A Review on Modern Synthetic Route for the Construction of 1, 3-Diazanaphthalene Moiety

Page: [1108 - 1138] Pages: 31

  • * (Excluding Mailing and Handling)

Abstract

Quinazoline is an organic heterocyclic molecule in which two six-membered aromatic rings are fused. Two nitrogen atoms are present in the quinazoline molecule at 1 and 3 positions that is why it is also known as 1,3-diazanaphthalene. The presence of these two nitrogen atoms in 1,3-diazanaphthalene increases the usefulness of this molecule in the field of pharmaceutical sciences. Many reactions have been reported to prepare 1,3- diazanaphthalene by aminobenzonitrile, o-aminobenzohydrazide, aminobenzamide, aminoacetophenone, and aminobenzoketone under different solvent conditions, but condensation of anthranilic acid with an aromatic aldehyde is the most common method. Later, metal-free and solvent-free conditions dominated over the old methods. This review describes the synthesis of 1,3-diazanaphthalene under different metal catalysts, reagents, solvent- free conditions and under microwave radiation through nucleophilic substitution reaction, condensation, and aromatization. In biological sciences, 1,3-diazanaphthalene derivatives have got an important place due to their ability to bind to different target sites and subsequent discovery of many drug structures.

Keywords: 1, 3-diazanaphthalene, natural alkaloid, nucleophilic substitution reaction, heterocyclic chemistry, quinazoline, quinazolinone.

Graphical Abstract

[1]
Bogert, M.T.; Gotthelf, A.H. A new synthesis in the quinazoline group. J. Am. Chem. Soc., 1900, 22, 129-132.
[http://dx.doi.org/10.1021/ja02041a003]
[2]
Avendano, C.; Menendez, J. Chemistry of pyrazino [2, 1-b] quinazoline-3, 6-diones. Curr. Org. Chem., 2003, 7, 149-173.
[http://dx.doi.org/10.2174/1385272033373094]
[3]
Prasad, M.G.; Lakshmi, C.V.; Katari, N.K.; Karpoormath, R.; Pal, M. lemon juice mediated synthesis of 3-substituted quinazolin-4(3H)-ones and their pharmacological evaluation. anti-cancer agent. me. 2019.19, 2001.,
[4]
Witt, A.; Bergman, J. Recent developments in the field of quinazoline chemistry. Curr. Org. Chem., 2003, 7, 659-677.
[http://dx.doi.org/10.2174/1385272033486738]
[5]
Chaudhary, A. Arylglyoxals as versatile synthons for heterocycles through multi-component reactions. Curr. Org. Chem., 2019, 23, 1945-1983.
[http://dx.doi.org/10.2174/1385272823666191019110010]
[6]
Wang, J.L.; Miao, C.X.; Dou, X.Y.; Gao, J.; He, L.N. Carbon dioxide in heterocyclic synthesis. Curr. Org. Chem., 2011, 15, 621-646.
[http://dx.doi.org/10.2174/138527211794518952]
[7]
Jiang, B.; Shi, F.; Tu, S.J. Microwave-assisted multicomponent reactions in the heterocyclic chemistry. Curr. Org. Chem., 2010, 14, 357-378.
[http://dx.doi.org/10.2174/138527210790231892]
[8]
Armarego, W.L.F. Quinazoline. Adv. Heterocycl. Chem., 1963, 11, 253-309.
[http://dx.doi.org/10.1016/S0065-2725(08)60527-9] [PMID: 14087221]
[9]
Michael, J.P. Quinoline, quinazoline and acridone alkaloids. Nat. Prod. Rep., 1999, 16(6), 697-709.
[http://dx.doi.org/10.1039/a809408j] [PMID: 10641323]
[10]
Selvam, T.P.; Kumar, P.V. Quinazoline marketed drugs. Res. Pharm., 2011, 1, 1.
[12]
Tashrifi, Z.; Khanaposhtani, M.M.; Biglar, M.; Larijani, B.; Mahdavi, M. Isatoic anhydride: a fascinating and basic molecule for the synthesis of substituted quinazolinones and benzo di/triazepines. Curr. Org. Chem., 2019, 23, 1090-1130.
[http://dx.doi.org/10.2174/1385272823666190701142930]
[13]
Jones, T.R.; Calvert, A.H.; Jackman, A.L.; Brown, S.J.; Jones, M.; Harrap, K.R. A potent antitumour quinazoline inhibitor of thymidylate synthetase: synthesis, biological properties and therapeutic results in mice. Eur. J. Cancer, 1981, 17(1), 11-19.
[http://dx.doi.org/10.1016/0014-2964(81)90206-1] [PMID: 7262141]
[14]
El-Azab, A.S.; Al-Omar, M.A.; Abdel-Aziz, A.A.; Abdel-Aziz, N.I.; el-Sayed, M.A.; Aleisa, A.M.; Sayed-Ahmed, M.M.; Abdel-Hamide, S.G. Design, synthesis and biological evaluation of novel quinazoline derivatives as potential antitumor agents: molecular docking study. Eur. J. Med. Chem., 2010, 45(9), 4188-4198.
