Noncoding RNAs in Medicinal Plants and their Regulatory Roles in Bioactive Compound Production

Page: [341 - 359] Pages: 19

  • * (Excluding Mailing and Handling)

Abstract

Background: Noncoding RNAs (ncRNAs), such as microRNAs (miRNAs), small interfering RNAs (siRNAs) and long noncoding RNAs (lncRNAs), play significant regulatory roles in plant development and secondary metabolism and are involved in plant response to biotic and abiotic stresses. They have been intensively studied in model systems and crops for approximately two decades and massive amount of information have been obtained. However, for medicinal plants, ncRNAs, particularly their regulatory roles in bioactive compound biosynthesis, are just emerging as a hot research field.

Objective: This review aims to summarize current knowledge on herbal ncRNAs and their regulatory roles in bioactive compound production.

Results: So far, scientists have identified thousands of miRNA candidates from over 50 medicinal plant species and 11794 lncRNAs from Salvia miltiorrhiza, Panax ginseng, and Digitalis purpurea. Among them, more than 30 miRNAs and five lncRNAs have been predicted to regulate bioactive compound production.

Conclusion: The regulation may achieve through various regulatory modules and pathways, such as the miR397-LAC module, the miR12112-PPO module, the miR156-SPL module, the miR828-MYB module, the miR858-MYB module, and other siRNA and lncRNA regulatory pathways. Further functional analysis of herbal ncRNAs will provide useful information for quality and quantity improvement of medicinal plants.

Keywords: Bioactive compound, long noncoding RNA, medicinal plant, microRNA, secondary metabolite, small interfering RNA.

Graphical Abstract

[1]
Voinnet, O. Origin, biogenesis, and activity of plant microRNAs. Cell, 2009, 136(4), 669-687.
[http://dx.doi.org/10.1016/j.cell.2009.01.046] [PMID: 19239888]
[2]
Lee, Y.; Jeon, K.; Lee, J.T.; Kim, S.; Kim, V.N. MicroRNA maturation: Stepwise processing and subcellular localization. EMBO J., 2002, 21(17), 4663-4670.
[http://dx.doi.org/10.1093/emboj/cdf476] [PMID: 12198168]
[3]
Allen, E.; Xie, Z.; Gustafson, A.M.; Sung, G.H.; Spatafora, J.W.; Carrington, J.C. Evolution of microRNA genes by inverted duplication of target gene sequences in Arabidopsis thaliana. Nat. Genet., 2004, 36(12), 1282-1290.
[http://dx.doi.org/10.1038/ng1478] [PMID: 15565108]
[4]
Fahlgren, N.; Howell, M.D.; Kasschau, K.D.; Chapman, E.J.; Sullivan, C.M.; Cumbie, J.S.; Givan, S.A.; Law, T.F.; Grant, S.R.; Dangl, J.L.; Carrington, J.C. High-throughput sequencing of Arabidopsis microRNAs: Evidence for frequent birth and death of MIRNA genes. PLoS One, 2007, 2(2), e219.
[http://dx.doi.org/10.1371/journal.pone.0000219] [PMID: 17299599]
[5]
Felippes, F.F.; Schneeberger, K.; Dezulian, T.; Huson, D.H.; Weigel, D. Evolution of Arabidopsis thaliana microRNAs from random sequences. RNA, 2008, 14(12), 2455-2459.
[http://dx.doi.org/10.1261/rna.1149408] [PMID: 18952822]
[6]
Piriyapongsa, J.; Jordan, I.K. Dual coding of siRNAs and miRNAs by plant transposable elements. RNA, 2008, 14(5), 814-821.
[http://dx.doi.org/10.1261/rna.916708] [PMID: 18367716]
[7]
Xia, R.; Meyers, B.C.; Liu, Z.; Beers, E.P.; Ye, S.; Liu, Z. MicroRNA superfamilies descended from miR390 and their roles in secondary small interfering RNA Biogenesis in Eudicots. Plant Cell, 2013, 25(5), 1555-1572.
[http://dx.doi.org/10.1105/tpc.113.110957] [PMID: 23695981]
[8]
Lu, S. De novo origination of MIRNAs through generation of short inverted repeats in target genes. RNA Biol., 2019, 16(6), 846-859.
[http://dx.doi.org/10.1080/15476286.2019.1593744] [PMID: 30870071]
[9]
Jones-Rhoades, M.W.; Bartel, D.P.; Bartel, B. MicroRNAS and their regulatory roles in plants. Annu. Rev. Plant Biol., 2006, 57, 19-53.
[http://dx.doi.org/10.1146/annurev.arplant.57.032905.105218] [PMID: 16669754]
[10]
Mallory, A.C.; Vaucheret, H. Functions of microRNAs and related small RNAs in plants. Nat. Genet., 2006, 38(Suppl), S31-S36.
[11]
Brodersen, P.; Sakvarelidze-Achard, L.; Bruun-Rasmussen, M.; Dunoyer, P.; Yamamoto, Y.Y.; Sieburth, L.; Voinnet, O. Widespread translational inhibition by plant miRNAs and siRNAs. Science, 2008, 320(5880), 1185-1190.
[http://dx.doi.org/10.1126/science.1159151] [PMID: 18483398]
[12]
Wu, L.; Zhou, H.; Zhang, Q.; Zhang, J.; Ni, F.; Liu, C.; Qi, Y. DNA methylation mediated by a microRNA pathway. Mol. Cell, 2010, 38(3), 465-475.
[http://dx.doi.org/10.1016/j.molcel.2010.03.008] [PMID: 20381393]
[13]
Chen, X. Small RNAs and their roles in plant development. Annu. Rev. Cell Dev. Biol., 2009, 25, 21-44.
[http://dx.doi.org/10.1146/annurev.cellbio.042308.113417] [PMID: 19575669]
[14]
Vazquez, F.; Legrand, S.; Windels, D. The biosynthetic pathways and biological scopes of plant small RNAs. Trends Plant Sci., 2010, 15(6), 337-345.
[http://dx.doi.org/10.1016/j.tplants.2010.04.001] [PMID: 20427224]
[15]
Rajagopalan, R.; Vaucheret, H.; Trejo, J.; Bartel, D.P. A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev., 2006, 20(24), 3407-3425.
[http://dx.doi.org/10.1101/gad.1476406] [PMID: 17182867]
[16]
Vazquez, F.; Vaucheret, H.; Rajagopalan, R.; Lepers, C.; Gasciolli, V.; Mallory, A.C.; Hilbert, J.L.; Bartel, D.P.; Crété, P. Endogenous trans-acting siRNAs regulate the accumulation of Arabidopsis mRNAs. Mol. Cell, 2004, 16(1), 69-79.
[http://dx.doi.org/10.1016/j.molcel.2004.09.028] [PMID: 15469823]
[17]
Allen, E.; Xie, Z.; Gustafson, A.M.; Carrington, J.C. microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell, 2005, 121(2), 207-221.
[http://dx.doi.org/10.1016/j.cell.2005.04.004] [PMID: 15851028]
[18]
Howell, M.D.; Fahlgren, N.; Chapman, E.J.; Cumbie, J.S.; Sullivan, C.M.; Givan, S.A.; Kasschau, K.D.; Carrington, J.C. Genome-wide analysis of the RNA-dependent RNA Polymerase6/Dicer-Like4 pathway in Arabidopsis reveals dependency on miRNA- and tasiRNA-directed targeting. Plant Cell, 2007, 19(3), 926-942.
[http://dx.doi.org/10.1105/tpc.107.050062] [PMID: 17400893]
[19]
Borsani, O.; Zhu, J.; Verslues, P.E.; Sunkar, R.; Zhu, J.K. Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell, 2005, 123(7), 1279-1291.
[http://dx.doi.org/10.1016/j.cell.2005.11.035] [PMID: 16377568]
[20]
Katiyar-Agarwal, S.; Morgan, R.; Dahlbeck, D.; Borsani, O.; Villegas, A., Jr; Zhu, J.K.; Staskawicz, B.J.; Jin, H. A pathogen-inducible endogenous siRNA in plant immunity. Proc. Natl. Acad. Sci. USA, 2006, 103(47), 18002-18007.
[http://dx.doi.org/10.1073/pnas.0608258103] [PMID: 17071740]
[21]
Hamilton, A.; Voinnet, O.; Chappell, L.; Baulcombe, D. Two classes of short interfering RNA in RNA silencing. EMBO J., 2002, 21(17), 4671-4679.
[http://dx.doi.org/10.1093/emboj/cdf464] [PMID: 12198169]
[22]
Kasschau, K.D.; Fahlgren, N.; Chapman, E.J.; Sullivan, C.M.; Cumbie, J.S.; Givan, S.A.; Carrington, J.C. Genome-wide profiling and analysis of Arabidopsis siRNAs. PLoS Biol., 2007, 5(3), e57.
[http://dx.doi.org/10.1371/journal.pbio.0050057] [PMID: 17298187]
[23]
Lippman, Z.; Martienssen, R. The role of RNA interference in heterochromatic silencing. Nature, 2004, 431(7006), 364-370.
[http://dx.doi.org/10.1038/nature02875] [PMID: 15372044]
[24]
Rymarquis, L.A.; Kastenmayer, J.P.; Hüttenhofer, A.G.; Green, P.J. Diamonds in the rough: mRNA-like non-coding RNAs. Trends Plant Sci., 2008, 13(7), 329-334.
[http://dx.doi.org/10.1016/j.tplants.2008.02.009] [PMID: 18448381]
[25]
Ma, L.; Bajic, V.B.; Zhang, Z. On the classification of long non-coding RNAs. RNA Biol., 2013, 10(6), 925-933.
[http://dx.doi.org/10.4161/rna.24604] [PMID: 23696037]
[26]
Zhang, Y.C.; Chen, Y.Q. Long noncoding RNAs: New regulators in plant development. Biochem. Biophys. Res. Commun., 2013, 436(2), 111-114.
[http://dx.doi.org/10.1016/j.bbrc.2013.05.086] [PMID: 23726911]
[27]
Kozomara, A.; Birgaoanu, M.; Griffiths-Jones, S. miRBase: From microRNA sequences to function. Nucleic Acids Res., 2019, 47(D1), D155-D162.
