761]
[37]
Yi-Shen, Z.; Shuai, S.; FitzGerald, R. Mung bean proteins and peptides: Nutritional, functional and bioactive properties. Food Nutr. Res, 2018, 62
[http://dx.doi.org/10.29219/fnr.v62.1290] [PMID: 29545737]
[38]
Chen, Z.; Sagis, L.; Legger, A.; Linssen, J.P.H.; Schols, H.A.; Voragen, A.G.J. Evaluation of starch noodles made from three typical Chinese sweet-potato starches. J. Food Sci., 2002, 67(9), 3342-3347.
[http://dx.doi.org/10.1111/j.1365-2621.2002.tb09589.x]
[39]
Lopes, L.A.R.; Martins, M.D.C.C.E.; Farias, L.M.; Brito, A.K.D.S.; Lima, G.M.; Carvalho, V.B.L.; Pereira, C.F.C.; Conde Júnior, A.M.; Saldanha, T.; Arêas, J.A.G.; Silva, K.J.D.E.; Frota, K.M.G. Cholesterol-Lowering and liver-protective effects of cooked and germinated mung beans (Vigna radiata L.). Nutrients, 2018, 10(7), E821.
[http://dx.doi.org/10.3390/nu10070821] [PMID: 29949855]
[40]
Gao, E.; Yu, X.; Liu, T.; Li, H.; Wang, P.; Wei, Y.; Zhao, Y.; Yu, Z. Comparative study on effects of single and multiple oral administration of mungbean (Phaseolus radiatus L.) seed extract on the pharmacokinetics of aconitine by UHPLC-MS. Biomed. Chromatogr., 2014, 28(10), 1313-1319.
[http://dx.doi.org/10.1002/bmc.3163] [PMID: 24590733]
[41]
Gunarti, D.; Rahmi, H.; Isolation, M. S.-H. Isolation and purification of thiamine binding protein from mung bean. J. Biosci, 2013, 20(1), 1-6.
[42]
Bernardo, A.E.N.; Garcia, R.N.; Adachi, M.; Angeles, J.G.C.; Kaga, A.; Ishimoto, M.; Utsumi, S.; Tecson-Mendoza, E.M. 8S globulin of mungbean [Vigna radiata (L.) Wilczek]: Cloning and characterization of its cDNA isoforms, expression in Escherichia coli, purification, and crystallization of the major recombinant 8S isoform. J. Agric. Food Chem., 2004, 52(9), 2552-2560.
[http://dx.doi.org/10.1021/jf0305938] [PMID: 15113156]
[43]
Mendoza, E.; Adachi, M.A.B. Mungbean globulins: Purification and characterization. J. Agric. Food Chem., 2001, 49(3), 1552-1558.
[44]
Klomklao, S.; Benjakul, S.; Kishimura, H. K. O.-L.-F. S. Trypsin inhibitor from yellowfin tuna (Thunnus albacores) roe: Effects on gel properties of surimi from bigeye snapper (Priacanthus macracanthus). In: J. Food Biochem; , 2016; 65, pp. 122-127.
[45]
Klomklao, S.; Benjakul, S.; Kishimura, H.; Extraction, M.C-F. Purification and properties of trypsin inhibitor from thai mung bean (Vigna radiata (L.) R. Wilczek). Food Chem., 2011, 129(4), 1348-1354.
[http://dx.doi.org/10.1016/j.foodchem.2011.05.029]
[46]
Wang, J.; Sun, N.; Deng, T.; Zhang, L.; Zuo, K. Genome-wide cloning, identification, classification and functional analysis of cotton heat shock transcription factors in cotton (Gossypium hirsutum). BMC Genomics, 2014, 15(1), 961.
[http://dx.doi.org/10.1186/1471-2164-15-961] [PMID: 25378022]
[47]
Wang, S.Y.; Wu, J.H.; Ng, T.B.; Ye, X.Y.; Rao, P.F. A non-specific lipid transfer protein with antifungal and antibacterial activities from the mung bean. Peptides, 2004, 25(8), 1235-1242.