[http://dx.doi.org/10.1016/j.ejmech.2010.06.013] [PMID: 20599299]
[15]
Liu, Y.J.; Zhang, C.M.; Liu, Z.P. Recent developments of small molecule EGFR inhibitors based on the quinazoline core scaffolds. Anti-Cancer Agent. Med. Chem., 2012, 12, 391-406.
[http://dx.doi.org/10.2174/187152012800228652]
[16]
Gouilleux, L.; Fehrentz, J.A.; Winternitz, F.; Martinez, J. Solid phase synthesis of chiral 3-substituted quinazoline-2, 4-diones. Tetrahedron Lett., 1996, 37, 7031-7034.
[http://dx.doi.org/10.1016/0040-4039(96)01541-9]
[17]
Noolvi, N.M.; Patel, H.M. 2D QSAR studies on a series of quinazoline derivatives as tyrosine kinase (EGFR) inhibitor: an approach to design anticancer agents. Lett. Drug Des. Discov., 2010, 7, 556-586.
[http://dx.doi.org/10.2174/157018010792062821]
[18]
Srivastava, S.K; Kumar, V.; Agarwal, S.K.; Mukherjee, R.; Burman, A.C. Synthesis of quinazolines as tyrosine kinase inhibitors. Anti-cancer. Agent. Med. Chem., 2009, 9, 246-275.
[http://dx.doi.org/10.2174/1871520610909030246]
[19]
Bedi, P.M.; Kumar, V.; Mahajan, M.P. Synthesis and biological activity of novel antibacterial quinazolines. Bioorg. Med. Chem. Lett., 2004, 14(20), 5211-5213.
[http://dx.doi.org/10.1016/j.bmcl.2004.07.065] [PMID: 15380229]
[20]
Desai, N.; Dodiya, A.M. Synthesis, characterization and antimicrobial screening of quinoline based quinazolinone-4-thiazolidinone heterocycles. Arab. J. Chem., 2014, 7, 906-913.
[http://dx.doi.org/10.1016/j.arabjc.2011.08.007]
[21]
Patel, K.D.; Vekariya, R.H.; Prajapati, N.P.; Patel, D.B.; Patel, H.D.; Shaikh, T.; Rajani, D.P.; Rajani, S.; Shah, N.S.; Jhala, D. Synthesis of N′-(Quinazolin-4-yl) isonicotinohydrazides and their biological screening, docking and ADME studies. Arab. J. Chem., 2018, 4, 279-285.
[http://dx.doi.org/10.1016/j.arabjc.2010.06.047]
[22]
Panneerselvam, T.; Sivakumar, A.; Arumugam, S.; Indhumathy, M.; Selvaraj, K.; Shrinivas, D.J.; Dixit, S.R. Graph theoretical analysis, in silico modeling, design and synthesis of biologically active pyrimidines and quinazolines as antimicrobial and antitubercular agent. Curr. Microw. Chem., 2017, 4, 242-255.
[http://dx.doi.org/10.2174/2213335604666170720154058]
[23]
Amrute, B.B.; Amrutkar, R.D.; Tambe, S.R. Design and molecular docking studies of some 2, 3 di-substituted quinazolin-4-one analogues against Staphylococcus aureus UDG. Curr. Comput-Aid. Drug Des., 2019, 15, 1.
[http://dx.doi.org/10.2174/1573409915666190916100437]
[24]
Bagheri, E.; Saremi, K.; Hajiaghaalipour, F.; Faraj, F.L.; Ali, H.M.; Abdulla, M.A.; Khaing, S.L.; Salehen, N.A. Synthesis of novel derivatives of quinazoline schiff base compound promotes epithelial wound healing. Curr. Pharm. Des., 2018, 24(13), 1395-1404.
[http://dx.doi.org/10.2174/1381612824666180130124308] [PMID: 29384057]
[25]
Connolly, D.J.; Cusack, D.; O’Sullivan, T.P.; Guiry, P.J. Synthesis of quinazolinones and quinazolines. Tetrahedron, 2005, 61, 10153-10202.
[http://dx.doi.org/10.1016/j.tet.2005.07.010]
[26]
Magyar, K.; Deres, L.; Eros, K.; Bruszt, K.; Seress, L.; Hamar, J.; Hideg, K.; Balogh, A.; Gallyas, F.; Sumegi, B.; Toth, K.; Halmosi, R. A quinazolinederivative compound with PARP inhibitory effect suppresses hypertensioninduced vascular alterations in spontaneously hypertensive rats. Biochim. Biophys. Acta, 2014, 1842(7), 935-944.
[http://dx.doi.org/10.1016/j.bbadis.2014.03.008] [PMID: 24657811]
[27]
Salvatore, P. Is there a role for quinazoline-based [alpha] (1)-adrenoceptor antagonists in cardio-oncology? Cardiovasc. Drug Ther., 2014, 28, 587-588.
