The β-Secretase Enzyme BACE1: A Biochemical Enigma for Alzheimer’s Disease

Page: [184 - 194] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Beta site amyloid precursor protein cleaving enzyme 1 (BACE1) is a rational target in Alzheimer’s Disease (AD) drug development due to its role in amyloidogenic cleavage of Amyloid Precursor Protein (APP) in generating Amyloid β (Aβ). This β-secretase cleaves not only Amyloid Precursor Protein (APP) and its homologues, but also small series of substrates including neuregulin and β subunit of voltage-gated sodium channel that play a very important role in the development and normal function of the brain. Moreover, BACE1 is modulated at the post-translational level by several factors that are associated with both physiological and pathological functions. Since the discovery of BACE1 over a decade ago, medicinal chemistry and pharmacokinetics of BACE1 small molecule inhibitors have proven challenging for the treatment of Alzheimer’s disease.

Keywords: Alzheimer's disease, Amyloid Precursor Protein (APP), BACE1, Amyloid β (Aβ), β-pathway, palmitoylation.

Graphical Abstract

[1]
Neelakandan AR, Rajanikant GK. Commentary: endophenotypes as disease modifiers: decoding the biology of Alzheimer’s by Genome-wide Association Studies. CNS Neurol Disord Drug Targets 2018; 17(1): 6-8.
[http://dx.doi.org/10.2174/1871527317666180213143832] [PMID: 29437016]
[2]
Masters CL, Bateman R, Blennow K, Rowe CC, Sperling RA, Cummings JL. Alzheimer’s disease. Nat Rev Dis Primers 2015; 1: 15056.
[http://dx.doi.org/10.1038/nrdp.2015.56] [PMID: 27188934]
[3]
Coimbra JRM, Marques DFF, Baptista SJ, et al. Highlights in BACE1 Inhibitors for Alzheimer’s Disease Treatment. Front Chem 2018; 6: 178.
[4]
Espinoza LC, Vacacela M, Clares B, Garcia ML, Fabrega M-J, Calpena AC. Development of a nasal Donepezil-loaded microemulsion for the treatment of Alzheimer’s Disease: in vitro and ex vivo characterization. CNS Neurol Disord Drug Targets 2018; 17(1): 43-53.
[http://dx.doi.org/10.2174/1871527317666180104122347] [PMID: 29299992]
[5]
Selkoe DJ, Hardy J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 2016; 8(6): 595-608.
[http://dx.doi.org/10.15252/emmm.201606210] [PMID: 27025652]
[6]
Turner PR, O’Connor K, Tate WP, Abraham WC. Roles of amyloid precursor protein and its fragments in regulating neural activity, plasticity and memory. Prog Neurobiol 2003; 70(1): 1-32.
[http://dx.doi.org/10.1016/S0301-0082(03)00089-3] [PMID: 12927332]
[7]
Berry BJ, Smith AST, Long CJ, Martin CC, Hickman JJ. Physiological Aβ concentrations produce a more biomimetic representation of the Alzheimer’s disease phenotype in iPSC derived human neurons. ACS Chem Neurosci 2018; 9(7): 1693-701.
[http://dx.doi.org/10.1021/acschemneuro.8b00067] [PMID: 29746089]
[8]
Storey E, Cappai R. The amyloid precursor protein of Alzheimer’s disease and the Abeta peptide. Neuropathol Appl Neurobiol 1999; 25(2): 81-97.
[http://dx.doi.org/10.1046/j.1365-2990.1999.00164.x] [PMID: 10215996]
[9]
Tu S, Okamoto S, Lipton SA, Xu H. Oligomeric Aβ-induced synaptic dysfunction in Alzheimer’s disease. Mol Neurodegener 2014; 9(48): 48.
[http://dx.doi.org/10.1186/1750-1326-9-48] [PMID: 25394486]
[10]
Larson ME, Lesné SE. Soluble Aβ oligomer production and toxicity. J Neurochem 2012; 120(Suppl. 1): 125-39.
[http://dx.doi.org/10.1111/j.1471-4159.2011.07478.x] [PMID: 22121920]
[11]
Yan R, Fan Q, Zhou J, Vassar R. Inhibiting BACE1 to reverse synaptic dysfunctions in Alzheimer’s disease. Neurosci Biobehav Rev 2016; 65: 326-40.