[http://dx.doi.org/10.1016/j.peptides.2004.06.004] [PMID: 15350690]
[48]
Mendoza, E.M.T.; Adachi, M.; Bernardo, A.E.N.; Utsumi, S. Mungbean Vigna radiata (L.) Wilczek globulins: Purification and characterization. J. Agric. Food Chem., 2001, 49(3), 1552-1558.
[http://dx.doi.org/10.1021/jf001041h] [PMID: 11312895]
[49]
Peng, X.; Zheng, Z.; Cheng, K.W.; Shan, F.; Ren, G.X.; Chen, F.; Wang, M. Inhibitory effect of mung bean extract and its constituents vitexin and isovitexin on the formation of advanced glycation endproducts. Food Chem., 2008, 106(2), 475-481.
[http://dx.doi.org/10.1016/j.foodchem.2007.06.016]
[50]
Aldar, H.; Lapa, A.T.; Bellini, B.; Sinicato, N.A.; Postal, M.; Fernandes, P.T.; Costallat, L.T.; Marini, R.; Appenzeller, S. Prevalence and clinical significance of anti-ribosomal P antibody in childhood-onset systemic lupus erythematosus. Lupus, 2012, 21(11), 1225-1231.
[http://dx.doi.org/10.1177/0961203312451201] [PMID: 22740428]
[51]
Singh, B.; Singh, J.P.; Kaur, A.; Singh, N. Phenolic composition and antioxidant potential of grain legume seeds: A review. Food Res. Int., 2017, 101, 1-16.
[http://dx.doi.org/10.1016/j.foodres.2017.09.026] [PMID: 28941672]
[52]
Yao, Y.; Cheng, X.; Wang, S.; Wang, L.; Ren, G. Influence of altitudinal variation on the antioxidant and antidiabetic potential of azuki bean (Vigna angularis). Int. J. Food Sci. Nutr., 2012, 63(1), 117-124.
[http://dx.doi.org/10.3109/09637486.2011.604629] [PMID: 21809904]
[53]
Yao, Y.; Cheng, X.; Wang, L.; Wang, S.; Ren, G. Biological potential of sixteen legumes in China. Int. J. Mol. Sci., 2011, 12(10), 7048-7058.
[http://dx.doi.org/10.3390/ijms12107048] [PMID: 22072935]
[54]
Yeap, S.K.; Mohd Yusof, H.; Mohamad, N.E.; Beh, B.K.; Ho, W.Y.; Ali, N.M.; Alitheen, N.B.; Koh, S.P.; Long, K. In vivo immunomodulation and lipid peroxidation activities contributed to chemoprevention effects of fermented mung bean against breast cancer. Evid. Based Complement. Alternat. Med., 2013, 2013, 708464.
[http://dx.doi.org/10.1155/2013/708464] [PMID: 23710232]
[55]
Kim, J.H.; Lee, B.C.; Kim, J.H.; Sim, G.S.; Lee, D.H.; Lee, K.E.; Yun, Y.P.; Pyo, H.B. The isolation and antioxidative effects of vitexin from Acer palmatum. Arch. Pharm. Res., 2005, 28(2), 195-202.
[http://dx.doi.org/10.1007/BF02977715] [PMID: 15789751]
[56]
Chon, S-U. Total polyphenols and bioactivity of seeds and sprouts in several legumes. Curr. Pharm. Des., 2013, 19(34), 6112-6124.
[http://dx.doi.org/10.2174/1381612811319340005] [PMID: 23448441]
[57]
Hsu, G.S.W.; Lu, Y.F.; Chang, S.H.; Hsu, S.Y. Antihypertensive effect of mung bean sprout extracts in spontaneously hypertensive rats. J. Food Biochem., 2011, 35(1), 278-288.
[http://dx.doi.org/10.1111/j.1745-4514.2010.00381.x]
[58]
Fernandez-Orozco, R.; Frias, J.; Zielinski, H.; Piskula, M. K.; Kozlowska, H.; Vidal-Valverde, C. Kinetic study of the antioxidant compounds and antioxidant capacity during germination of Vigna radiata Cv. Emmerald, Glycine Max Cv. Jutro and Glycine Max Cv. Merit. Food Chem., 2008, 111, 622-630.