[28]
Noolvi, M.N.; Patel, H.M.; Bhardwaj, V.; Chauhan, A. Synthesis and in vitro antitumor activity of substituted quinazoline and quinoxaline derivatives: search for anticancer agent. Eur. J. Med. Chem., 2011, 46(6), 2327-2346.
[http://dx.doi.org/10.1016/j.ejmech.2011.03.015] [PMID: 21458891]
[29]
Noolvi, M.N.; Patel, H.M. Synthesis, method optimization, anticancer activity of 2, 3, 7-trisubstituted quinazoline derivatives and targeting EGFR-tyrosine kinase by rational approach: 1st cancer update. Arab. J. Chem., 2013, 6, 35-48.
[http://dx.doi.org/10.1016/j.arabjc.2010.12.031]
[30]
Kumar, D.; Mariappan, G.; Husain, A.; Monga, J.; Kumar, S. Design, synthesis and cytotoxic evaluation of novel imidazolone fused quinazolinone derivatives. Arab. J. Chem., 2017, 10, 344-350.
[http://dx.doi.org/10.1016/j.arabjc.2014.07.001]
[31]
Hosseinzadeh, Z.; Ramazani, A.; Asl, N.R. Anti-cancer nitrogen-containing heterocyclic compounds. Curr. Org. Chem., 2018, 22, 2256-2279.
[http://dx.doi.org/10.2174/1385272822666181008142138]
[32]
Huang, Y.; Liu, G.; Hu, X.; Liu, H.; Hu, J.; Feng, Z.; Tang, B.; Qian, J.; Wang, Q.; Long, X. A potential anticancer agent 1,2-di(quinazolin-4-yl)diselane. Lett. Drug Des. Discov., 2014, 11, 731-735.
[http://dx.doi.org/10.2174/1570180811666140214204858]
[33]
Yong, J.; Lu, C.; Wu, X. Synthesis and biological evaluation of quinazoline derivatives as potential anticancer agents (II). Anti-Cancer Agent. Med. Chem., 2015, 15, 1326-1332.
[34]
Wu, W.Y.; Cao, S.L.; Mao, B.B.; Liao, J.; Li, Z.F.; Song, H.B.; Xu, X. Synthesis and antiproliferative evaluation of hybrids of indolin-2-one and quinazoline-4(3H)-one linked via imine bond. Lett. Drug Des. Discov., 2013, 10, 61-66.
[http://dx.doi.org/10.2174/157018013804142447]
[35]
Ramesh, P.; Srinivasulu, D.; Kishore, P.; Rao, V.K.; Reddy, M.V.B. Synthesis, spectral characterization and anticancer activity of new 2,3,6- substituted quinazolin-4(3H)-one derivatives. Lett. Org. Chem., 2015, 12, 385-393.
[http://dx.doi.org/10.2174/1570178612666150320233833]
[36]
Varadi, A.; Horvath, P.; Kurtan, T.; Mandi, A.; Toth, G.; Gergely, A.; Kokosi, J. Synthesis and configurational assignment of 1, 2-dihydroimidazo [5, 1-b] quinazoline-3, 9-diones: novel NMDA receptor antagonists. Tetrahedron, 2012, 68, 10365-10371.
[http://dx.doi.org/10.1016/j.tet.2012.09.086]
[37]
El‐Barbary, A.A.; El‐Brollosy, N.R.; Abdel‐Bary, H.M.; Pedersen, E.B.; Stein, P.; Nielsen, C. Synthesis and antiviral evaluation of quinazoline, thieno‐[2, 3‐d] pyrimidine, and lumazine analogues of 3′‐fluoro‐3′‐deoxythymidine (FLT). Liebigs Ann., 1995, 7, 1371-1375.
[http://dx.doi.org/10.1002/jlac.1995199507183]
[38]
Jatav, V.; Mishra, P.; Kashaw, S.; Stables, J.P. CNS depressant and anticonvulsant activities of some novel 3-[5-substituted 1,3,4-thiadiazole-2-yl]-2-styryl quinazoline-4(3H)-ones. Eur. J. Med. Chem., 2008, 43(9), 1945-1954.
[http://dx.doi.org/10.1016/j.ejmech.2007.12.003] [PMID: 18222569]
[39]
Tani, J.; Yamada, Y.; Oine, T.; Ochiai, T.; Ishida, R.; Inoue, I. Studies on biologically active halogenated compounds. 1. Synthesis and central nervous system depressant activity of 2-(fluoromethyl)-3-aryl-4(3H)-quinazolinone derivatives. J. Med. Chem., 1979, 22(1), 95-99.
[http://dx.doi.org/10.1021/jm00187a021] [PMID: 423189]
[40]
Asif, M. Chemical characteristics, synthetic methods, and biological potential of quinazoline and quinazolinone derivatives. Int. J. Med. Chem., 2014, 2014, 395637-395727.