[http://dx.doi.org/10.1093/nar/gky1141] [PMID: 30423142]
[28]
Gao, Z.H.; Wei, J.H.; Yang, Y.; Zhang, Z.; Xiong, H.Y.; Zhao, W.T. Identification of conserved and novel microRNAs in Aquilaria sinensis based on small RNA sequencing and transcriptome sequence data. Gene, 2012, 505(1), 167-175.
[http://dx.doi.org/10.1016/j.gene.2012.03.072] [PMID: 22521867]
[29]
Gao, Z.H.; Yang, Y.; Zhang, Z.; Zhao, W.T.; Meng, H.; Jin, Y.; Huang, J.Q.; Xu, Y.H.; Zhao, L.Z.; Liu, J.; Wei, J.H. Profiling of microRNAs under wound treatment in Aquilaria sinensis to identify possible microRNAs involved in agarwood formation. Int. J. Biol. Sci., 2014, 10(5), 500-510.
[http://dx.doi.org/10.7150/ijbs.8065] [PMID: 24795531]
[30]
Pani, A.; Mahapatra, R.K.; Behera, N.; Naik, P.K. Computational identification of sweet wormwood (Artemisia annua) microRNA and their mRNA targets. Genom. Proteom. Bioinform., 2011, 9(6), 200-210.
[http://dx.doi.org/10.1016/S1672-0229(11)60023-5] [PMID: 22289476]
[31]
Barozai, M.Y.K. Identification of microRNAs and their targets in Artemisia annua L. Pak. J. Bot., 2013, 45, 461-465.
[32]
Abla, M.; Sun, H.; Li, Z.; Wei, C.; Gao, F.; Zhou, Y.; Feng, J. Identification of miRNAs and their response to cold stress in Astragalus membranaceus. Biomolecules, 2019, 9(5), 182.
[http://dx.doi.org/10.3390/biom9050182] [PMID: 31083391]
[33]
Li, H.; Dong, Y.; Sun, Y.; Zhu, E.; Yang, J.; Liu, X.; Xue, P.; Xiao, Y.; Yang, S.; Wu, J.; Li, X. Investigation of the microRNAs in safflower seed, leaf, and petal by high-throughput sequencing. Planta, 2011, 233(3), 611-619.
[http://dx.doi.org/10.1007/s00425-010-1327-2] [PMID: 21136073]
[34]
Pani, A.; Mahapatra, R.K. Computational identification of microRNAs and their targets in Catharanthus roseus expressed sequence tags. Genom. Data, 2013, 1, 2-6.
[http://dx.doi.org/10.1016/j.gdata.2013.06.001] [PMID: 26484050]
[35]
Prakash, P.; Ghosliya, D.; Gupta, V. Identification of conserved and novel microRNAs in Catharanthus roseus by deep sequencing and computational prediction of their potential targets. Gene, 2015, 554(2), 181-195.
[http://dx.doi.org/10.1016/j.gene.2014.10.046] [PMID: 25445288]
[36]
Shen, E.M.; Singh, S.K.; Ghosh, J.S.; Patra, B.; Paul, P.; Yuan, L.; Pattanaik, S. The miRNAome of Catharanthus roseus: Identification, expression analysis, and potential roles of microRNAs in regulation of terpenoid indole alkaloid biosynthesis. Sci. Rep., 2017, 7, 43027.
[http://dx.doi.org/10.1038/srep43027] [PMID: 28223695]
[37]
Pourmazaheri, H.; Soorni, A.; Kohnerouz, B.B.; Dehaghi, N.K.; Kalantar, E.; Omidi, M.; Naghavi, M.R. Comparative analysis of the root and leaf transcriptomes in Chelidonium majus L. PLoS One, 2019, 14(4), e0215165.
[http://dx.doi.org/10.1371/journal.pone.0215165] [PMID: 30986259]
[38]
Zhang, F.; Dong, W.; Huang, L.; Song, A.; Wang, H.; Fang, W.; Chen, F.; Teng, N. Identification of microRNAs and their targets associated with embryo abortion during Chrysanthemum cross breeding via high-throughput sequencing. PLoS One, 2015, 10(4), e0124371.
[http://dx.doi.org/10.1371/journal.pone.0124371] [PMID: 25909659]
[39]
Xia, X.; Shao, Y.; Jiang, J.; Du, X.; Sheng, L.; Chen, F.; Fang, W.; Guan, Z.; Chen, S. MicroRNA expression profile during aphid feeding in chrysanthemum (Chrysanthemum morifolium). PLoS One, 2015, 10(12), e0143720.
[http://dx.doi.org/10.1371/journal.pone.0143720] [PMID: 26650759]
[40]
Liu, Y.; Wang, L.; Chen, D.; Wu, X.; Huang, D.; Chen, L.; Li, L.; Deng, X.; Xu, Q. Genome-wide comparison of microRNAs and their targeted transcripts among leaf, flower and fruit of sweet orange. BMC Genomics, 2014, 15, 695.
[http://dx.doi.org/10.1186/1471-2164-15-695] [PMID: 25142253]
[41]
Lu, Y.B.; Yang, L.T.; Qi, Y.P.; Li, Y.; Li, Z.; Chen, Y.B.; Huang, Z.R.; Chen, L.S. Identification of boron-deficiency-responsive microRNAs in Citrus sinensis roots by Illumina sequencing. BMC Plant Biol., 2014, 14, 123.
[http://dx.doi.org/10.1186/1471-2229-14-123] [PMID: 24885979]
[42]
Wu, X.M.; Kou, S.J.; Liu, Y.L.; Fang, Y.N.; Xu, Q.; Guo, W.W. Genomewide analysis of small RNAs in nonembryogenic and embryogenic tissues of citrus: Microrna- and siRNA-mediated transcript cleavage involved in somatic embryogenesis. Plant Biotechnol. J., 2015, 13(3), 383-394.
[http://dx.doi.org/10.1111/pbi.12317] [PMID: 25615015]
[43]
Lu, Y.B.; Qi, Y.P.; Yang, L.T.; Guo, P.; Li, Y.; Chen, L.S. Boron-deficiency-responsive microRNAs and their targets in Citrus sinensis leaves. BMC Plant Biol., 2015, 15, 271.
[http://dx.doi.org/10.1186/s12870-015-0642-y] [PMID: 26538180]
[44]
Wu, J.; Zheng, S.; Feng, G.; Yi, H. Comparative analysis of miRNAs and their target transcripts between a spontaneous late-ripening sweet orange mutant and its wild-type using small RNA and degradome sequencing. Front. Plant Sci., 2016, 7, 1416.
[http://dx.doi.org/10.3389/fpls.2016.01416] [PMID: 27708662]
[45]
Ma, C.L.; Qi, Y.P.; Liang, W.W.; Yang, L.T.; Lu, Y.B.; Guo, P.; Ye, X.; Chen, L.S. Liang, W.W.; Yang, L.T.; Lu, Y.B.; Guo, P.; Ye, X.; Chen, L.S. MicroRNA regulatory mechanisms on Citrus sinensis leaves to magnesium-deficiency. Front. Plant Sci., 2016, 7, 201.
[http://dx.doi.org/10.3389/fpls.2016.00201] [PMID: 26973661]
[46]
Das, A.; Das, P.; Kalita, M.C.; Mondal, T.K. Computational identification, target prediction, and validation of conserved miRNAs in insulin plant (Costus pictus D. Don). Appl. Biochem. Biotechnol., 2016, 178(3), 513-526.
[http://dx.doi.org/10.1007/s12010-015-1891-9] [PMID: 26490377]
[47]
Singh, N.; Sharma, A. Turmeric (Curcuma longa): MiRNAs and their regulating targets are involved in development and secondary metabolite pathways. C. R. Biol., 2017, 340(11-12), 481-491.
[http://dx.doi.org/10.1016/j.crvi.2017.09.009] [PMID: 29126713]
[48]
Meng, Y.; Yu, D.; Xue, J.; Lu, J.; Feng, S.; Shen, C.; Wang, H. A transcriptome-wide, organ-specific regulatory map of Dendrobium officinale, an important traditional Chinese orchid herb. Sci. Rep., 2016, 6, 18864.
[http://dx.doi.org/10.1038/srep18864] [PMID: 26732614]
[49]
Wu, B.; Li, Y.; Yan, H.; Ma, Y.; Luo, H.; Yuan, L.; Chen, S.; Lu, S. Comprehensive transcriptome analysis reveals novel genes involved in cardiac glycoside biosynthesis and mlncRNAs associated with secondary metabolism and stress response in Digitalis purpurea. BMC Genomics, 2012, 13, 15.
[http://dx.doi.org/10.1186/1471-2164-13-15] [PMID: 22233149]
[50]
Wang, L.; Du, H.; Wuyun, T.N. Genome-wide identification of microRNAs and their targets in the leaves and fruits of Eucommia ulmoides using high-throughput sequencing. Front. Plant Sci., 2016, 7, 1632.
[http://dx.doi.org/10.3389/fpls.2016.01632] [PMID: 27877179]
[51]
Ye, J.; Han, W.; Fan, R.; Liu, M.; Li, L.; Jia, X. Integration of transcriptomes, small RNAs, and degradome sequencing to identify putative miRNAs and their targets related to Eu-rubber biosynthesis in Eucommia ulmoides. Genes (Basel), 2019, 10(8), 623.
[http://dx.doi.org/10.3390/genes10080623] [PMID: 31430866]
[52]
Lin, Y.; Lai, Z. Comparative analysis reveals dynamic changes in miRNAs and their targets and expression during somatic embryogenesis in longan (Dimocarpus longan Lour.). PLoS One, 2013, 8(4), e60337.
[http://dx.doi.org/10.1371/journal.pone.0060337] [PMID: 23593197]
[53]
Sobhani Najafabadi, A.; Naghavi, M.R. Mining Ferula gummosa transcriptome to identify miRNAs involved in the regulation and biosynthesis of terpenes. Gene, 2018, 645, 41-47.