[59]
Singh, B.; Singh, J.P.; Singh, N.; Kaur, A. Saponins in pulses and their health promoting activities: A review. Food Chem., 2017, 233, 540-549.
[http://dx.doi.org/10.1016/j.foodchem.2017.04.161] [PMID: 28530610]
[60]
Lin, P-Y.; Lai, H-M. Bioactive compounds in legumes and their germinated products. J. Agric. Food Chem., 2006, 54(11), 3807-3814.
[http://dx.doi.org/10.1021/jf060002o] [PMID: 16719500]
[61]
Lai, F.; Wen, Q.; Li, L.; Wu, H.; Li, X. Antioxidant activities of water-soluble polysaccharide extracted from mung bean (Vigna radiata L.) hull with ultrasonic assisted treatment. Carbohydr. Polym., 2010, 81(2), 323-329.
[http://dx.doi.org/10.1016/j.carbpol.2010.02.011]
[62]
Unno, K.; Tanida, N.; Ishii, N.; Yamamoto, H.; Iguchi, K.; Hoshino, M.; Takeda, A.; Ozawa, H.; Ohkubo, T.; Juneja, L.R.; Yamada, H. Anti-stress effect of theanine on students during pharmacy practice: Positive correlation among salivary α-amylase activity, trait anxiety and subjective stress. Pharmacol. Biochem. Behav., 2013, 111, 128-135.
[http://dx.doi.org/10.1016/j.pbb.2013.09.004] [PMID: 24051231]
[63]
Luo, J.; Cai, W.; Wu, T.; Xu, B. Phytochemical distribution in hull and cotyledon of adzuki bean (Vigna angularis L.) and mung bean (Vigna radiate L.), and their contribution to antioxidant, anti-inflammatory and anti-diabetic activities. Food Chem., 2016, 201, 350-360.
[http://dx.doi.org/10.1016/j.foodchem.2016.01.101] [PMID: 26868587]
[64]
Zhang, X.; Shang, P.; Qin, F.; Zhou, Q.; Gao, B.; Huang, H.; Yang, H.; Shi, H.; Lucy Yu, L. Chemical composition and antioxidative and anti-inflammatory properties of ten commercial mung bean samples. Lebensm. Wiss. Technol., 2013, 54(1), 171-178.
[http://dx.doi.org/10.1016/j.lwt.2013.05.034]
[65]
Apelbajm, A.; Wang, S.Y.; Burgoon, A.C.; Baker, J.E.; Lieberman, M. Inhibition of the conversion of 1-aminocyclopropane-1-carboxylic acid to ethylene by structural analogs, inhibitors of electron transfer, uncouplers of oxidative phosphorylation, and free radical scavengers. Plant Physiol., 1981, 67(1), 74-79.
[66]
Shin, S.W.; Lee, J.S.; Abdi, S.; Lee, S.J.; Kim, K.H. Antipsychotics for patients with pain. Korean J. Pain, 2019, 32(1), 3-11.
[http://dx.doi.org/10.3344/kjp.2019.32.1.3] [PMID: 30671198]
[67]
Hou, D.; Chen, J.; Ren, X.; Wang, C.; Diao, X.; Hu, X.; Zhang, Y.; Shen, Q. A Whole foxtail millet diet reduces blood pressure in subjects with mild hypertension. J. Cereal Sci., 2018, 84, 13-19.
[http://dx.doi.org/10.1016/j.jcs.2018.09.003]
[68]
Mohd Ali, N.; Mohd Yusof, H.; Long, K.; Yeap, S.K.; Ho, W.Y.; Beh, B.K.; Koh, S.P.; Abdullah, M.P.; Alitheen, N.B. Antioxidant and hepatoprotective effect of aqueous extract of germinated and fermented mung bean on ethanol-mediated liver damage. BioMed Res. Int., 2013, 2013, 693613.
[http://dx.doi.org/10.1155/2013/693613] [PMID: 23484140]
[69]
Chen, L.R.; Ko, C.Y.; Folk, W.R.; Lin, T.Y. Chilling susceptibility in mungbean varieties is associated with their differentially expressed genes. Bot. Stud. (Taipei, Taiwan), 2017, 58(1), 7.