[http://dx.doi.org/10.1155/2014/395637] [PMID: 25692041]
[41]
Abou-Seri, S.M.; Taha, A.M.; Mohamed, M.A.; Abdelkader, N.M. New quinazoline-sulfonylurea conjugates: design, synthesis and hypoglycemic activity. Med. Chem., 2019, 15(6), 634-647.
[http://dx.doi.org/10.2174/1573406415666181208104543] [PMID: 30526467]
[42]
Mehndiratta, S.; Sapra, S.; Singh, G.; Singh, M.; Nepali, K. Quinazolines as apoptosis inducers and inhibitors: a review of patent literature. Recent Pat Anticanc Drug Discov., 2016, 11(1), 2-66.
[http://dx.doi.org/10.2174/1574892811666151218151506] [PMID: 26681186]
[43]
Sahu, A.; Kumar, D.; Agrawal, R.K. Antileishmanial drug discovery: synthetic methods, chemical characteristics, and biological potential of quinazolines and its derivatives. Antiinflamm. Antiallergy Agents Med. Chem., 2017, 16(1), 3-32.
[http://dx.doi.org/10.2174/1871523016666170502120210] [PMID: 28464778]
[44]
(a) Hiraoka, Y.; Taniguchi, T.; Tanaka, T.; Okada, K.; Kanamaru, H.; Muramatsu, I. Pharmacological characterization of unique prazosin-binding sites in human kidney. Naunyn Schmiedebergs Arch. Pharmacol., 2003, 368(1), 49-56.
[http://dx.doi.org/10.1007/s00210-003-0764-x] [PMID: 12827214]
(b) prazosin. (n.d.). retrieved from https://www.drugbank.ca/drugs/DB00457
[45]
(a) Temperini, C.; Cecchi, A.; Scozzafava, A.; Supuran, C.T. Carbonic anhydrase inhibitors. Sulfonamide diuretics revisited--old leads for new applications? Org. Biomol. Chem., 2008, 6(14), 2499-2506.
[http://dx.doi.org/10.1039/b800767e] [PMID: 18600270]
(b) quinethazone. (n.d.). retrieved from https://www.drugbank.ca/drugs/DB01325
[46]
(a) Pao, W.; Miller, V.; Zakowski, M.; Doherty, J.; Politi, K.; Sarkaria, I.; Singh, B.; Heelan, R.; Rusch, V.; Fulton, L.; Mardis, E.; Kupfer, D.; Wilson, R.; Kris, M.; Varmus, H. EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc. Natl. Acad. Sci. USA, 2004, 101(36), 13306-13311.
[http://dx.doi.org/10.1073/pnas.0405220101] [PMID: 15329413]
(b) gefitinib. (n.d.). retrieved from https://www.drugbank.ca/drugs/DB00317
[47]
(a) Scheer, M. alfuzosin tablets and synthesis. u.s. patent 10/943,725, march 23. 2006.
(b) alfuzosin. (n.d.). retrieved from www.drugbank.ca/drugs/DB00346
[48]
48. anagrelide. (n.d.). retrieved from https://www.drugbank.ca/drugs/DB00261
[49]
(a) Li, Z.; Xu, M.; Xing, S.; Ho, W.T.; Ishii, T.; Li, Q.; Fu, X.; Zhao, Z.J. Erlotinib effectively inhibits JAK2V617F activity and polycythemia vera cell growth. J. Biol. Chem., 2007, 282(6), 3428-3432.
[http://dx.doi.org/10.1074/jbc.C600277200] [PMID: 17178722]
(b) erlotinib. (n.d.). retrieved from https://www.drugbank.ca/drugs/DB00530
[50]
(a) Stogniew, M.; Zadei, J.M. compositions comprising trimetrexate and methods of their synthesis and use. u.s. patent 6,258,821, july 10, 2001.
(b) trimetrexate. (n.d.). retrieved from https://www.drugbank.ca/drugs/DB01157
[51]
(a) Allegrini, P.; Attolino, E.; Artico, M. process for the preparation of linagliptin. u.s. patent 13/325,179, june 28' 2012.
(b) linagliptin. (n.d.). retrieved from https://www.drugbank.ca/drugs/DB08882
[52]
(a) Andriamanana, I.; Gana, I.; Duretz, B.; Hulin, A. Simultaneous analysis of anticancer agents bortezomib, imatinib, nilotinib, dasatinib, erlotinib, lapatinib, sorafenib, sunitinib and vandetanib in human plasma using LC/MS/MS. J. Chromatogr., 2013, b, 926, 83-91.(b) vandetanib. (n.d.). retrieved from
https://www.drugbank.ca/drugs/DB05294
[53]
Buyukcakir, O.; Yuksel, R.; Jiang, Y.; Lee, S.H.; Seong, W.K.; Chen, X.; Ruoff, R.S. Synthesis of porous covalent quinazoline networks (CQNS) and their gas sorption properties. Angew. Chem. Int. Ed. Engl., 2019, 58(3), 872-876.