[http://dx.doi.org/10.1016/j.gene.2017.12.035] [PMID: 29273556]
[54]
Zhang, Q.; Li, J.; Sang, Y.; Xing, S.; Wu, Q.; Liu, X. Identification and Characterization of MicroRNAs in Ginkgo biloba var. epiphylla Mak. PLoS One, 2015, 10(5), e0127184.
[http://dx.doi.org/10.1371/journal.pone.0127184] [PMID: 25978425]
[55]
Wang, L.; Zhao, J.G.; Zhang, M.; Li, W.X.; Luo, K.G.; Lu, Z.G.; Zhang, C.Q.; Jin, B. Identification and characterization of microRNA expression in Ginkgo biloba L. leaves. Tree Genet. Genomes, 2015, 11, 76.
[http://dx.doi.org/10.1007/s11295-015-0897-3]
[56]
Wang, L.; Zhao, J.G.; Luo, K.G.; Cui, J.W.; He, Q.S.; Xia, X.; Lu, Z.G.; Li, W.X.; Jin, B. Deep sequencing discovery and profiling of conserved and novel miRNAs in the ovule of Ginkgo biloba. Trees (Berl.), 2016, 30, 1557-1567.
[http://dx.doi.org/10.1007/s00468-016-1389-2]
[57]
Mishra, A.K.; Duraisamy, G.S.; Týcová, A.; Matoušek, J. Computational exploration of microRNAs from expressed sequence tags of Humulus lupulus, target predictions and expression analysis. Comput. Biol. Chem, 2015, 59Pt A, 131-141.
[58]
Mishra, A.K.; Duraisamy, G.S.; Matoušek, J.; Radisek, S.; Javornik, B.; Jakse, J. Identification and characterization of microRNAs in Humulus lupulus using high-throughput sequencing and their response to Citrus bark Cracking Viroid (CBCVd) infection. BMC Genomics, 2016, 17(1), 919.
[http://dx.doi.org/10.1186/s12864-016-3271-4] [PMID: 27846797]
[59]
Galla, G.; Volpato, M.; Sharbel, T.F.; Barcaccia, G. Computational identification of conserved microRNAs and their putative targets in the Hypericum perforatum L. flower transcriptome. Plant Reprod., 2013, 26(3), 209-229.
[http://dx.doi.org/10.1007/s00497-013-0227-6] [PMID: 23846415]
[60]
Vishwakarma, N.P.; Jadeja, V.J. Identification of miRNA encoded by Jatropha curcas from EST and GSS. Plant Signal. Behav., 2013, 8(2), e23152.
[http://dx.doi.org/10.4161/psb.23152] [PMID: 23299511]
[61]
Zhou, L.; Quan, S.; Xu, H.; Ma, L.; Niu, J. Identification and expression of miRNAs related to female flower induction in walnut (Juglans regia L.). Molecules, 2018, 23(5), 1202.
[http://dx.doi.org/10.3390/molecules23051202] [PMID: 29772800]
[62]
Yao, F.; Zhu, H.; Yi, C.; Qu, H.; Jiang, Y. MicroRNAs and targets in senescent litchi fruit during ambient storage and post-cold storage shelf life. BMC Plant Biol., 2015, 15, 181.
[http://dx.doi.org/10.1186/s12870-015-0509-2] [PMID: 26179282]
[63]
Liu, R.; Lai, B.; Hu, B.; Qin, Y.; Hu, G.; Zhao, J. Identification of microRNAs and their target genes related to the accumulation of anthocyanins in Litchi chinensis by high-throughput sequencing and degradome analysis. Front. Plant Sci., 2017, 7, 2059.
[http://dx.doi.org/10.3389/fpls.2016.02059] [PMID: 28119728]
[64]
Xia, H.; Zhang, L.; Wu, G.; Fu, C.; Long, Y.; Xiang, J.; Gan, J.; Zhou, Y.; Yu, L.; Li, M. Genome-wide identification and characterization of microRNAs and target genes in Lonicera japonica. PLoS One, 2016, 11(10), e0164140.
[http://dx.doi.org/10.1371/journal.pone.0164140] [PMID: 27711182]
[65]
Khaldun, A.B.; Huang, W.; Liao, S.; Lv, H.; Wang, Y. Identification of microRNAs and target genes in the fruit and shoot tip of Lycium chinense: A traditional Chinese medicinal plant. PLoS One, 2015, 10(1), e0116334.
[http://dx.doi.org/10.1371/journal.pone.0116334] [PMID: 25587984]
[66]
Singh, N.; Srivastava, S.; Shasany, A.K.; Sharma, A. Identification of miRNAs and their targets involved in the secondary metabolic pathways of Mentha spp. Comput. Biol. Chem., 2016, 64, 154-162.
[http://dx.doi.org/10.1016/j.compbiolchem.2016.06.004 PMID: 27376499]
[67]
Thirugnanasambantham, K.; Saravanan, S.; Karikalan, K.; Bharanidharan, R.; Lalitha, P.; Ilango, S. HairulIslam, V.I. Identification of evolutionarily conserved Momordica charantia microRNAs using computational approach and its utility in phylogeny analysis. Comput. Biol. Chem., 2015, 58, 25-39.
[http://dx.doi.org/10.1016/j.compbiolchem.2015.04.011 PMID: 25988220]
[68]
Pirrò, S.; Zanella, L.; Kenzo, M.; Montesano, C.; Minutolo, A.; Potestà, M.; Sobze, M.S.; Canini, A.; Cirilli, M.; Muleo, R.; Colizzi, V.; Galgani, A. MicroRNA from Moringa oleifera: Identification by high throughput sequencing and their potential contribution to plant medicinal value. PLoS One, 2016, 11(3), e0149495.
[http://dx.doi.org/10.1371/journal.pone.0149495] [PMID: 26930203]
[69]
Pan, L.; Wang, X.; Jin, J.; Yu, X.; Hu, J. Bioinformatic identification and expression analysis of Nelumbo nucifera microRNA and their targets. Appl. Plant Sci., 2015, 3(9), 1500046.
[http://dx.doi.org/10.3732/apps.1500046] [PMID: 26421251]
[70]
Hu, J.; Jin, J.; Qian, Q.; Huang, K.; Ding, Y. Small RNA and degradome profiling reveals miRNA regulation in the seed germination of ancient eudicot Nelumbo nucifera. BMC Genomics, 2016, 17, 684.
[http://dx.doi.org/10.1186/s12864-016-3032-4] [PMID: 27565736]
[71]
Jin, Q.; Xu, Y.; Mattson, N.; Li, X.; Wang, B.; Zhang, X.; Jiang, H.; Liu, X.; Wang, Y.; Yao, D. Identification of submergence-responsive microRNAs and their targets reveals complex miRNA-mediated regulatory networks in lotus (Nelumbo nucifera Gaertn). Front. Plant Sci., 2017, 8, 6.
[http://dx.doi.org/10.3389/fpls.2017.00006] [PMID: 28149304]
[72]
Libao, C.; Huiying, L.; Yuyan, H.; Shuyan, L. Transcriptome analysis of miRNAs expression reveals novel insights into adventitious root formation in lotus (Nelumbo nucifera Gaertn.). Mol. Biol. Rep., 2019, 46(3), 2893-2905.
[http://dx.doi.org/10.1007/s11033-019-04749-z] [PMID: 30864113]
[73]
Singh, N.; Sharma, A. In-silico identification of miRNAs and their regulating target functions in Ocimum basilicum. Gene, 2014, 552(2), 277-282.
[http://dx.doi.org/10.1016/j.gene.2014.09.040] [PMID: 25256277]
[74]
Patel, M.; Mangukia, N.; Jha, N.; Gadhavi, H.; Shah, K.; Patel, S.; Mankad, A.; Pandya, H.; Rawal, R. Computational identification of miRNA and their cross kingdom targets from expressed sequence tags of Ocimum basilicum. Mol. Biol. Rep., 2019, 46(3), 2979-2995.
[http://dx.doi.org/10.1007/s11033-019-04759-x] [PMID: 31066002]
[75]
Jiang, Q.; Wang, F.; Tan, H.W.; Li, M.Y.; Xu, Z.S.; Tan, G.F.; Xiong, A.S. De novo transcriptome assembly, gene annotation, marker development, and miRNA potential target genes validation under abiotic stresses in Oenanthe javanica. Mol. Genet. Genomics, 2015, 290(2), 671-683.
[http://dx.doi.org/10.1007/s00438-014-0953-y] [PMID: 25416420]
[76]
Zhao, D.; Gong, S.; Hao, Z.; Tao, J. Identification of miRNAs responsive to Botrytis cinerea in herbaceous peony (Paeonia lactiflora Pall.) by high-throughput sequencing. Genes (Basel), 2015, 6(3), 918-934.
[http://dx.doi.org/10.3390/genes6030918] [PMID: 26393656]
[77]
Zhao, D.; Wei, M.; Shi, M.; Hao, Z.; Tao, J. Identification and comparative profiling of miRNAs in herbaceous peony (Paeonia lactiflora Pall.) with red/yellow bicoloured flowers. Sci. Rep., 2017, 7, 44926.
[http://dx.doi.org/10.1038/srep44926] [PMID: 28317945]
[78]
Wu, B.; Wang, M.; Ma, Y.; Yuan, L.; Lu, S. High-throughput sequencing and characterization of the small RNA transcriptome reveal features of novel and conserved microRNAs in Panax ginseng. PLoS One, 2012, 7(9), e44385.
[http://dx.doi.org/10.1371/journal.pone.0044385] [PMID: 22962612]
[79]
Li, C.; Zhu, Y.; Guo, X.; Sun, C.; Luo, H.; Song, J.; Li, Y.; Wang, L.; Qian, J.; Chen, S. Transcriptome analysis reveals ginsenosides biosynthetic genes, microRNAs and simple sequence repeats in Panax ginseng C. A. Meyer. BMC Genomics, 2013, 14, 245.
[http://dx.doi.org/10.1186/1471-2164-14-245] [PMID: 23577925]
[80]
Mathiyalagan, R.; Subramaniyam, S.; Natarajan, S.; Kim, Y.J.; Sun, M.S.; Kim, S.Y.; Kim, Y.J.; Yang, D.C. In silico profiling of microRNAs in Korean ginseng (Panax ginseng Meyer). J. Ginseng Res., 2013, 37(2), 227-247.