[http://dx.doi.org/10.1186/s40529-017-0161-2] [PMID: 28510190]
[70]
Tachibana, N.; Wanezaki, S.; Nagata, M.; Motoyama, T.; Kohno, M.; Kitagawa, S. Intake of mung bean protein isolate reduces plasma triglyceride level in rats. Funct. Foods Heal. Dis., 2013, 3(9), 365-376.
[http://dx.doi.org/10.31989/ffhd.v3i9.39]
[71]
Lin, K.; Liu, Y.; Hsu, S. Samuel. Characterization and structural analyses of nonspecific lipid transfer protein 1 from mung bean. Biochemistry, 2005, 19. 44(15), 5703-12.
[72]
Yao, Y.; Yang, X.; Tian, J.; Liu, C.; Cheng, X.; Ren, G. Antioxidant and antidiabetic activities of black mung bean (Vigna radiata L.). J. Agric. Food Chem., 2013, 61(34), 8104-8109.
[http://dx.doi.org/10.1021/jf401812z] [PMID: 23947804]
[73]
Yeap, S.K.; Mohd Ali, N.; Mohd Yusof, H.; Alitheen, N.B.; Beh, B.K.; Ho, W.Y.; Koh, S.P.; Long, K. Antihyperglycemic effects of fermented and nonfermented mung bean extracts on alloxan-induced-diabetic mice. J. Biomed. Biotechnol., 2012, 2012, 285430.
[http://dx.doi.org/10.1155/2012/285430] [PMID: 23091343]
[74]
Tharanathan, R.N.; Mahadevamma, S. Grain Legumes - A Boon to Human Nutrition. Trends in Food Science and Technology; Elsevier Ltd, 2003, pp. 507-518.
[75]
Hoover, R.; Li, Y.X.; Hynes, G.; Senanayake, N. Physicochemical characterization of mung bean starch. Food Hydrocoll., 1997, 11(4), 401-408.
[http://dx.doi.org/10.1016/S0268-005X(97)80037-9]
[76]
Zhu, S.; Li, W.; Li, J.; Jundoria, A.; Sama, A.E.; Wang, H. It is not just folklore: The aqueous extract of mung bean coat is protective against sepsis. Evid. Based Complement. Alternat. Med., 2012, 2012, 498467.
[http://dx.doi.org/10.1155/2012/498467] [PMID: 23193422]
[77]
Lee, S-J.; Lee, J.H.; Lee, H-H.; Lee, S.; Kim, S.H.; Chun, T.; Imm, J-Y. Effect of mung bean ethanol extract on pro-inflammtory cytokines in LPS stimulated macrophages. Food Sci. Biotechnol., 2011, 20(2), 519-524.
[http://dx.doi.org/10.1007/s10068-011-0072-z]
[78]
López, A.; El-Naggar, T.; Dueñas, M.; Ortega, T.; Estrella, I.; Hernández, T.; Gómez-Serranillos, M.P.; Palomino, O.M.; Carretero, M.E. Effect of cooking and germination on phenolic composition and biological properties of dark beans (Phaseolus vulgaris L.). Food Chem., 2013, 138(1), 547-555.
[http://dx.doi.org/10.1016/j.foodchem.2012.10.107] [PMID: 23265523]
[79]
Matoušek, J.; Podzimek, T.; Poucková, P.; Stehlík, J.; Škvor, J.; Souček, J.; Matoušek, J. Antitumor effects and cytotoxicity of recombinant plant nucleases. Oncol. Res., 2009, 18(4), 163-171.
[http://dx.doi.org/10.3727/096504009790217425] [PMID: 20112502]
[80]
Xu, B.; Science, S.C. A comparative study on phenolic profiles and antioxidant activities of legumes as affected by extraction solvents. J. Food Sci., 2007, 72(2), S159-166.
[81]
Xu, B.; Chemistry, S.C. Antioxidant capacity of seed coat, dehulled bean, and whole black soybeans in relation to their distributions of total phenolics, phenolic acids, anthocyanins. J. Agric. Food Chem., 2008, 56(18), 8365-8373.