[http://dx.doi.org/10.1002/anie.201813075] [PMID: 30456920]
[54]
Nosova, E.V.; Moshkina, T.N.; Lipunova, G.N.; Kopchuk, D.S.; Slepukhin, P.A.; Baklanova, I.V.; Charushin, V.N. Synthesis and photophysical studies of 2‐(Thiophen‐2‐yl)‐4‐(morpholin‐4‐yl) quinazoline derivatives. Eur. J. Org. Chem., 2016, 16, 2876-2881.
[http://dx.doi.org/10.1002/ejoc.201600404]
[55]
Fujii, A.; Matsuo, H.; Choi, J.C.; Fujitani, T.; Fujita, K.I. Efficient synthesis of 2-oxazolidinones and quinazoline-2, 4 (1H, 3H)-diones from CO2 catalyzed by tetrabutylammonium fluoride. Tetrahedron, 2018, 74, 2914-2920.
[http://dx.doi.org/10.1016/j.tet.2018.04.059]
[56]
Omar, M.A.; Conrad, J.; Beifuss, U. Copper-catalyzed domino reaction between 1-(2-halophenyl) methanamines and amidines or imidates for the synthesis of 2-substituted quinazolines. Tetrahedron, 2014, 70, 3061-3072.
[http://dx.doi.org/10.1016/j.tet.2014.02.066]
[57]
Zhang, H.; Jin, Y.; Liu, H.; Jiang, Y.; Fu, H. Copper‐catalyzed cascade synthesis of 1H‐indolo [1, 2‐c] quinazoline derivatives. Eur. J. Org. Chem., 2012, 34, 6798-6803.
[http://dx.doi.org/10.1002/ejoc.201200953]
[58]
Hao, W.; Sang, X.; Xiao, Y.; Cai, M. A cascade reaction of o-alkenylphenyl carbodiimides with isocyanides by copper catalysis: direct construction of 4, 5-dihydroimidazo [1, 5-a] quinazolines. Tetrahedron Lett., 2016, 57, 4207-4209.
[http://dx.doi.org/10.1016/j.tetlet.2016.08.006]
[59]
Chen, D.; Huang, L.; Yang, J.; Ma, J.; Zheng, Y.; Luo, Y.; Shen, Y.; Wu, J.; Feng, C.; Lv, X. Copper-catalyzed C–N coupling/C–H functionalization: a tandem approach to azole-fused quinazoline derivatives. Tetrahedron Lett., 2018, 59, 2005-2009.
[http://dx.doi.org/10.1016/j.tetlet.2018.04.020]
[60]
Wang, J.; Zha, S.; Chen, K.; Zhang, F.; Song, C.; Zhu, J. Quinazoline synthesis via Rh (III)-catalyzed intermolecular C–H functionalization of benzimidates with dioxazolones. Org. Lett., 2016, 18(9), 2062-2065.
[http://dx.doi.org/10.1021/acs.orglett.6b00691] [PMID: 27058735]
[61]
Stefane, B.; Zugelj, H.B.; Groselj, U.; Kuzman, P.; Svete, J.; Pozgan, F. Quinazoline‐directed C–H bond functionalization catalyzed by Ruthenium (II) carboxylate–construction of polyconjugated aryl‐heteroaryl systems. Eur. J. Org. Chem., 2017, 14, 1855-1864.
[http://dx.doi.org/10.1002/ejoc.201700097]
[62]
Kaur, N.; Ahlawat, N.; Verma, Y.; Grewal, P.; Bhardwaj, P. A review of ruthenium-catalyzed CN bond formation reactions for the synthesis of five-membered N-heterocycles. Curr. Org. Chem., 2019, 23, 1901-1944.
[http://dx.doi.org/10.2174/1385272823666191021104118]
[63]
Wan, X.M.; Liu, Z.L.; Liu, W.Q.; Cao, X.N.; Zhu, X.; Zhao, X.M.; Song, B.; Hao, X.Q.; Liu, G. NNN pincer Ru (II)-catalyzed dehydrogenative coupling of 2-aminoarylmethanols with nitriles for the construction of quinazolines. Tetrahedron, 2019, 75, 2697-2705.
[http://dx.doi.org/10.1016/j.tet.2019.03.046]
[64]
Shinde, V.V.; Jeong, Y.T. Sonochemical FeF3 catalyzed three-component synthesis of densely functionalized tetrahydroindazolo [3, 2-b] quinazoline under solvent-free conditions. Tetrahedron Lett., 2016, 57, 3795-3799.
[http://dx.doi.org/10.1016/j.tetlet.2016.07.031]
[65]
Jin, R.Z.; Zhang, W.T.; Zhou, Y.J.; Wang, X.S. Iodine-catalyzed synthesis of 5H-phthalazino [1, 2-b] quinazoline and isoindolo [2, 1-a] quinazoline derivatives via a chemoselective reaction of 2-aminobenzohydrazide and 2-formylbenzoic acid in ionic liquids. Tetrahedron Lett., 2016, 57, 2515-2519.