[http://dx.doi.org/10.5142/jgr.2013.37.227] [PMID: 23717176]
[81]
Wang, M.; Wu, B.; Chen, C.; Lu, S. Identification of mRNA-like non-coding RNAs and validation of a mighty one named MAR in Panax ginseng. J. Integr. Plant Biol., 2015, 57(3), 256-270.
[http://dx.doi.org/10.1111/jipb.12239] [PMID: 25040236]
[82]
Jung, I.; Kang, H.; Kim, J.U.; Chang, H.; Kim, S.; Jung, W. The mRNA and miRNA transcriptomic landscape of Panax ginseng under the high ambient temperature. BMC Syst. Biol., 2018, 12(Suppl. 2), 27.
[http://dx.doi.org/10.1186/s12918-018-0548-z] [PMID: 29560829]
[83]
Wang, Y.; Peng, M.; Chen, Y.; Wang, W.; He, Z.; Yang, Z.; Lin, Z.; Gong, M.; Yin, Y.; Zeng, Y. Analysis of Panax ginseng miRNAs and their target prediction based on high-throughput sequencing. Planta Med., 2019, 85(14-15), 1168-1176.
[http://dx.doi.org/10.1055/a-0989-7302] [PMID: 31434113]
[84]
Wei, R.; Qiu, D.; Wilson, I.W.; Zhao, H.; Lu, S.; Miao, J.; Feng, S.; Bai, L.; Wu, Q.; Tu, D.; Ma, X.; Tang, Q. Identification of novel and conserved microRNAs in Panax notoginseng roots by high-throughput sequencing. BMC Genomics, 2015, 16, 835.
[http://dx.doi.org/10.1186/s12864-015-2010-6] [PMID: 26490136]
[85]
Zheng, Y.; Chen, K.; Xu, Z.; Liao, P.; Zhang, X.; Liu, L.; Wei, K.; Liu, D.; Li, Y.F.; Sunkar, R.; Cui, X. Small RNA profiles from Panax notoginseng roots differing in sizes reveal correlation between miR156 abundances and root biomass levels. Sci. Rep., 2017, 7(1), 9418.
[http://dx.doi.org/10.1038/s41598-017-09670-8] [PMID: 28842680]
[86]
Unver, T.; Parmaksiz, I.; Dündar, E. Identification of conserved micro-RNAs and their target transcripts in opium poppy (Papaver somniferum L.). Plant Cell Rep., 2010, 29(7), 757-769.
[http://dx.doi.org/10.1007/s00299-010-0862-4] [PMID: 20443006]
[87]
Boke, H.; Ozhuner, E.; Turktas, M.; Parmaksiz, I.; Ozcan, S.; Unver, T. Regulation of the alkaloid biosynthesis by miRNA in opium poppy. Plant Biotechnol. J., 2015, 13(3), 409-420.
[http://dx.doi.org/10.1111/pbi.12346] [PMID: 25735537]
[88]
Lu, J.; Xu, M.; Cai, J.; Yu, D.; Meng, Y.; Wang, H. Transcriptome-wide identification of microRNAs and functional insights inferred from microRNA-target pairs in Physalis angulata L. Plant Signal. Behav., 2019, 14(8), 1629267.
[http://dx.doi.org/10.1080/15592324.2019.1629267] [PMID: 31184247]
[89]
Vashisht, I.; Mishra, P.; Pal, T.; Chanumolu, S.; Singh, T.R.; Chauhan, R.S. Mining NGS transcriptomes for miRNAs and dissecting their role in regulating growth, development, and secondary metabolites production in different organs of a medicinal herb, Picrorhiza kurroa. Planta, 2015, 241(5), 1255-1268.
[http://dx.doi.org/10.1007/s00425-015-2255-y] [PMID: 25663583]
[90]
Wang, B.; Dong, M.; Chen, W.; Liu, X.; Feng, R.; Xu, T. Microarray identification of conserved microRNAs in Pinellia pedatisecta. Gene, 2012, 498(1), 36-40.
[http://dx.doi.org/10.1016/j.gene.2012.01.075] [PMID: 22349024]
[91]
Xu, T.; Wang, B.; Liu, X.; Feng, R.; Dong, M.; Chen, J. Microarray-based identification of conserved microRNAs from Pinellia ternata. Gene, 2012, 493(2), 267-272.
[http://dx.doi.org/10.1016/j.gene.2011.08.009] [PMID: 22166543]
[92]
Hazra, S.; Bhattacharyya, D.; Chattopadhyay, S. Methyl jasmonate regulates podophyllotoxin accumulation in Podophyllum hexandrum by altering the ROS-responsive podophyllotoxin pathway gene expression additionally through the down regulation of few interfering miRNAs. Front. Plant Sci., 2017, 8, 164.
[http://dx.doi.org/10.3389/fpls.2017.00164] [PMID: 28261233]
[93]
Biswas, S.; Hazra, S.; Chattopadhyay, S. Identification of conserved miRNAs and their putative target genes in Podophyllum hexandrum (Himalayan Mayapple). Plant Gene, 2016, 6, 82-89.
[http://dx.doi.org/10.1016/j.plgene.2016.04.002]
[94]
He, M.; Yao, Y.; Li, Y.; Yang, M.; Li, Y.; Wu, B.; Yu, D. Comprehensive transcriptome analysis reveals genes potentially involved in isoflavone biosynthesis in Pueraria thomsonii Benth. PLoS One, 2019, 14(6), e0217593.
[http://dx.doi.org/10.1371/journal.pone.0217593] [PMID: 31163077]
[95]
Saminathan, T.; Bodunrin, A.; Singh, N.V.; Devarajan, R.; Nimmakayala, P.; Jeff, M.; Aradhya, M.; Reddy, U.K. Genome-wide identification of microRNAs in pomegranate (Punica granatum L.) by high-throughput sequencing. BMC Plant Biol., 2016, 16(1), 122.
[http://dx.doi.org/10.1186/s12870-016-0807-3] [PMID: 27230657]
[96]
Muvva, C.; Tewari, L.; Aruna, K.; Ranjit, P.; Md, Z.S.; Md, K.A.; Veeramachaneni, H. In silico identification of miRNAs and their targets from the expressed sequence tags of Raphanus sativus. Bioinformation, 2012, 8(2), 98-103.
[http://dx.doi.org/10.6026/97320630008098] [PMID: 22359443]
[97]
Xu, L.; Wang, Y.; Xu, Y.; Wang, L.; Zhai, L.; Zhu, X.; Gong, Y.; Ye, S.; Liu, L. Identification and characterization of novel and conserved microRNAs in radish (Raphanus sativus L.) using high-throughput sequencing. Plant Sci., 2013, 201-202, 108-114.
[http://dx.doi.org/10.1016/j.plantsci.2012.11.010] [PMID: 23352408]
[98]
Xu, L.; Wang, Y.; Zhai, L.; Xu, Y.; Wang, L.; Zhu, X.; Gong, Y.; Yu, R.; Limera, C.; Liu, L. Genome-wide identification and characterization of cadmium-responsive microRNAs and their target genes in radish (Raphanus sativus L.) roots. J. Exp. Bot., 2013, 64(14), 4271-4287.
[http://dx.doi.org/10.1093/jxb/ert240] [PMID: 24014874]
[99]
Yu, R.; Wang, Y.; Xu, L.; Zhu, X.; Zhang, W.; Wang, R.; Gong, Y.; Limera, C.; Liu, L. Transcriptome profiling of root microRNAs reveals novel insights into taproot thickening in radish (Raphanus sativus L.). BMC Plant Biol., 2015, 15, 30.
[http://dx.doi.org/10.1186/s12870-015-0427-3] [PMID: 25644462]
[100]
Sun, X.; Xu, L.; Wang, Y.; Yu, R.; Zhu, X.; Luo, X.; Gong, Y.; Wang, R.; Limera, C.; Zhang, K.; Liu, L. Identification of novel and salt-responsive miRNAs to explore miRNA-mediated regulatory network of salt stress response in radish (Raphanus sativus L.). BMC Genomics, 2015, 16, 197.
[http://dx.doi.org/10.1186/s12864-015-1416-5] [PMID: 25888374]
[101]
Sun, Y.; Qiu, Y.; Zhang, X.; Chen, X.; Shen, D.; Wang, H.; Li, X. Genome-wide identification of microRNAs associated with taproot development in radish (Raphanus sativus L.). Gene, 2015, 569(1), 118-126.
[http://dx.doi.org/10.1016/j.gene.2015.05.044] [PMID: 26013046]
[102]
Liu, W.; Xu, L.; Wang, Y.; Shen, H.; Zhu, X.; Zhang, K.; Chen, Y.; Yu, R.; Limera, C.; Liu, L. Transcriptome-wide analysis of chromium-stress responsive microRNAs to explore miRNA-mediated regulatory networks in radish (Raphanus sativus L.). Sci. Rep., 2015, 5, 14024.
[http://dx.doi.org/10.1038/srep14024] [PMID: 26357995]
[103]
Prakash, P.; Rajakani, R.; Gupta, V. Transcriptome-wide identification of Rauvolfia serpentina microRNAs and prediction of their potential targets. Comput. Biol. Chem., 2016, 61, 62-74.
[http://dx.doi.org/10.1016/j.compbiolchem.2015.12.002] [PMID: 26815768]
[104]
Yang, Y.; Chen, X.; Chen, J.; Xu, H.; Li, J.; Zhang, Z. Identification of novel and conserved microRNAs in Rehmannia glutinosa L. by Solexa sequencing. Plant Mol. Biol. Report., 2011, 29, 986-996.
[http://dx.doi.org/10.1007/s11105-011-0293-6]
[105]
Yang, Y.; Chen, X.; Chen, J.; Xu, H.; Li, J.; Zhang, Z. Differential miRNA expression in Rehmannia glutinosa plants subjected to continuous cropping. BMC Plant Biol., 2011, 11, 53.