[http://dx.doi.org/10.1021/jf801196d] [PMID: 18729453]
[82]
Wang, T.Y.; Li, Q.; Bi, K.S. Bioactive flavonoids in medicinal plants: Structure, activity and biological fate. Asian J Pharm Sci, 2018, 13(1), 12-23.
[http://dx.doi.org/10.1016/j.ajps.2017.08.004] [PMID: 32104374]
[83]
Li, G.H.; Wan, J.Z.; Le, G.W.; Shi, Y.H. Novel angiotensin I-converting enzyme inhibitory peptides isolated from Alcalase hydrolysate of mung bean protein. J. Pept. Sci., 2006, 12(8), 509-514.
[http://dx.doi.org/10.1002/psc.758] [PMID: 16680798]
[84]
Heel, R.C.; Morley, P.A.; Brogden, R.N.; Carmine, A.A.; Speight, T.M.; Avery, G.S. Zimelidine: A review of its pharmacological properties and therapeutic efficacy in depressive illness. Drugs, 1982, 24(3), 169-206.
[http://dx.doi.org/10.2165/00003495-198224030-00001] [PMID: 6215240]
[85]
Koyama, M.; Naramoto, K.; Nakajima, T.; Aoyama, T.; Watanabe, M.; Nakamura, K. Purification and identification of antihypertensive peptides from fermented buckwheat sprouts. J. Agric. Food Chem., 2013, 61(12), 3013-3021.
[http://dx.doi.org/10.1021/jf305157y] [PMID: 23432021]
[86]
Nakamura, K.; Koyama, M.; Ishida, R.; Kitahara, T.; Nakajima, T.; Aoyama, T. Characterization of bioactive agents in five types of marketed sprouts and comparison of their antihypertensive, antihyperlipidemic, and antidiabetic effects in fructose-loaded SHRs. J. Food Sci. Technol., 2016, 53(1), 581-590.
[http://dx.doi.org/10.1007/s13197-015-2048-0] [PMID: 26787977]
[87]
Jabi, S.; Mathur, A. Study of the optimal physical parameters and action of the proteolytic enzyme on the antimicrobial and antioxidant potential of the protein isolated from different pulses. Artic. Int. J. Curr. Microbiol. Appl. Sci, 2017, 6(8), 1523-1533.
[http://dx.doi.org/10.20546/ijcmas.2017.608.183]
[88]
Liyanage, R.; Chathuranga, K.; Visvanathan, R.; Weththasinghe, P. Hypolipidemic and hypoglycemic potential of raw, boiled, and sprouted mung beans (Vigna radiata L. Wilczek) in rats functional and nutritional properties of food view project enrichment of chicken eggs and broiler meat with omega-3 fatty acids view project. Artic. J. Food Biochem, 2017, 42(1), e12457.2017,
[89]
Bai, Y.; Chang, J.; Xu, Y.; Cheng, D.; Liu, H.; Zhao, Y.; Yu, Z. Correction to antioxidant and myocardial preservation activities of natural phytochemicals from mung bean (Vigna radiata L.) seeds. J. Agric. Food Chem., 2016, 64(25), 5293-5293.
[http://dx.doi.org/10.1021/acs.jafc.6b02589] [PMID: 27304358]
[90]
Bai, Y.; Xu, Y.; Wang, B.; Li, S.; Guo, F.; Hua, H.; Zhao, Y.; Yu, Z. Comparison of phenolic compounds, antioxidant and antidiabetic activities between selected edible beans and their different growth periods leaves. J. Funct. Foods, 2017, 35, 694-702.
[http://dx.doi.org/10.1016/j.jff.2017.06.036]
[91]
Tiwari, U.; Servan, A.; Nigam, D.; Pradesh, U.; Darshika, N.I. Comparative study on antioxidant activity, phytochemical analysis and mineral composition of the mung bean (Vigna radiata) and its sprouts. J. Pharmacogn. Phytochem., 2017, 6(1), 336-340.