[http://dx.doi.org/10.1016/j.tetlet.2016.04.101]
[66]
Saha, M.; Mukherjee, P.; Das, A.R. A facile and versatile protocol for the one-pot PhI (OAc)2 mediated divergent synthesis of quinazolines from 2-aminobenzylamine. Tetrahedron Lett., 2017, 58, 2044-2049.
[http://dx.doi.org/10.1016/j.tetlet.2017.04.036]
[67]
Pandya, A.N.; Villa, E.M.; North, E.J. A simple and efficient approach for the synthesis of 2-aminated quinazoline derivatives via metal free oxidative annulation. Tetrahedron Lett., 2017, 58(13), 1276-1279.
[http://dx.doi.org/10.1016/j.tetlet.2017.02.033] [PMID: 28983131]
[68]
Bergman, J.; Brynolf, A.; Elman, B.; Vuorinen, E. Synthesis of quinazolines. Tetrahedron, 1986, 42, 3697-3706.
[http://dx.doi.org/10.1016/S0040-4020(01)87338-5]
[69]
Canonne, P.; Akssira, M.; Dahdouh, A.; Kasmi, H.; Boumzebra, M. Synthesis of chiral 3-substituted 2, 4 (1H, 3H)-quinazolinediones. Heterocycles, 1993, 36, 1305-1314.
[http://dx.doi.org/10.3987/COM-92-6296]
[70]
Mizuno, T.; Ishino, Y. Highly efficient synthesis of 1H-quinazoline-2, 4-diones using carbon dioxide in the presence of catalytic amount of DBU. Tetrahedron, 2002, 58, 3155-3158.
[http://dx.doi.org/10.1016/S0040-4020(02)00279-X]
[71]
Hu, Y.; Wang, M.M.; Chen, H.; Shi, D.Q. Efficient and convenient synthesis of spiroindolinone-quinazolines induced by stannous chloride. Tetrahedron, 2011, 67, 9342-9346.
[http://dx.doi.org/10.1016/j.tet.2011.09.130]
[72]
Ju, J.; Hua, R.; Su, J. Copper-catalyzed three-component one-pot synthesis of quinazolines. Tetrahedron, 2012, 68, 9364-9370.
[http://dx.doi.org/10.1016/j.tet.2012.09.035]
[73]
Xu, M.; Xu, K.; Wang, S.; Yao, Z.J. Assembly of indolo [1, 2-c] quinazolines using ZnBr2-promoted domino hydroamination–cyclization. Tetrahedron Lett., 2013, 54, 4675-4678.
[http://dx.doi.org/10.1016/j.tetlet.2013.06.079]
[74]
Madabhushi, S.; Mallu, K.K.R.; Jillella, R.; Kurva, S.; Singh, R. One-step method for synthesis of 2, 4-disubstituted quinazoline 3-oxides by reaction of a 2-aminoaryl ketone with a hydroxamic acid using Zn(OTf)2 as the catalyst. Tetrahedron Lett., 2014, 55, 1979-1982.
[http://dx.doi.org/10.1016/j.tetlet.2014.01.150]
[75]
Gao, L.; Song, Y.; Zhang, X.; Guo, S.; Fan, X. Copper-catalyzed tandem reactions of 2-bromobenzaldehydes/ketones with aminopyrazoles toward the synthesis of pyrazolo [1, 5-a] quinazolines. Tetrahedron Lett., 2014, 55, 4997-5002.
[http://dx.doi.org/10.1016/j.tetlet.2014.07.028]
[76]
Guo, S.; Wang, J.; Li, Y.; Fan, X. CuCl-catalyzed one-pot synthesis of 5, 6-dihydropyrazolo [1, 5-c] quinazolines. Tetrahedron, 2014, 70, 2383-2388.
[http://dx.doi.org/10.1016/j.tet.2014.02.027]
[77]
Hensbergen, A.W.; Mills, V.R.; Collins, I.; Jones, A.M. An expedient synthesis of oxazepino and oxazocino quinazolines. Tetrahedron Lett., 2015, 56, 6478-6483.
[http://dx.doi.org/10.1016/j.tetlet.2015.10.008]
[78]
Lai, R.; Wu, X.; Lv, S.; Zhang, C.; He, M.; Chen, Y.; Wang, Q.; Hai, L.; Wu, Y. Synthesis of indoles and quinazolines via additive-controlled selective CH activation/annulation of N-arylamidines and sulfoxonium ylides. Chem. Commun. (Camb.), 2019, 55(28), 4039-4042.
[http://dx.doi.org/10.1039/C9CC01146C] [PMID: 30865745]
[79]
Iqbal, M.A.; Lu, L.; Mehmood, H.; Khan, D.M.; Hua, R. Quinazolinone synthesis through base-promoted SNAr reaction of ortho-fluorobenzamides with amides followed by cyclization. ACS Omega, 2019, 4(5), 8207-8213.