[http://dx.doi.org/10.1016/j.neubiorev.2016.03.025] [PMID: 27044452]
[12]
Rajmohan R, Reddy PH. Amyloid-Beta and phosphorylated tau accumulations cause abnormalities at synapses of Alzheimer’s disease neurons. J Alzheimers Dis 2017; 57(4): 975-99.
[http://dx.doi.org/10.3233/JAD-160612] [PMID: 27567878]
[13]
Miri AL, Hosni AP, Gomes JC, Mainardes RM, Khalil NM, Del JV. Marcano RG, da S Pereira MC, Kerppers II. Study of the effects of L-tryptophane nanoparticles on motor behavior in Alzheimer’s experimental models. CNS Neurol Disord Drug Targets 2019; 18(1): 44-51.
[http://dx.doi.org/10.2174/1871527317666181105111157] [PMID: 30394223]
[14]
Haass C, Selkoe DJ. Cellular processing of β-amyloid precursor protein and the genesis of amyloid β-peptide. Cell 1993; 75(6): 1039-42.
[http://dx.doi.org/10.1016/0092-8674(93)90312-E] [PMID: 8261505]
[15]
Glenner GG, Wong CW. Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 1984; 120(3): 885-90.
[http://dx.doi.org/10.1016/S0006-291X(84)80190-4] [PMID: 6375662]
[16]
Li S, Hou H, Mori T, et al. Swedish mutant APP-based BACE1 binding site peptide reduces APP β-cleavage and cerebral Aβ levels in Alzheimer’s mice. Sci Rep 2015; 5(11322): 11322.
[http://dx.doi.org/10.1038/srep11322] [PMID: 26091071]
[17]
Zhang S, Wang Z, Cai F, et al. BACE1 cleavage site selection critical for amyloidogenesis and Alzheimer’s pathogenesis. J Neurosci 2017; 37(29): 6915-25.
[http://dx.doi.org/10.1523/JNEUROSCI.0340-17.2017] [PMID: 28626014]
[18]
Ben Halima S, Mishra S, Raja KMP, et al. Specific inhibition of β-secretase processing of the Alzheimer disease amyloid precursor protein. Cell Rep 2016; 14(9): 2127-41.
[http://dx.doi.org/10.1016/j.celrep.2016.01.076] [PMID: 26923602]
[19]
Chau D-M, Crump CJ, Villa JC, Scheinberg DA, Li Y-M. Familial Alzheimer disease presenilin-1 mutations alter the active site conformation of γ-secretase. J Biol Chem 2012; 287(21): 17288-96.
[http://dx.doi.org/10.1074/jbc.M111.300483] [PMID: 22461631]
[20]
Beg T, Jyoti S, Naz F, et al. Protective effect of kaempferol on the transgenic drosophila model of Alzheimer’s disease. CNS Neurol Disord Drug Targets 2018; 17(6): 421-9.
[http://dx.doi.org/10.2174/1871527317666180508123050] [PMID: 29745345]
[21]
Gupta S, Singhal NK, Ganesh S, Sandhir R. Extending arms of insulin resistance from diabetes to Alzheimer’s disease: identification of potential therapeutic targets. CNS Neurol Disord Drug Targets 2019; 18(3): 172-84.
[http://dx.doi.org/10.2174/1871527317666181114163515] [PMID: 30430949]
[22]
Selkoe DJ. Clearing the brain’s amyloid cobwebs. Neuron 2001; 32(2): 177-80.
[http://dx.doi.org/10.1016/S0896-6273(01)00475-5] [PMID: 11683988]
[23]
Miners JS, Barua N, Kehoe PG, Gill S, Love S. Aβ-degrading enzymes: potential for treatment of Alzheimer disease. J Neuropathol Exp Neurol 2011; 70(11): 944-59.
[http://dx.doi.org/10.1097/NEN.0b013e3182345e46] [PMID: 22002425]
[24]
Saido T, Leissring MA. Proteolytic degradation of amyloid β-protein. Cold Spring Harb Perspect Med 2012; 2(6)a006379
[http://dx.doi.org/10.1101/cshperspect.a006379] [PMID: 22675659]
[25]
Willén K, Edgar JR, Hasegawa T, Tanaka N, Futter CE, Gouras GK. Aβ accumulation causes MVB enlargement and is modelled by dominant negative VPS4A. Mol Neurodegener 2017; 12(1): 61.