[92]
Kapravelou, G.; Martínez, R.; Andrade, A.M.; López Chaves, C.; López-Jurado, M.; Aranda, P.; Arrebola, F.; Cañizares, F.J.; Galisteo, M.; Porres, J.M. Improvement of the antioxidant and hypolipidaemic effects of cowpea flours (Vigna unguiculata) by fermentation: Results of in vitro and in vivo experiments. J. Sci. Food Agric., 2015, 95(6), 1207-1216.
[http://dx.doi.org/10.1002/jsfa.6809] [PMID: 25043425]
[93]
Ignat, I.; Volf, I.; Popa, V.I. A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables. Food Chem., 2011, 126(4), 1821-1835.
[http://dx.doi.org/10.1016/j.foodchem.2010.12.026] [PMID: 25213963]
[94]
Gan, R.Y.; Lui, W.Y.; Wu, K.; Chan, C.L.; Dai, S.H.; Sui, Z.Q.; Corke, H. Bioactive compounds and bioactivities of germinated edible seeds and sprouts: An updated review. Trends Food Sci. Technol., 2017, 59, 1-14.
[95]
Gupta, N.; Srivastava, N.; Bhagyawant, S.S. Vicilin-A major storage protein of mungbean exhibits antioxidative potential, antiproliferative effects and ACE inhibitory activity. PLoS One, 2018, 13(2), e0191265.
[http://dx.doi.org/10.1371/journal.pone.0191265] [PMID: 29408872]
[96]
Yeap, S.K.; Beh, B.K.; Ali, N.M.; Mohd Yusof, H.; Ho, W.Y.; Koh, S.P.; Alitheen, N.B.; Long, K. In vivo antistress and antioxidant effects of fermented and germinated mung bean. BioMed Res. Int., 2014, 2014, 694842.
[http://dx.doi.org/10.1155/2014/694842] [PMID: 24877129]
[97]
Venkidasamy, B.; Selvaraj, D.; Nile, A.S.; Ramalingam, S.; Kai, G.; Nile, S.H. Indian Pulses: A Review on Nutritional, Functional and Biochemical Properties with Future Perspectives. Trends in Food Science and Technology; Elsevier Ltd, 2019, pp. 228-242.
[98]
Kaur, S.; Sharma, A.; Bedi, P.M.S. Evaluation of anxiolytic effect of Melilotus officinalis extracts in mice. Asian J. Pharm. Clin. Res., 2017, 10(6), 396.
[http://dx.doi.org/10.22159/ajpcr.2017.v10i6.17183]
[99]
Silva, R.; Vasconcelos, I. Castor bean cake contains a trypsin inhibitor that displays antifungal activity against colletotrichum gloeosporioides and inhibits the midgut proteases of the dengue mosquito larvae. Ind. Crops Prod., 2015, 70, 48-55.
[http://dx.doi.org/10.1016/j.indcrop.2015.02.058]
[100]
Yao, Y.; Chen, F.; Wang, M.; Wang, J.; Ren, G. Antidiabetic activity of Mung bean extracts in diabetic KK-Ay mice. J. Agric. Food Chem., 2008, 56(19), 8869-8873.
[http://dx.doi.org/10.1021/jf8009238] [PMID: 18767859]
[101]
Sharma, N.; Kapoor, R.; Gautam, N.; Kumari, R. Purification and characterization of bacteriocin produced by Bacillus subtilis r75 isolated from fermented chunks of mung bean (Phaseolus radiatus). Food Technol. Biotechnol., 2011, 49(2), 19.
[102]
Hameed, A.; Bot, P.J.; Qureshi, M.; Nawaz, M.; Iqbal, N. Comparative seed storage protein profiling of mung bean genotypes. Pak. J. Bot., 2012, 44(6), 1993-1999.
[103]
Ishikura, N.; Iwata, M.; Miyazaki, S. Flavonoids of some vigna-plants in Leguminosae. Bot. Mag. Tokyo, 1981, 94(3), 197-205.
[http://dx.doi.org/10.1007/BF02488610]
[104]
Lang, V.; Vaugelade, P.; Bernard, F.; Darcy-Vrillon, B.; Alamowitch, C.; Slama, G.; Duée, P.H.; Bornet, F.R. Euglycemic hyperinsulinemic clamp to assess posthepatic glucose appearance after carbohydrate loading. 1. Validation in pigs. Am. J. Clin. Nutr., 1999, 69(6), 1174-1182.