[http://dx.doi.org/10.1021/acsomega.9b00699] [PMID: 31459909]
[80]
Srivastava, V.; Srivastava, A.M.; Tiwari, A.K.; Srivastava, R.; Sharma, R.; Sharma, H.; Singh, V.K. Disubstituted 4(3H) quinazolones: a novel class of antitumor agents. Chem. Biol. Drug Des., 2009, 74(3), 297-301.
[http://dx.doi.org/10.1111/j.1747-0285.2009.00850.x] [PMID: 19703032]
[81]
Das, K.; Mondal, A.; Pal, D.; Srimani, D. Sustainable synthesis of quinazoline and 2-aminoquinoline via dehydrogenative coupling of 2-aminobenzyl alcohol and nitrile catalyzed by phosphine-free manganese pincer complex. Org. Lett., 2019, 21(9), 3223-3227.
[http://dx.doi.org/10.1021/acs.orglett.9b00939] [PMID: 31008616]
[82]
Chakraborty, G.; Sikari, R.; Das, S.; Mondal, R.; Sinha, S.; Banerjee, S.; Paul, N.D. Dehydrogenative synthesis of quinolines, 2-aminoquinolines, and quinazolines using singlet diradical Ni(II)-catalysts. J. Org. Chem., 2019, 84(5), 2626-2641.
[http://dx.doi.org/10.1021/acs.joc.8b03070] [PMID: 30685972]
[83]
Sikari, R.; Sinha, S.; Chakraborty, G.; Das, S.; Van Leest, N.P.; Paul, N.D. C–N Cross‐coupling reactions under mild conditions using singlet di‐radical nickel (II)‐complexes as catalyst: N‐arylation and quinazoline synthesis. Adv. Synth. Catal., 2019, 361, 4342-4353.
[http://dx.doi.org/10.1002/adsc.201900545]
[84]
Chakrabarti, K.; Maji, M.; Kundu, S. Cooperative iridium complex-catalyzed synthesis of quinoxalines, benzimidazoles and quinazolines in water. Green Chem., 2019, 21, 1999-2004.
[http://dx.doi.org/10.1039/C8GC03744B]
[85]
Yadav, S.; Sinha, D.; Singh, S.K.; Singh, V.K. Novel benzimidazole analogs as inhibitors of EGFR tyrosine kinase. Chem. Biol. Drug Des., 2012, 80(4), 625-630.
[http://dx.doi.org/10.1111/j.1747-0285.2012.01407.x] [PMID: 22564276]
[86]
Alonso, R.; Caballero, A.; Campos, P.J.; Sampedro, D.; Rodriguez, M.A. An efficient synthesis of quinazolines: a theoretical and experimental study on the photochemistry of oxime derivatives. Tetrahedron, 2010, 66, 4469-4473.
[http://dx.doi.org/10.1016/j.tet.2010.04.082]
[87]
Ziarani, G.M.; Badiei, A.; Aslani, Z.; Lashgari, N. Application of sulfonic acid functionalized nanoporous silica (SBA-Pr-SO3H) in the green one-pot synthesis of triazoloquinazolinones and benzimidazoquinazolinones. Arab. J. Chem., 2015, 8, 54-61.
[http://dx.doi.org/10.1016/j.arabjc.2011.06.020]
[88]
Iminov, R.T.; Tverdokhlebov, A.V.; Tolmachev, A.A.; Volovenko, Y.M.; Shishkina, S.V.; Shishkin, O.V. Synthesis of condensed tetrahydroimidazo [1, 2-a] quinazoline-1, 5-dione derivatives. Tetrahedron, 2012, 68, 3098-3102.
[http://dx.doi.org/10.1016/j.tet.2012.01.096]
[89]
Karnakar, K.; Kumar, A.V.; Murthy, S.N.; Ramesh, K.; Nageswar, Y. Recyclable graphite oxide promoted efficient synthesis of 2-phenyl quinazoline derivatives in the presence of TBHP as an oxidant. Tetrahedron Lett., 2012, 53, 4613-4617.
[http://dx.doi.org/10.1016/j.tetlet.2012.06.098]
[90]
Chen, Y.C.; Yang, D.Y. Visible light-mediated synthesis of quinazolines from 1, 2-dihydroquinazoline 3-oxides. Tetrahedron, 2013, 69, 10438-10444.
[http://dx.doi.org/10.1016/j.tet.2013.09.089]
[91]
Yuan, D.; Kong, H.H.; Ding, M.W. New efficient synthesis of 1H-pyrimido [2, 1-b] quinazoline-2, 6-diones via a tandem aza-Wittig/nucleophilic addition/intramolecular cyclization/isomerization reaction starting from the Baylis–Hillman adducts. Tetrahedron, 2015, 71, 419-423.
[http://dx.doi.org/10.1016/j.tet.2014.12.006]
[92]
Quinn, J.; Jin, E.; Li, Y. New synthetic route to pyrimido [4, 5-g] quinazoline-4, 9-diones. Tetrahedron Lett., 2015, 56, 2280-2282.