[http://dx.doi.org/10.1186/s13024-017-0203-y] [PMID: 28835279]
[26]
Arbel-Ornath M, Hudry E, Boivin JR, et al. Soluble oligomeric amyloid-β induces calcium dyshomeostasis that precedes synapse loss in the living mouse brain. Mol Neurodegener 2017; 12(1): 27.
[http://dx.doi.org/10.1186/s13024-017-0169-9] [PMID: 28327181]
[27]
Karran E, Mercken M, De Strooper B. The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics. Nat Rev Drug Discov 2011; 10(9): 698-712.
[http://dx.doi.org/10.1038/nrd3505] [PMID: 21852788]
[28]
Stockley JH, O’Neill C. Understanding BACE1: essential protease for amyloid-β production in Alzheimer’s disease. Cell Mol Life Sci 2008; 65(20): 3265-89.
[http://dx.doi.org/10.1007/s00018-008-8271-3] [PMID: 18695942]
[29]
Shi Y, Wang Y, Wei H. Dantrolene: from malignant hyperthermia to Alzheimer’s disease. CNS Neurol Disord Drug Targets 2019; 18(9): 668-76.
[http://dx.doi.org/10.2174/1871527317666180619162649] [PMID: 29921212]
[30]
Das B, Yan R. A close look at BACE1 inhibitors for Alzheimer’s disease treatment. CNS Drugs 2019; 33(3): 251-63.
[http://dx.doi.org/10.1007/s40263-019-00613-7] [PMID: 30830576]
[31]
Holler CJ, Murphy MP. BACE1: expression, regulation, and therapeutic potential of the major Alzheimer’s disease beta-secretase. Curr Enzym Inhib 2013; 9(1): 3-14.
[http://dx.doi.org/10.2174/1573408011309010003]
[32]
Singh A, Hasan A, Tiwari S, Pandey LM. Therapeutic advancement in Alzheimer disease: new hopes on the horizon? CNS Neurol Disord Drug Targets 2018; 17(8): 571-89.
[http://dx.doi.org/10.2174/1871527317666180627122448] [PMID: 29952273]
[33]
Sathya M, Premkumar P, Karthick C, Moorthi P, Jayachandran KS, Anusuyadevi M. BACE1 in Alzheimer’s disease. Clin Chim Acta 2012; 414: 171-8.
[http://dx.doi.org/10.1016/j.cca.2012.08.013] [PMID: 22926063]
[34]
Bodendorf U, Fischer F, Bodian D, Multhaup G, Paganetti P. A splice variant of beta-secretase deficient in the amyloidogenic processing of the amyloid precursor protein. J Biol Chem 2001; 276(15): 12019-23.
[http://dx.doi.org/10.1074/jbc.M008861200] [PMID: 11152683]
[35]
Murphy T, Yip A, Brayne C, et al. The BACE gene: genomic structure and candidate gene study in late-onset Alzheimer’s disease. Neuroreport 2001; 12(3): 631-4.
[http://dx.doi.org/10.1097/00001756-200103050-00040] [PMID: 11234778]
[36]
Ehehalt R, Michel B, De Pietri Tonelli D, Zacchetti D, Simons K, Keller P. Splice variants of the β-site APP-cleaving enzyme BACE1 in human brain and pancreas. Biochem Biophys Res Commun 2002; 293(1): 30-7.
[http://dx.doi.org/10.1016/S0006-291X(02)00169-9] [PMID: 12054559]
[37]
Zohar O, Cavallaro S, D’Agata V, Alkon DL. Quantification and distribution of β-secretase alternative splice variants in the rat and human brain. Brain Res Mol Brain Res 2003; 115(1): 63-8.
[http://dx.doi.org/10.1016/S0169-328X(03)00182-7] [PMID: 12824056]
[38]
Tanahashi H, Tabira T. Three novel alternatively spliced isoforms of the human beta-site amyloid precursor protein cleaving enzyme (BACE) and their effect on amyloid beta-peptide production. Neurosci Lett 2001; 307(1): 9-12.
[http://dx.doi.org/10.1016/S0304-3940(01)01912-7] [PMID: 11516562]
[39]
Vassar R, Bennett BD, Babu-Khan S, et al. β-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science 1999; 286(5440): 735-41.