[http://dx.doi.org/10.1093/ajcn/69.6.1174] [PMID: 10357736]
[105]
Nishimura, M.; Ohkawara, T.; Sato, Y.; Satoh, H.; Takahashi, Y.; Hajika, M.; Nishihira, J. Improvement of triglyceride levels through the intake of enriched-β-conglycinin soybean (nanahomare) revealed in a randomized, double-blind, placebo-controlled study. Nutrients, 2016, 8(8), E491.
[http://dx.doi.org/10.3390/nu8080491] [PMID: 27529274]
[106]
Chatterjee, C.; Gleddie, S.; Xiao, C.W. Soybean bioactive peptides and their functional properties. Nutrients, 2018, 10(9), 1211.
[http://dx.doi.org/10.3390/nu10091211]
[107]
Kohno, M.; Sugano, H.; Shigihara, Y.; Shiraishi, Y.; Motoyama, T. Improvement of glucose and lipid metabolism via mung bean protein consumption: Clinical trials of GLUCODIA™ isolated mung bean protein in the USA and Canada. J. Nutr. Sci., 2018, 7, e2.
[http://dx.doi.org/10.1017/jns.2017.68] [PMID: 29372050]
[108]
Liu, Y.; Xu, M.; Wu, H.; Jing, L.; Gong, B.; Gou, M.; Zhao, K.; Li, W. The compositional, physicochemical and functional properties of germinated mung bean flour and its addition on quality of wheat flour noodle. J. Food Sci. Technol., 2018, 55(12), 5142-5152.
[http://dx.doi.org/10.1007/s13197-018-3460-z] [PMID: 30483011]
[109]
Qin, P.; Wang, Q.; Shan, F.; Hou, Z.; Ren, G. Nutritional composition and flavonoids content of flour from different buckwheat cultivars. Int. J. Food Sci. Technol., 2010, 45(5), 951-958.
[http://dx.doi.org/10.1111/j.1365-2621.2010.02231.x]
[110]
Lang, V.; Bornet, F.R.; Vaugelade, P.; van Ypersele de Strihou, M.; Luo, J.; Pacher, N.; Rossi, F.; La Droitte, P.; Duée, P-H.; Slama, G. Euglycemic hyperinsulinemic clamp to assess posthepatic glucose appearance after carbohydrate loading. 2. Evaluation of corn and mung bean starches in healthy men. Am. J. Clin. Nutr., 1999, 69(6), 1183-1188.
[http://dx.doi.org/10.1093/ajcn/69.6.1183] [PMID: 10357737]
[111]
Richards, E.; Mathews, D.; Machado-Vieira, R.; Luckenbaugh, D.; Niciu, M.; Ionescu, D.; Nolan, N.; Franco-Chaves, J.; Hudzik, T.; Maciag, C. A randomized, placebo-controlled, pilot trial of a delta opioid agonist in patients with anxious major depression. Biol. Psychiatry, 2014.
[http://dx.doi.org/10.1016/j.biopsych.2014.03.014]
[112]
Tachibana, N.; Wanezaki, S.; Nagata, M.; Motoyama, T.; Kohno, M.; Kitagawa, S. Intake of mung bean protein isolate reduces plasma triglyceride level in rats. FFHD, 2013, 3(9), 365-376.
[113]
Hafidh, R.R.; Abdulamir, A.S.; Bakar, F.A.; Jalilian, F.A.; Abas, F.; Sekawi, Z. Novel molecular, cytotoxical, and immunological study on promising and selective anticancer activity of mung bean sprouts. BMC Complement. Altern. Med., 2012, 12, 208.
[http://dx.doi.org/10.1186/1472-6882-12-208] [PMID: 23122182]
[114]
Tonstad, S.; Malik, N.; Haddad, E. A high-fibre bean-rich diet versus a low-carbohydrate diet for obesity. J. Hum. Nutr. Diet., 2014, 27(Suppl. 2), 109-116.