[http://dx.doi.org/10.1186/1471-2229-11-53] [PMID: 21439075]
[106]
Li, M.J.; Yang, Y.H.; Chen, X.J.; Wang, F.Q.; Lin, W.X.; Yi, Y.J.; Zeng, L.; Yang, S.Y.; Zhang, Z.Y. Transcriptome/degradome-wide identification of R. glutinosa miRNAs and their targets: The role of miRNA activity in the replanting disease. PLoS One, 2013, 8(7), e68531.
[http://dx.doi.org/10.1371/journal.pone.0068531] [PMID: 23861915]
[107]
Zeng, C.; Wang, W.; Zheng, Y.; Chen, X.; Bo, W.; Song, S.; Zhang, W.; Peng, M. Conservation and divergence of microRNAs and their functions in Euphorbiaceous plants. Nucleic Acids Res., 2010, 38(3), 981-995.
[http://dx.doi.org/10.1093/nar/gkp1035] [PMID: 19942686]
[108]
Xu, W.; Cui, Q.; Li, F.; Liu, A. Transcriptome-wide identification and characterization of microRNAs from castor bean (Ricinus communis L.). PLoS One, 2013, 8(7), e69995.
[http://dx.doi.org/10.1371/journal.pone.0069995] [PMID: 23894571]
[109]
Xia, J.; Zeng, C.; Chen, Z.; Zhang, K.; Chen, X.; Zhou, Y.; Song, S.; Lu, C.; Yang, R.; Yang, Z.; Zhou, J.; Peng, H.; Wang, W.; Peng, M.; Zhang, W. Endogenous small-noncoding RNAs and their roles in chilling response and stress acclimation in Cassava. BMC Genomics, 2014, 15, 634.
[http://dx.doi.org/10.1186/1471-2164-15-634] [PMID: 25070534]
[110]
Shao, F.; Lu, S. Genome-wide identification, molecular cloning, expression profiling and posttranscriptional regulation analysis of the Argonaute gene family in Salvia miltiorrhiza, an emerging model medicinal plant. BMC Genomics, 2013, 14, 512.
[http://dx.doi.org/10.1186/1471-2164-14-512] [PMID: 23889895]
[111]
Xu, X.; Jiang, Q.; Ma, X.; Ying, Q.; Shen, B.; Qian, Y.; Song, H.; Wang, H. Deep sequencing identifies tissue-specific microRNAs and their target genes involving in the biosynthesis of tanshinones in Salvia miltiorrhiza. PLoS One, 2014, 9(11), e111679.
[http://dx.doi.org/10.1371/journal.pone.0111679] [PMID: 25365305]
[112]
Zhang, H.; Jin, W.; Zhu, X.; Liu, L.; He, Z.; Yang, S.; Liang, Z.; Yan, X.; He, Y.; Liu, Y. Identification and characterization of Salvia miltiorrhizain miRNAs in response to replanting disease. PLoS One, 2016, 11(8), e0159905.
[http://dx.doi.org/10.1371/journal.pone.0159905] [PMID: 27483013]
[113]
Li, C.; Li, D.; Li, J.; Shao, F.; Lu, S. Characterization of the polyphenol oxidase gene family reveals a novel microRNA involved in posttranscriptional regulation of PPOs in Salvia miltiorrhiza. Sci. Rep., 2017, 7, 44622.
[http://dx.doi.org/10.1038/srep44622] [PMID: 28304398]
[114]
Li, J.; Li, C.; Lu, S. Systematic analysis of DEMETER-like DNA glycosylase genes shows lineage-specific Smi-miR7972 involved in SmDML1 regulation in Salvia miltiorrhiza. Sci. Rep., 2018, 8(1), 7143.
[http://dx.doi.org/10.1038/s41598-018-25315-w] [PMID: 29739980]
[115]
Li, C.; Li, D.; Zhou, H.; Li, J.; Lu, S. Analysis of the laccase gene family and miR397-/miR408-mediated posttranscriptional regulation in Salvia miltiorrhiza. Peer J., 2019, 7, e7605.
[http://dx.doi.org/10.7717/peerj.7605] [PMID: 31528508]
[116]
Zhou, H.; Li, C.; Qiu, X.; Lu, S. Systematic analysis of alkaline/neutral invertase genes reveals the involvement of Smi-miR399 in regulation of SmNINV3 and SmNINV4 in Salvia miltiorrhiza. Plants (Basel), 2019, 8(11), 490.
[http://dx.doi.org/10.3390/plants8110490] [PMID: 31717988]
[117]
Legrand, S.; Valot, N.; Nicolé, F.; Moja, S.; Baudino, S.; Jullien, F.; Magnard, J.L.; Caissard, J.C.; Legendre, L. One-step identification of conserved miRNAs, their targets, potential transcription factors and effector genes of complete secondary metabolism pathways after 454 pyrosequencing of calyx cDNAs from the Labiate Salvia sclarea L. Gene, 2010, 450(1-2), 55-62.
[http://dx.doi.org/10.1016/j.gene.2009.10.004] [PMID: 19840835]
[118]
Sahu, S.; Khushwaha, A.; Dixit, R. Computational identification of miRNAs in medicinal plant Senecio vulgaris (Groundsel). Bioinformation, 2011, 7(8), 375-378.
[http://dx.doi.org/10.6026/97320630007375] [PMID: 22347777]
[119]
Qiu, D.; Pan, X.; Wilson, I.W.; Li, F.; Liu, M.; Teng, W.; Zhang, B. High throughput sequencing technology reveals that the taxoid elicitor methyl jasmonate regulates microRNA expression in Chinese yew (Taxus chinensis). Gene, 2009, 436(1-2), 37-44.
[http://dx.doi.org/10.1016/j.gene.2009.01.006] [PMID: 19393185]
[120]
Hao, D.C.; Yang, L.; Xiao, P.G.; Liu, M. Identification of Taxus microRNAs and their targets with high-throughput sequencing and degradome analysis. Physiol. Plant., 2012, 146(4), 388-403.
[http://dx.doi.org/10.1111/j.1399-3054.2012.01668.x] [PMID: 22708792]
[121]
Zhu, Z.; Miao, Y.; Guo, Q.; Zhu, Y.; Yang, X.; Sun, Y. Identification of miRNAs involved in stolon formation in Tulipa edulis by high-throughput sequencing. Front. Plant Sci., 2016, 7, 852.
[http://dx.doi.org/10.3389/fpls.2016.00852] [PMID: 27446103]
[122]
Xie, W.; Adolf, J.; Melzig, M.F. Identification of Viscum album L. miRNAs and prediction of their medicinal values. PLoS One, 2017, 12(11), e0187776.
[http://dx.doi.org/10.1371/journal.pone.0187776] [PMID: 29112983]
[123]
Srivastava, S. Sanchita; Singh, R.; Srivastava, G.; Comparative study of withanolide biosynthesis-related miRNAs in root and leaf tissues of Withania somnifera. Appl. Biochem. Biotechnol., 2018, 185(4), 1145-1159.
[http://dx.doi.org/10.1007/s12010-018-2702-x] [PMID: 29476318]
[124]
Fan, R.; Li, Y.; Li, C.; Zhang, Y. Differential microRNA analysis of glandular trichomes and young leaves in Xanthium strumarium L. reveals their putative roles in regulating terpenoid biosynthesis. PLoS One, 2015, 10(9), e0139002.
[http://dx.doi.org/10.1371/journal.pone.0139002] [PMID: 26406988]
[125]
Singh, N.; Srivastava, S.; Sharma, A. Identification and analysis of miRNAs and their targets in ginger using bioinformatics approach. Gene, 2016, 575(2 Pt 2), 570-576.
[http://dx.doi.org/10.1016/j.gene.2015.09.036] [PMID: 26392033]
[126]
Shao, F.; Zhang, Q.; Liu, H.; Lu, S.; Qiu, D. Genome-wide identification and analysis of microRNAs involved in witches’-broom phytoplasma response in Ziziphus jujuba. PLoS One, 2016, 11(11), e0166099.
[http://dx.doi.org/10.1371/journal.pone.0166099] [PMID: 27824938]
[127]
Lu, S. The Salvia miltiorrhiza Genome; Springer Nature: Switzerland, 2019.
[http://dx.doi.org/10.1007/978-3-030-24716-4]
[128]
Zhang, L.; Lu, S. Overview of medicinally important diterpenoids derived from plastids. Mini Rev. Med. Chem., 2017, 17(12), 988-1001.
[http://dx.doi.org/10.2174/1389557516666160614005244] [PMID: 27297674]
[129]
Ma, Y.; Yuan, L.; Wu, B.; Li, X.; Chen, S.; Lu, S. Genome-wide identification and characterization of novel genes involved in terpenoid biosynthesis in Salvia miltiorrhiza. J. Exp. Bot., 2012, 63(7), 2809-2823.
[http://dx.doi.org/10.1093/jxb/err466] [PMID: 22291132]
[130]
Liu, M.; Lu, S. Plastoquinone and ubiquinone in plants: Biosynthesis, physiological function and metabolic engineering. Front. Plant Sci., 2016, 7, 1898.
[http://dx.doi.org/10.3389/fpls.2016.01898] [PMID: 28018418]
[131]
Liu, M.; Ma, Y.; Du, Q.; Hou, X.; Wang, M.; Lu, S. Functional analysis of polyprenyl diphosphate synthase genes involved in plastoquinone and ubiquinone biosynthesis in Salvia miltiorrhiza. Front. Plant Sci., 2019, 10, 893.
[http://dx.doi.org/10.3389/fpls.2019.00893] [PMID: 31354766]
[132]
Liu, M.; Chen, X.; Wang, M.; Lu, S. SmPPT, a 4-hydroxybenzoate polyprenyl diphosphate transferase gene involved in ubiquinone biosynthesis, confers salt tolerance in Salvia miltiorrhiza. Plant Cell Rep., 2019, 38(12), 1527-1540.
[http://dx.doi.org/10.1007/s00299-019-02463-5] [PMID: 31471635]
[133]
Deng, Y.; Li, C.; Li, H.; Lu, S. Identification and characterization of flavonoid biosynthetic enzyme genes in Salvia miltiorrhiza (Lamiaceae). Molecules, 2018, 23(6), 1467.