[http://dx.doi.org/10.1126/science.286.5440.735] [PMID: 10531052]
[40]
Shimizu H, Tosaki A, Kaneko K, Hisano T, Sakurai T, Nukina N. Crystal structure of an active form of BACE1, an enzyme responsible for amyloid β protein production. Mol Cell Biol 2008; 28(11): 3663-71.
[http://dx.doi.org/10.1128/MCB.02185-07] [PMID: 18378702]
[41]
Hong L, Koelsch G, Lin X, et al. Structure of the protease domain of memapsin 2 (β-secretase) complexed with inhibitor. Science 2000; 290(5489): 150-3.
[http://dx.doi.org/10.1126/science.290.5489.150] [PMID: 11021803]
[42]
Turner RT III, Hong L, Koelsch G, Ghosh AK, Tang J. Structural locations and functional roles of new subsites S5, S6, and S7 in memapsin 2 (beta-secretase). Biochemistry 2005; 44(1): 105-12.
[http://dx.doi.org/10.1021/bi048106k] [PMID: 15628850]
[43]
Kwak YD, Wang R, Li JJ, Zhang Y-W, Xu H, Liao F-F. Differential regulation of BACE1 expression by oxidative and nitrosative signals. Mol Neurodegener 2011; 6(17): 17.
[http://dx.doi.org/10.1186/1750-1326-6-17] [PMID: 21371311]
[44]
Schmechel A, Strauss M, Schlicksupp A, et al. Human BACE forms dimers and colocalizes with APP. J Biol Chem 2004; 279(38): 39710-7.
[http://dx.doi.org/10.1074/jbc.M402785200] [PMID: 15247262]
[45]
Haniu M, Denis P, Young Y, et al. Characterization of Alzheimer’s β -secretase protein BACE. A pepsin family member with unusual properties. J Biol Chem 2000; 275(28): 21099-106.
[http://dx.doi.org/10.1074/jbc.M002095200] [PMID: 10887202]
[46]
Benjannet S, Elagoz A, Wickham L, et al. Post-translational pro- cessing of beta-secretase (beta- amyloid-converting enzyme) and its ectodomain shedding. J Biol Chem 2001; 276(14): 10879-87.
[http://dx.doi.org/10.1074/jbc.M009899200] [PMID: 11152688]
[47]
Costantini C, Ko MH, Jonas MC, Puglielli L. A reversible form of lysine acetylation in the ER and Golgi lumen controls the molecular stabilization of BACE1. Biochem J 2007; 407(3): 383-95.
[http://dx.doi.org/10.1042/BJ20070040] [PMID: 17425515]
[48]
Ko MH, Puglielli L. Two endoplasmic reticulum (ER)/ER Golgi intermediate compartment-based lysine acetyltransferases post-translationally regulate BACE1 levels. J Biol Chem 2009; 284(4): 2482-92.
[http://dx.doi.org/10.1074/jbc.M804901200] [PMID: 19011241]
[49]
Bennett BD, Denis P, Haniu M, et al. A furin-like convertase mediates propeptide cleavage of BACE, the Alzheimer’s β -secretase. J Biol Chem 2000; 275(48): 37712-7.
[http://dx.doi.org/10.1074/jbc.M005339200] [PMID: 10956649]
[50]
Capell A, Steiner H, Willem M, et al. Maturation and pro-peptide cleavage of β-secretase. J Biol Chem 2000; 275(40): 30849-54.
[http://dx.doi.org/10.1074/jbc.M003202200] [PMID: 10801872]
[51]
Huse JT, Pijak DS, Leslie GJ, Lee VM-Y, Doms RW. Maturation and endosomal targeting of b-Site amyloid precursor protein-cleaving enzyme. J Biol Chem 2000; 275(43): 33729-37.
[http://dx.doi.org/10.1074/jbc.M004175200] [PMID: 10924510]
[52]
Sannerud R, Declerck I, Peric A, et al. ADP ribosylation factor 6 (ARF6) controls Amyloid Precursor Protein (APP) processing by mediating the endosomal sorting of BACE1. Proc Natl Acad Sci USA 2011; 108(34): E559-68.