[http://dx.doi.org/10.1111/jhn.12118] [PMID: 23627924]
[115]
Bhan, M.K.; Ghai, O.P.; Khoshoo, V.; Vasudev, A.S.; Bhatnagar, S.; Arora, N.K.; Rashmi, ; Stintzing, G. Efficacy of mung bean (lentil) and pop rice based rehydration solutions in comparison with the standard glucose electrolyte solution. J. Pediatr. Gastroenterol. Nutr., 1987, 6(3), 392-399.
[http://dx.doi.org/10.1097/00005176-198705000-00016] [PMID: 3430248]
[116]
Mah, E.; Noh, S.K.; Ballard, K.D.; Matos, M.E.; Volek, J.S.; Bruno, R.S. Postprandial hyperglycemia impairs vascular endothelial function in healthy men by inducing lipid peroxidation and increasing asymmetric dimethylarginine: Arginine. J. Nutr., 2011, 141(11), 1961-1968.
[http://dx.doi.org/10.3945/jn.111.144592] [PMID: 21940510]
[117]
Jenkins, D.J.; Wolever, T.M.; Taylor, R.H.; Barker, H.M.; Fielden, H. Exceptionally low blood glucose response to dried beans: Comparison with other carbohydrate foods. BMJ, 1980, 281(6240), 578-580.
[http://dx.doi.org/10.1136/bmj.281.6240.578] [PMID: 7427377]
[118]
Peppa, M.; Vlassara, H. Advanced glycation end products and diabetic complications: A general overview. Hormones (Athens), 2005, 4(1), 28-37.
[119]
Adebamowo, C.A.; Cho, E.; Sampson, L.; Katan, M.B.; Spiegelman, D.; Willett, W.C.; Holmes, M.D. Dietary flavonols and flavonol-rich foods intake and the risk of breast cancer. Int. J. Cancer, 2005, 114(4), 628-633.
[http://dx.doi.org/10.1002/ijc.20741] [PMID: 15609322]
[120]
Kato, I.; Tominaga, S.; Matsuura, A.; Yoshii, Y.; Shirai, M.; Kobayashi, S. A comparative case-control study of colorectal cancer and adenoma. Jpn. J. Cancer Res., 1990, 81(11), 1101-1108.
[http://dx.doi.org/10.1111/j.1349-7006.1990.tb02520.x] [PMID: 2125036]
[121]
Hamer, H.M.; Jonkers, D.; Venema, K.; Vanhoutvin, S.; Troost, F.J.; Brummer, R.J. Review article: The role of butyrate on colonic function. Aliment. Pharmacol. Ther., 2008, 27(2), 104-119.
[http://dx.doi.org/10.1111/j.1365-2036.2007.03562.x] [PMID: 17973645]
[122]
Lee, J.K.; Park, B.J.; Yoo, K.Y.; Ahn, Y.O. Dietary factors and stomach cancer: a case-control study in Korea. Int. J. Epidemiol., 1995, 24(1), 33-41.
[http://dx.doi.org/10.1093/ije/24.1.33] [PMID: 7797354]
[123]
Metabolic availability of methionine from mung beans in healthy young adult men. Available from: https://www.bioportfolio.com/resources/trial/218320/Metabolic-Availability-of-Methionine-From-Mung-Beans-in-Healthy-Young-Adult-Men.html [Accessed Mar 10, 2020].
[124]
Bartholomae, E.; Incollingo, A.; Vizcaino, M.; Wharton, C.; Johnston, C.S. Mung bean protein supplement improves muscular strength in healthy, underactive vegetarian adults. Nutrients, 2019, 11(10), 2423.
[http://dx.doi.org/10.3390/nu11102423] [PMID: 31614532]
[125]
Linlawan, S.; Patcharatrakul, T.; Somlaw, N.; Gonlachanvit, S. Effect of rice, wheat, and mung bean ingestion on intestinal gas production and postprandial gastrointestinal symptoms in non-constipation irritable bowel syndrome patients. Nutrients, 2019, 11(9), E2061.
[http://dx.doi.org/10.3390/nu11092061] [PMID: 31484315]
[126]
Measurement of protein digestibility in humans by a dual-tracer method. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6179135/ [Accessed Mar 10, 2020].