[http://dx.doi.org/10.3390/molecules23061467] [PMID: 29914175]
[134]
Li, C.; Li, D.; Shao, F.; Lu, S. Molecular cloning and expression analysis of WRKY transcription factor genes in Salvia miltiorrhiza. BMC Genomics, 2015, 16, 200.
[http://dx.doi.org/10.1186/s12864-015-1411-x] [PMID: 25881056]
[135]
Li, H.; Li, C.; Deng, Y.; Jiang, X.; Lu, S. The pentatricopeptide repeat gene family in Salvia miltiorrhiza: Genome-wide characterization and expression analysis. Molecules, 2018, 23(6), 1364.
[http://dx.doi.org/10.3390/molecules23061364] [PMID: 29882758]
[136]
Chang, Y.; Wang, M.; Li, J.; Lu, S. Transcriptomic analysis reveals potential genes involved in tanshinone biosynthesis in Salvia miltiorrhiza. Sci. Rep., 2019, 9(1), 14929.
[http://dx.doi.org/10.1038/s41598-019-51535-9] [PMID: 31624328]
[137]
Shao, F.; Qiu, D.; Lu, S. Comparative analysis of the Dicer-like gene family reveals loss of miR162 target site in SmDCL1 from Salvia miltiorrhiza. Sci. Rep., 2015, 5, 9891.
[http://dx.doi.org/10.1038/srep09891] [PMID: 25970825]
[138]
Shao, F.; Lu, S. Identification, molecular cloning and expression analysis of five RNA-dependent RNA polymerase genes in Salvia miltiorrhiza. PLoS One, 2014, 9(4), e95117.
[http://dx.doi.org/10.1371/journal.pone.0095117] [PMID: 24733018]
[139]
Wang, M.; Deng, Y.; Shao, F.; Liu, M.; Pang, Y.; Li, C.; Lu, S. ARGONAUTE genes in Salvia miltiorrhiza: Identification, characterization, and genetic transformation. Methods Mol. Biol., 2017, 1640, 173-189.
[http://dx.doi.org/10.1007/978-1-4939-7165-7_12] [PMID: 28608342]
[140]
Vaucheret, H.; Vazquez, F.; Crété, P.; Bartel, D.P. The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes Dev., 2004, 18(10), 1187-1197.
[http://dx.doi.org/10.1101/gad.1201404] [PMID: 15131082]
[141]
Zhang, L.; Wu, B.; Zhao, D.; Li, C.; Shao, F.; Lu, S. Genome-wide analysis and molecular dissection of the SPL gene family in Salvia miltiorrhiza. J. Integr. Plant Biol., 2014, 56(1), 38-50.
[http://dx.doi.org/10.1111/jipb.12111] [PMID: 24112769]
[142]
MacIntosh, G.C.; Wilkerson, C.; Green, P.J. Identification and analysis of Arabidopsis expressed sequence tags characteristic of non-coding RNAs. Plant Physiol., 2001, 127(3), 765-776.
[http://dx.doi.org/10.1104/pp.010501] [PMID: 11706161]
[143]
Ben Amor, B.; Wirth, S.; Merchan, F.; Laporte, P.; d’Aubenton-Carafa, Y.; Hirsch, J.; Maizel, A.; Mallory, A.; Lucas, A.; Deragon, J.M.; Vaucheret, H.; Thermes, C.; Crespi, M. Novel long non-protein coding RNAs involved in Arabidopsis differentiation and stress responses. Genome Res., 2009, 19(1), 57-69.
[http://dx.doi.org/10.1101/gr.080275.108] [PMID: 18997003]
[144]
Zhao, X.; Li, J.; Lian, B.; Gu, H.; Li, Y.; Qi, Y. Global identification of Arabidopsis lncRNAs reveals the regulation of MAF4 by a natural antisense RNA. Nat. Commun., 2018, 9(1), 5056.
[http://dx.doi.org/10.1038/s41467-018-07500-7] [PMID: 30498193]
[145]
Wen, J.; Parker, B.J.; Weiller, G.F. In silico identification and characterization of mRNA-like noncoding transcripts in Medicago truncatula. In Silico Biol. (Gedrukt), 2007, 7(4-5), 485-505.
[PMID: 18391239]
[146]
Xin, M.; Wang, Y.; Yao, Y.; Song, N.; Hu, Z.; Qin, D.; Xie, C.; Peng, H.; Ni, Z.; Sun, Q. Identification and characterization of wheat long non-protein coding RNAs responsive to powdery mildew infection and heat stress by using microarray analysis and SBS sequencing. BMC Plant Biol., 2011, 11, 61.
[http://dx.doi.org/10.1186/1471-2229-11-61] [PMID: 21473757]
[147]
Boerner, S.; McGinnis, K.M. Computational identification and functional predictions of long noncoding RNA in Zea mays. PLoS One, 2012, 7(8), e43047.
[http://dx.doi.org/10.1371/journal.pone.0043047] [PMID: 22916204]
[148]
Han, G.; Cheng, C.; Zheng, Y.; Wang, X.; Xu, Y.; Wang, W.; Zhu, S.; Cheng, B. Identification of long non-coding RNAs and the regulatory network responsive to arbuscular mycorrhizal fungi colonization in maize roots. Int. J. Mol. Sci., 2019, 20(18), 4491.
[http://dx.doi.org/10.3390/ijms20184491] [PMID: 31514333]
[149]
Tian, Y.; Bai, S.; Dang, Z.; Hao, J.; Zhang, J.; Hasi, A. Genome-wide identification and characterization of long non-coding RNAs involved in fruit ripening and the climacteric in Cucumis melo. BMC Plant Biol., 2019, 19(1), 369.
[http://dx.doi.org/10.1186/s12870-019-1942-4] [PMID: 31438855]
[150]
Salih, H.; Gong, W.; He, S.; Xia, W.; Odongo, M.R.; Du, X. Long non-coding RNAs and their potential functions in Ligon-lintless-1 mutant cotton during fiber development. BMC Genomics, 2019, 20(1), 661.
[http://dx.doi.org/10.1186/s12864-019-5978-5] [PMID: 31426741]
[151]
Yu, Y.; Zhou, Y.F.; Feng, Y.Z.; He, H.; Lian, J.P.; Yang, Y.W.; Lei, M.Q.; Zhang, Y.C.; Chen, Y.Q. Transcriptional landscape of pathogen-responsive lncRNAs in rice unveils the role of ALEX1 in jasmonate pathway and disease resistance. Plant Biotechnol. J., 2020, 18(3), 679-690.
[http://dx.doi.org/10.1111/pbi.13234] [PMID: 31419052]
[152]
Narnoliya, L.K.; Kaushal, G.; Singh, S.P. Long noncoding RNAs and miRNAs regulating terpene and tartaric acid biosynthesis in rose-scented geranium. FEBS Lett., 2019, 593(16), 2235-2249.
[http://dx.doi.org/10.1002/1873-3468.13493] [PMID: 31210363]
[153]
Ding, Z.; Wu, C.; Tie, W.; Yan, Y.; He, G.; Hu, W. Strand-specific RNA-seq based identification and functional prediction of lncRNAs in response to melatonin and simulated drought stresses in cassava. Plant Physiol. Biochem., 2019, 140, 96-104.
[http://dx.doi.org/10.1016/j.plaphy.2019.05.008] [PMID: 31085451]
[154]
Bai, Y.; Dai, X.; Li, Y.; Wang, L.; Li, W.; Liu, Y.; Cheng, Y.; Qin, Y. Identification and characterization of pineapple leaf lncRNAs in Crassulacean Acid Metabolism (CAM) photosynthesis pathway. Sci. Rep., 2019, 9(1), 6658.
[http://dx.doi.org/10.1038/s41598-019-43088-8] [PMID: 31040312]
[155]
Shen, E.; Zhu, X.; Hua, S.; Chen, H.; Ye, C.; Zhou, L.; Liu, Q.; Zhu, Q.H.; Fan, L.; Chen, X. Genome-wide identification of oil biosynthesis-related long non-coding RNAs in allopolyploid Brassica napus. BMC Genomics, 2018, 19(1), 745.
[http://dx.doi.org/10.1186/s12864-018-5117-8] [PMID: 30314449]
[156]
Li, D.; Shao, F.; Lu, S. Identification and characterization of mRNA-like noncoding RNAs in Salvia miltiorrhiza. Planta, 2015, 241(5), 1131-1143.
[http://dx.doi.org/10.1007/s00425-015-2246-z] [PMID: 25601000]
[157]
Gupta, O.P.; Karkute, S.G.; Banerjee, S.; Meena, N.L.; Dahuja, A. Contemporary understanding of miRNA-based regulation of secondary metabolites biosynthesis in plants. Front. Plant Sci., 2017, 8, 374.
[http://dx.doi.org/10.3389/fpls.2017.00374] [PMID: 28424705]
[158]
Sabzehzari, M.; Naghavi, M.R. Phyto-miRNAs-based regulation of metabolites biosynthesis in medicinal plants. Gene, 2019, 682, 13-24.
[http://dx.doi.org/10.1016/j.gene.2018.09.049] [PMID: 30267812]
[159]
Taylor, R.S.; Tarver, J.E.; Hiscock, S.J.; Donoghue, P.C. Evolutionary history of plant microRNAs. Trends Plant Sci., 2014, 19(3), 175-182.
[http://dx.doi.org/10.1016/j.tplants.2013.11.008] [PMID: 24405820]
[160]
Lu, S.; Li, Q.; Wei, H.; Chang, M.J.; Tunlaya-Anukit, S.; Kim, H.; Liu, J.; Song, J.; Sun, Y.H.; Yuan, L.; Yeh, T.F.; Peszlen, I.; Ralph, J.; Sederoff, R.R.; Chiang, V.L. Ptr-miR397a is a negative regulator of laccase genes affecting lignin content in Populus trichocarpa. Proc. Natl. Acad. Sci. USA, 2013, 110(26), 10848-10853.
[http://dx.doi.org/10.1073/pnas.1308936110] [PMID: 23754401]
[161]
Sun, X.; Bai, R.; Zhang, Y.; Wang, Q.; Fan, X.; Yuan, J.; Cui, L.; Wang, P. Laccase-catalyzed oxidative polymerization of phenolic compounds. Appl. Biochem. Biotechnol., 2013, 171(7), 1673-1680.