[http://dx.doi.org/10.1073/pnas.1100745108] [PMID: 21825135]
[53]
He X, Chang W-P, Koelsch G, Tang J. Memapsin 2 (beta-secretase) cytosolic domain binds to the VHS domains of GGA1 and GGA2: implications on the endocytosis mechanism of memapsin 2. FEBS Lett 2002; 524(1-3): 183-7.
[http://dx.doi.org/10.1016/S0014-5793(02)03052-1] [PMID: 12135764]
[54]
He X, Zhu G, Koelsch G, Rodgers KK, Zhang XC, Tang J. Biochemical and structural characterization of the interaction of memapsin 2 (β-secretase) cytosolic domain with the VHS domain of GGA proteins. Biochemistry 2003; 42(42): 12174-80.
[http://dx.doi.org/10.1021/bi035199h] [PMID: 14567678]
[55]
He X, Li F, Chang W-P, Tang J. GGA proteins mediate the recycling pathway of memapsin 2 (BACE). J Biol Chem 2005; 280(12): 11696-703.
[http://dx.doi.org/10.1074/jbc.M411296200] [PMID: 15615712]
[56]
von Arnim CAF, Tangredi MM, Peltan ID, et al. Demonstration of BACE (β-secretase) phosphorylation and its interaction with GGA1 in cells by fluorescence-lifetime imaging microscopy. J Cell Sci 2004; 117(Pt 22): 5437-45.
[http://dx.doi.org/10.1242/jcs.01422] [PMID: 15466887]
[57]
von Arnim CAF, Spoelgen R, Peltan ID, et al. GGA1 acts as a spatial switch altering amyloid precursor protein trafficking and processing. J Neurosci 2006; 26(39): 9913-22.
[http://dx.doi.org/10.1523/JNEUROSCI.2290-06.2006] [PMID: 17005855]
[58]
Wahle T, Prager K, Raffler N, Haass C, Famulok M, Walter J. GGA proteins regulate retrograde transport of BACE1 from endosomes to the trans-Golgi network. Mol Cell Neurosci 2005; 29(3): 453-61.
[http://dx.doi.org/10.1016/j.mcn.2005.03.014] [PMID: 15886016]
[59]
Finan GM, Okada H, Kim T-W. BACE1 retrograde trafficking is uniquely regulated by the cytoplasmic domain of sortilin. J Biol Chem 2011; 286(14): 12602-16.
[http://dx.doi.org/10.1074/jbc.M110.170217] [PMID: 21245145]
[60]
Kang EL, Cameron AN, Piazza F, Walker KR, Tesco G. Ubiquitin regulates GGA3-mediated degradation of BACE1. J Biol Chem 2010; 285(31): 24108-19.
[http://dx.doi.org/10.1074/jbc.M109.092742] [PMID: 20484053]
[61]
Tesco G, Koh YH, Kang EL, et al. Depletion of GGA3 stabilizes BACE and enhances beta-secretase activity. Neuron 2007; 54(5): 721-37.
[http://dx.doi.org/10.1016/j.neuron.2007.05.012] [PMID: 17553422]
[62]
Santosa C, Rasche S, Barakat A, et al. Decreased expression of GGA3 protein in Alzheimer’s disease frontal cortex and increased co-distribution of BACE with the amyloid precursor protein. Neurobiol Dis 2011; 43(1): 176-83.
[http://dx.doi.org/10.1016/j.nbd.2011.03.009] [PMID: 21440067]
[63]
Sarajärvi T, Haapasalo A, Viswanathan J, et al. Down-regulation of seladin-1 increases BACE1 levels and activity through enhanced GGA3 depletion during apoptosis. J Biol Chem 2009; 284(49): 34433-43.
[http://dx.doi.org/10.1074/jbc.M109.036202] [PMID: 19815556]
[64]
Hussain I, Hawkins J, Shikotra A, Riddell DR, Faller A, Dingwall C. Characterization of the ectodomain shedding of the β-site amyloid precursor protein-cleaving enzyme 1 (BACE1). J Biol Chem 2003; 278(38): 36264-8.
[http://dx.doi.org/10.1074/jbc.M304186200] [PMID: 12857759]
[65]
Moussa-Pacha NM, Abdin SM, Omar HA, Alniss H, Al-Tel TH. BACE1 inhibitors: current status and future direction in treating Alzheimer’s disease. Med Res Rev 2019; 1-46.