[http://dx.doi.org/10.1016/j.tetlet.2015.03.085]
[93]
Paumo, H.K.; Mphahlele, M.J.; Rhyman, L.; Ramasami, P. Synthesis, photophysical properties and DFT study of novel polycarbo-substituted quinazolines derived from the 2-aryl-6-bromo-4-chloro-8-iodoquinazolines. Tetrahedron, 2016, 72, 123-133.
[http://dx.doi.org/10.1016/j.tet.2015.11.014]
[94]
Kogawa, C.; Fujiwara, A.; Sekiguchi, R.; Shoji, T.; Kawakami, J.; Okazaki, M.; Ito, S. Synthesis and photophysical properties of azuleno [1′, 2′: 4, 5] pyrrolo [2, 1-b] quinazoline-6, 14-diones: azulene analogs of tryptanthrin. Tetrahedron, 2018, 74, 7018-7029.
[http://dx.doi.org/10.1016/j.tet.2018.10.020]
[95]
Zemlak, K.; Szczepankiewicz, W.; Kula, B.; Bieg, T. Synthesis of 4-Arylaminoquinazolines from 2-amino-N'-arylbenzamidines and orthoesters via the Dimroth rearrangement of intermediate quinazolin-4 (3H)-imines. Curr. Org. Chem., 2018, 22, 2801-2808.
[http://dx.doi.org/10.2174/1385272823666181126112958]
[96]
Chilin, A.; Marzaro, G.; Zanatta, S.; Guiotto, A. A microwave improvement in the synthesis of the quinazoline scaffold. Tetrahedron Lett., 2007, 48, 3229-3231.
[http://dx.doi.org/10.1016/j.tetlet.2007.03.027]
[97]
Chatterjee, T.; Kim, D.I.; Cho, E.J. Base-promoted synthesis of 2-aryl quinazolines from 2-aminobenzylamines in water. J. Org. Chem., 2018, 83(14), 7423-7430.
[http://dx.doi.org/10.1021/acs.joc.8b00327] [PMID: 29649359]
[98]
Chen, J.; Chang, D.; Xiao, F.; Deng, G.J. Four-component quinazoline synthesis from simple anilines, aromatic aldehydes and ammonium iodide under metal-free conditions. Green Chem., 2018, 20, 5459-5463.
[http://dx.doi.org/10.1039/C8GC02654H]
[99]
Wang, X.W.; Chen, M.W.; Wu, B.; Wang, B.; Zhou, Y.G. Chiral phosphoric acid-catalyzed synthesis of fluorinated 5,6-dihydroindolo[1,2- c]quinazolines with quaternary stereocenters. J. Org. Chem., 2019, 84(12), 8300-8308.
[http://dx.doi.org/10.1021/acs.joc.9b00985] [PMID: 31132277]
[100]
Hudou, D.; Guillon, R.; Lecointe, C.; Logu, C.; Chosson, E.; Besson, T. Novel synthesis of angular thiazolo [5, 4-f] and [4, 5-h] quinazolines, preparation of their linear thiazolo [4, 5-g] and [5, 4-g] quinazoline analogs. Tetrahedron, 2013, 69, 3182-3191.
[http://dx.doi.org/10.1016/j.tet.2013.02.066]
[101]
Kumar, D.; Kumar, R. Microwave-assisted synthesis of pyrazolo [1, 5-c] quinazolines and their derivatives. Tetrahedron Lett., 2014, 55, 2679-2683.
[http://dx.doi.org/10.1016/j.tetlet.2014.03.037]
[102]
Nag, S.; Mishra, A.; Batra, S. A facile route to the synthesis of pyrimido [2, 1-b] quinazoline core from the primary allyl amines afforded from Baylis-Hillman adducts. Tetrahedron, 2008, 64, 10162-10171.
[http://dx.doi.org/10.1016/j.tet.2008.08.044]
[103]
Takahashi, Tohru. sugimoto, h. quinazoline compounds. u.s. patent 3,920,636, november 18, 1975.
[104]
Faheem, M.; Rathaur, A.; Pandey, A.; Singh, V.K.; Tiwari, A.K. A review on the modern synthetic approach of benzimidazole candidate. ChemistrySelect, 2020, 5, 3981-3994.
[http://dx.doi.org/10.1002/slct.201904832]
[105]
Wang, D.; Gao, F. Quinazoline derivatives: synthesis and bioactivities. Chem. Cent. J., 2013, 7(1), 95.
[http://dx.doi.org/10.1186/1752-153X-7-95] [PMID: 23731671]
[106]
Hameed, A.; Al-Rashida, M.; Uroos, M.; Ali, S.A.; Arshia, ; Ishtiaq, M.; Khan, K.M. Quinazoline and quinazolinone as important medicinal scaffolds: a comparative patent review (2011-2016). Expert Opin. Ther. Pat., 2018, 28(4), 281-297.
[http://dx.doi.org/10.1080/13543776.2018.1432596] [PMID: 29368977]