[http://dx.doi.org/10.1007/s12010-013-0463-0] [PMID: 23996120]
[162]
Pourcel, L.; Routaboul, J.M.; Kerhoas, L.; Caboche, M.; Lepiniec, L.; Debeaujon, I. TRANSPARENT TESTA10 encodes a laccase-like enzyme involved in oxidative polymerization of flavonoids in Arabidopsis seed coat. Plant Cell, 2005, 17(11), 2966-2980.
[http://dx.doi.org/10.1105/tpc.105.035154] [PMID: 16243908]
[163]
Hu, Q.; Luo, C.; Zhang, Q.; Luo, Z. Isolation and characterization of a laccase gene potentially involved in proanthocyanidin polymerization in Oriental persimmon (Diospyros kaki Thunb.) fruit. Mol. Biol. Rep., 2013, 40(4), 2809-2820.
[http://dx.doi.org/10.1007/s11033-012-2296-2] [PMID: 23224657]
[164]
Zhang, K.; Lu, K.; Qu, C.; Liang, Y.; Wang, R.; Chai, Y.; Li, J. Gene silencing of BnTT10 family genes causes retarded pigmentation and lignin reduction in the seed coat of Brassica napus. PLoS One, 2013, 8(4), e61247.
[http://dx.doi.org/10.1371/journal.pone.0061247] [PMID: 23613820]
[165]
Wang, C.Y.; Zhang, S.; Yu, Y.; Luo, Y.C.; Liu, Q.; Ju, C.; Zhang, Y.C.; Qu, L.H.; Lucas, W.J.; Wang, X.; Chen, Y.Q. MiR397b regulates both lignin content and seed number in Arabidopsis via modulating a laccase involved in lignin biosynthesis. Plant Biotechnol. J., 2014, 12(8), 1132-1142.
[http://dx.doi.org/10.1111/pbi.12222] [PMID: 24975689]
[166]
Xue, C.; Yao, J.L.; Qin, M.F.; Zhang, M.Y.; Allan, A.C.; Wang, D.F.; Wu, J. PbrmiR397a regulates lignification during stone cell development in pear fruit. Plant Biotechnol. J., 2019, 17(1), 103-117.
[http://dx.doi.org/10.1111/pbi.12950] [PMID: 29754465]
[167]
Zhang, Y.C.; Yu, Y.; Wang, C.Y.; Li, Z.Y.; Liu, Q.; Xu, J.; Liao, J.Y.; Wang, X.J.; Qu, L.H.; Chen, F.; Xin, P.; Yan, C.; Chu, J.; Li, H.Q.; Chen, Y.Q. Overexpression of microRNA OsmiR397 improves rice yield by increasing grain size and promoting panicle branching. Nat. Biotechnol., 2013, 31(9), 848-852.
[http://dx.doi.org/10.1038/nbt.2646] [PMID: 23873084]
[168]
Swetha, C.; Basu, D.; Pachamuthu, K.; Tirumalai, V.; Nair, A.; Prasad, M.; Shivaprasad, P.V. Major domestication-related phenotypes in Indica rice are due to loss of miRNA-mediated laccase silencing. Plant Cell, 2018, 30(11), 2649-2662.
[http://dx.doi.org/10.1105/tpc.18.00472] [PMID: 30341147]
[169]
Mayer, A.M. Polyphenol oxidases in plants and fungi: Going places? A review. Phytochemistry, 2006, 67(21), 2318-2331.
[http://dx.doi.org/10.1016/j.phytochem.2006.08.006] [PMID: 16973188]
[170]
Ono, E.; Hatayama, M.; Isono, Y.; Sato, T.; Watanabe, R.; Yonekura-Sakakibara, K.; Fukuchi-Mizutani, M.; Tanaka, Y.; Kusumi, T.; Nishino, T.; Nakayama, T. Localization of a flavonoid biosynthetic polyphenol oxidase in vacuoles. Plant J., 2006, 45(2), 133-143.
[http://dx.doi.org/10.1111/j.1365-313X.2005.02625.x PMID: 16367960]
[171]
Steiner, U.; Schliemann, W.; Böhm, H.; Strack, D. Tyrosinase involved in betalain biosynthesis of higher plants. Planta, 1999, 208, 114-124.
[http://dx.doi.org/10.1007/s004250050541]
[172]
Cho, M.H.; Moinuddin, S.G.; Helms, G.L.; Hishiyama, S.; Eichinger, D.; Davin, L.B.; Lewis, N.G. (+)-Larreatricin hydroxylase, an enantio-specific polyphenol oxidase from the creosote bush (Larrea tridentata). Proc. Natl. Acad. Sci. USA, 2003, 100(19), 10641-10646.
[http://dx.doi.org/10.1073/pnas.1934562100] [PMID: 12960376]
[173]
Araji, S.; Grammer, T.A.; Gertzen, R.; Anderson, S.D.; Mikulic-Petkovsek, M.; Veberic, R.; Phu, M.L.; Solar, A.; Leslie, C.A.; Dandekar, A.M.; Escobar, M.A. Novel roles for the polyphenol oxidase enzyme in secondary metabolism and the regulation of cell death in walnut. Plant Physiol., 2014, 164(3), 1191-1203.
[http://dx.doi.org/10.1104/pp.113.228593] [PMID: 24449710]
[174]
Lu, S.; Sun, Y.H.; Chiang, V.L. Stress-responsive microRNAs in Populus. Plant J., 2008, 55(1), 131-151.
[http://dx.doi.org/10.1111/j.1365-313X.2008.03497.x] [PMID: 18363789]
[175]
Lu, S.; Sun, Y.H.; Chiang, V.L. Adenylation of plant miRNAs. Nucleic Acids Res., 2009, 37(6), 1878-1885.
[http://dx.doi.org/10.1093/nar/gkp031] [PMID: 19188256]
[176]
Lu, S.; Yang, C.; Chiang, V.L. Conservation and diversity of microRNA-associated copper-regulatory networks in Populus trichocarpa. J. Integr. Plant Biol., 2011, 53(11), 879-891.
[http://dx.doi.org/10.1111/j.1744-7909.2011.01080.x PMID: 22013976]
[177]
Wang, M.; Li, C.; Lu, S. Origin and evolution of MIR1444 genes in Salicaceae. Sci. Rep., 2017, 7, 39740.
[http://dx.doi.org/10.1038/srep39740] [PMID: 28071760]
[178]
Ren, G.; Wang, B.; Zhu, X.; Mu, Q.; Wang, C.; Tao, R.; Fang, J. Cloning, expression, and characterization of miR058 and its target PPO during the development of grapevine berry stone. Gene, 2014, 548(2), 166-173.
[http://dx.doi.org/10.1016/j.gene.2014.07.021] [PMID: 25017059]
[179]
Gou, J.Y.; Felippes, F.F.; Liu, C.J.; Weigel, D.; Wang, J.W. Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-targeted SPL transcription factor. Plant Cell, 2011, 23(4), 1512-1522.
[http://dx.doi.org/10.1105/tpc.111.084525] [PMID: 21487097]
[180]
Cui, L.G.; Shan, J.X.; Shi, M.; Gao, J.P.; Lin, H.X. The miR156-SPL9-DFR pathway coordinates the relationship between development and abiotic stress tolerance in plants. Plant J., 2014, 80(6), 1108-1117.
[http://dx.doi.org/10.1111/tpj.12712] [PMID: 25345491]
[181]
Deng, Y.; Lu, S. Biosynthesis and regulation of phenylpropanoids in plants. Crit. Rev. Plant Sci., 2017, 36, 257-290.
[http://dx.doi.org/10.1080/07352689.2017.1402852]
[182]
Li, C.; Lu, S. Genome-wide characterization and comparative analysis of R2R3-MYB transcription factors shows the complexity of MYB-associated regulatory networks in Salvia miltiorrhiza. BMC Genomics, 2014, 15, 277.
[http://dx.doi.org/10.1186/1471-2164-15-277] [PMID: 24725266]
[183]
Luo, Q.J.; Mittal, A.; Jia, F.; Rock, C.D. An autoregulatory feedback loop involving PAP1 and TAS4 in response to sugars in Arabidopsis. Plant Mol. Biol., 2012, 80(1), 117-129.
[http://dx.doi.org/10.1007/s11103-011-9778-9] [PMID: 21533841]
[184]
Liang, G.; He, H.; Li, Y.; Ai, Q.; Yu, D. MYB82 functions in regulation of trichome development in Arabidopsis. J. Exp. Bot., 2014, 65(12), 3215-3223.
[http://dx.doi.org/10.1093/jxb/eru179] [PMID: 24803498]
[185]
Gonzalez, A.; Zhao, M.; Leavitt, J.M.; Lloyd, A.M. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. Plant J., 2008, 53(5), 814-827.
[http://dx.doi.org/10.1111/j.1365-313X.2007.03373.x] [PMID: 18036197]
[186]
Bonar, N.; Liney, M.; Zhang, R.; Austin, C.; Dessoly, J.; Davidson, D.; Stephens, J.; McDougall, G.; Taylor, M.; Bryan, G.J.; Hornyik, C. Potato miR828 is associated with purple tuber skin and flesh color. Front. Plant Sci., 2018, 9, 1742.
[http://dx.doi.org/10.3389/fpls.2018.01742] [PMID: 30619382]
[187]
Chen, Q.; Deng, B.; Gao, J.; Zhao, Z.; Chen, Z.; Song, S.; Wang, L.; Zhao, L.; Xu, W.; Zhang, C.; Wang, S.; Ma, C. Comparative analysis of miRNA abundance revealed the function of Vvi-miR828 in fruit coloring in root restriction cultivation grapevine (Vitis vinifera L.). Int. J. Mol. Sci., 2019, 20(16), 4058.
[http://dx.doi.org/10.3390/ijms20164058] [PMID: 31434233]
[188]
Tirumalai, V.; Swetha, C.; Nair, A.; Pandit, A.; Shivaprasad, P.V. miR828 and miR858 regulate VvMYB114 to promote anthocyanin and flavonol accumulation in grapes. J. Exp. Bot., 2019, 70(18), 4775-4792.
[http://dx.doi.org/10.1093/jxb/erz264] [PMID: 31145783]
[189]
Lin, J.S.; Lin, C.C.; Lin, H.H.; Chen, Y.C.; Jeng, S.T. MicroR828 regulates lignin and H2O2 accumulation in sweet potato on wounding. New Phytol., 2012, 196(2), 427-440.
[http://dx.doi.org/10.1111/j.1469-8137.2012.04277.x] [PMID: 22931461]
[190]
Zhang, Y.; Yan, Y.P.; Wang, Z.Z. The Arabidopsis PAP1 transcription factor plays an important role in the enrichment of phenolic acids in Salvia miltiorrhiza. J. Agric. Food Chem., 2010, 58(23), 12168-12175.
[http://dx.doi.org/10.1021/jf103203e] [PMID: 21058651]
[191]
Mehrtens, F.; Kranz, H.; Bednarek, P.; Weisshaar, B. The Arabidopsis transcription factor MYB12 is a flavonol-specific regulator of phenylpropanoid biosynthesis. Plant Physiol., 2005, 138(2), 1083-1096.
[http://dx.doi.org/10.1104/pp.104.058032] [PMID: 15923334]
[192]
Stracke, R.; Ishihara, H.; Huep, G.; Barsch, A.; Mehrtens, F.; Niehaus, K.; Weisshaar, B. Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling. Plant J., 2007, 50(4), 660-677.
[http://dx.doi.org/10.1111/j.1365-313X.2007.03078.x] [PMID: 17419845]
[193]
Stracke, R.; Jahns, O.; Keck, M.; Tohge, T.; Niehaus, K.; Fernie, A.R.; Weisshaar, B. Analysis of production of flavonol glycosides-dependent flavonol glycoside accumulation in Arabidopsis thaliana plants reveals MYB11-, MYB12- and MYB111-independent flavonol glycoside accumulation. New Phytol., 2010, 188(4), 985-1000.
[http://dx.doi.org/10.1111/j.1469-8137.2010.03421.x] [PMID: 20731781]
[194]
Pandey, A.; Misra, P.; Trivedi, P.K. Constitutive expression of Arabidopsis MYB transcription factor, AtMYB11, in tobacco modulates flavonoid biosynthesis in favor of flavonol accumulation. Plant Cell Rep., 2015, 34(9), 1515-1528.
[http://dx.doi.org/10.1007/s00299-015-1803-z] [PMID: 25981047]
[195]
Xia, R.; Zhu, H.; An, Y.Q.; Beers, E.P.; Liu, Z. Apple miRNAs and tasiRNAs with novel regulatory networks. Genome Biol., 2012, 13(6), R47.
[http://dx.doi.org/10.1186/gb-2012-13-6-r47] [PMID: 22704043]
[196]
Sharma, D.; Tiwari, M.; Pandey, A.; Bhatia, C.; Sharma, A.; Trivedi, P.K. MicroRNA858 is a potential regulator of phenylpropanoid pathway and plant development. Plant Physiol., 2016, 171(2), 944-959.
[http://dx.doi.org/10.1104/pp.15.01831] [PMID: 27208307]
[197]
Camargo-Ramírez, R.; Val-Torregrosa, B.; San Segundo, B. MiR858-mediated regulation of flavonoid-specific MYB transcription factor genes controls resistance to pathogeni infection in Arabidopsis. Plant Cell Physiol., 2018, 59(1), 190-204.
[http://dx.doi.org/10.1093/pcp/pcx175] [PMID: 29149328]
[198]
Jia, X.; Shen, J.; Liu, H.; Li, F.; Ding, N.; Gao, C.; Pattanaik, S.; Patra, B.; Li, R.; Yuan, L. Small tandem target mimic-mediated blockage of microRNA858 induces anthocyanin accumulation in tomato. Planta, 2015, 242(1), 283-293.
[http://dx.doi.org/10.1007/s00425-015-2305-5] [PMID: 25916310]
[199]
Li, Y.; Cui, W.; Wang, R.; Lin, M.; Zhong, Y.; Sun, L.; Qi, X.; Fang, J. MicroRNA858-mediated regulation of anthocyanin biosynthesis in kiwifruit (Actinidia arguta) based on small RNA sequencing. PLoS One, 2019, 14(5), e0217480.
[http://dx.doi.org/10.1371/journal.pone.0217480] [PMID: 31120996]
[200]
Tuteja, J.H.; Zabala, G.; Varala, K.; Hudson, M.; Vodkin, L.O. Endogenous, tissue-specific short interfering RNAs silence the chalcone synthase gene family in glycine max seed coats. Plant Cell, 2009, 21(10), 3063-3077.
[http://dx.doi.org/10.1105/tpc.109.069856] [PMID: 19820189]
[201]
Morita, Y.; Saito, R.; Ban, Y.; Tanikawa, N.; Kuchitsu, K.; Ando, T.; Yoshikawa, M.; Habu, Y.; Ozeki, Y.; Nakayama, M. Tandemly arranged chalcone synthase A genes contribute to the spatially regulated expression of siRNA and the natural bicolor floral phenotype in Petunia hybrida. Plant J., 2012, 70(5), 739-749.
[http://dx.doi.org/10.1111/j.1365-313X.2012.04908.x] [PMID: 22288551]
[202]
Ohno, S.; Hosokawa, M.; Kojima, M.; Kitamura, Y.; Hoshino, A.; Tatsuzawa, F.; Doi, M.; Yazawa, S. Simultaneous post-transcriptional gene silencing of two different chalcone synthase genes resulting in pure white flowers in the Octoploid dahlia. Planta, 2011, 234(5), 945-958.
[http://dx.doi.org/10.1007/s00425-011-1456-2] [PMID: 21688014]
[203]
Deguchi, A.; Ohno, S.; Hosokawa, M.; Tatsuzawa, F.; Doi, M. Endogenous post-transcriptional gene silencing of flavone synthase resulting in high accumulation of anthocyanins in black dahlia cultivars. Planta, 2013, 237(5), 1325-1335.
[http://dx.doi.org/10.1007/s00425-013-1848-6] [PMID: 23389674]
[204]
Hsieh, L.C.; Lin, S.I.; Shih, A.C.; Chen, J.W.; Lin, W.Y.; Tseng, C.Y.; Li, W.H.; Chiou, T.J. Uncovering small RNA-mediated responses to phosphate deficiency in Arabidopsis by deep sequencing. Plant Physiol., 2009, 151(4), 2120-2132.
[http://dx.doi.org/10.1104/pp.109.147280] [PMID: 19854858]
[205]
Yang, F.; Cai, J.; Yang, Y.; Liu, Z. Overexpression of microRNA828 reduces anthocyanin accumulation in Arabidopsis. Plant Cell Tissue Organ Cult., 2013, 115, 159-167.
[http://dx.doi.org/10.1007/s11240-013-0349-4]
[206]
Borevitz, J.O.; Xia, Y.; Blount, J.; Dixon, R.A.; Lamb, C. Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell, 2000, 12(12), 2383-2394.
[http://dx.doi.org/10.1105/tpc.12.12.2383] [PMID: 11148285]
[207]
Pantaleo, V.; Szittya, G.; Moxon, S.; Miozzi, L.; Moulton, V.; Dalmay, T.; Burgyan, J. Identification of grapevine microRNAs and their targets using high-throughput sequencing and degradome analysis. Plant J., 2010, 62(6), 960-976.
[PMID: 20230504]
[208]
Rock, C.D. Trans-acting small interfering RNA4: Key to nutraceutical synthesis in grape development? Trends Plant Sci., 2013, 18(11), 601-610.
[http://dx.doi.org/10.1016/j.tplants.2013.07.006] [PMID: 23993483]
[209]
Wang, C.; Han, J.; Korir, N.K.; Wang, X.; Liu, H.; Li, X.; Leng, X.; Fang, J. Characterization of target mRNAs for grapevine microRNAs with an integrated strategy of modified RLM-RACE, newly developed PPM-RACE and qPCRs. J. Plant Physiol., 2013, 170(10), 943-957.
[http://dx.doi.org/10.1016/j.jplph.2013.02.005] [PMID: 23582890]
[210]
Qu, D.; Yan, F.; Meng, R.; Jiang, X.; Yang, H.; Gao, Z.; Dong, Y.; Yang, Y.; Zhao, Z. Identification of micro-RNAs and their targets associated with fruit-bagging and subsequent sunlight re-exposure in the “Granny Smith” apple exocarp using high-throughput sequencing. Front. Plant Sci., 2016, 7, 27.
[http://dx.doi.org/10.3389/fpls.2016.00027] [PMID: 26870053]
[211]
Zhu, H.; Xia, R.; Zhao, B.; An, Y.Q.; Dardick, C.D.; Callahan, A.M.; Liu, Z. Unique expression, processing regulation, and regulatory network of peach (Prunus persica) miRNAs. BMC Plant Biol., 2012, 12, 149.
[http://dx.doi.org/10.1186/1471-2229-12-149] [PMID: 22909020]
[212]
Zhang, Y.; Bai, Y.; Han, J.; Chen, M.; Kayesh, E.; Jiang, W.; Fang, J. Bioinformatics prediction of miRNAs in the Prunus persica genome with validation of their precise sequences by miR-RACE. J. Plant Physiol., 2013, 170(1), 80-92.
[http://dx.doi.org/10.1016/j.jplph.2012.08.021] [PMID: 23107282]
[213]
Zhang, M.; Dong, Y.; Nie, L.; Lu, M.; Fu, C.; Yu, L. High-throughput sequencing reveals miRNA effects on the primary and secondary production properties in long-term subcultured Taxus cells. Front. Plant Sci., 2015, 6, 604.
[http://dx.doi.org/10.3389/fpls.2015.00604] [PMID: 26300901]
[214]
Zaynab, M.; Fatima, M.; Abbas, S.; Umair, M.; Sharif, Y.; Raza, M.A. Long non-coding RNAs as molecular players in plant defense against pathogens. Microb. Pathog., 2018, 121, 277-282.
[http://dx.doi.org/10.1016/j.micpath.2018.05.050] [PMID: 29859899]