[PMID: 31347728]
[66]
Xu Y, Li MJ, Greenblatt H, et al. Flexibility of the flap in the active site of BACE1 as revealed by crystal structures and molecular dynamics simulations. Acta Crystallogr D Biol Crystallogr 2012; 68(Pt 1): 13-25.
[http://dx.doi.org/10.1107/S0907444911047251] [PMID: 22194329]
[67]
Barman A, Prabhakar R. Computational insights into substrate and site specificities, catalytic mechanism, and protonation states of the catalytic Asp Dyad of β ‐secretase. Scientifica (Cairo) 2014; 2014598728
[http://dx.doi.org/10.1155/2014/598728] [PMID: 25309776]
[68]
Patel S, Vuillard L, Cleasby A, Murray CW, Yon J. Apo and inhibitor complex structures of BACE (β-secretase). J Mol Biol 2004; 343(2): 407-16.
[http://dx.doi.org/10.1016/j.jmb.2004.08.018] [PMID: 15451669]
[69]
Yuan J, Venkatraman S, Zheng Y, McKeever BM, Dillard LW, Singh SB. Structure-based design of β-site APP cleaving enzyme 1 (BACE1) inhibitors for the treatment of Alzheimer’s disease. J Med Chem 2013; 56(11): 4156-80.
[http://dx.doi.org/10.1021/jm301659n] [PMID: 23509904]
[70]
Vassar R. β-secretase (BACE) as a drug target for Alzheimer’s disease. Adv Drug Deliv Rev 2002; 54(12): 1589-602.
[http://dx.doi.org/10.1016/S0169-409X(02)00157-6] [PMID: 12453676]
[71]
Saunders AJ, Kim T-W, Tanzi RE. BACE maps to chromosome 11 and a BACE homolog, BACE2, reside in the obligate Down syndrome region of chromosome 21. Science 1999; 286(5443): 1255a.
[http://dx.doi.org/10.1126/science.286.5443.1255a]
[72]
Wang H, Li R, Shen Y. β-Secretase: its biology as a therapeutic target in diseases. Trends Pharmacol Sci 2013; 34(4): 215-25.
[http://dx.doi.org/10.1016/j.tips.2013.01.008] [PMID: 23452816]
[73]
Vassar R, Kuhn P-H, Haass C, et al. Function, therapeutic potential and cell biology of BACE proteases: current status and future prospects. J Neurochem 2014; 130(1): 4-28.
[http://dx.doi.org/10.1111/jnc.12715] [PMID: 24646365]
[74]
Vetrivel KS, Meckler X, Chen Y, et al. Alzheimer disease Abeta production in the absence of S-palmitoylation-dependent targeting of BACE1 to lipid rafts. J Biol Chem 2009; 284(6): 3793-803.
[http://dx.doi.org/10.1074/jbc.M808920200] [PMID: 19074428]
[75]
Motoki K, Kume H, Oda A, et al. Neuronal β-amyloid generation is independent of lipid raft association of β-secretase BACE1: analysis with a palmitoylation-deficient mutant. Brain Behav 2012; 2(3): 270-82.
[http://dx.doi.org/10.1002/brb3.52] [PMID: 22741101]
[76]
Charollais J, Van Der Goot FG. Palmitoylation of membrane proteins.(Review) Mol Membr Biol 2009; 26(1): 55-66.
[http://dx.doi.org/10.1080/09687680802620369] [PMID: 19085289]
[77]
Walter J, Fluhrer R, Hartung B, et al. Phosphorylation regulates intracellular trafficking of beta-secretase. J Biol Chem 2001; 276(18): 14634-41.
[http://dx.doi.org/10.1074/jbc.M011116200] [PMID: 11278841]
[78]
Pastorino L, Ikin AF, Nairn AC, Pursnani A, Buxbaum JD. The carboxyl-terminus of BACE contains a sorting signal that regulates BACE trafficking but not the formation of total A(β). Mol Cell Neurosci 2002; 19(2): 175-85.
[http://dx.doi.org/10.1006/mcne.2001.1065] [PMID: 11860271]
[79]
Ding Y, Ko MH, Pehar M, et al. Biochemical inhibition of the acetyltransferases ATase1 and ATase2 reduces β-secretase (BACE1) levels and Aβ generation. J Biol Chem 2012; 287(11): 8424-33.
[http://dx.doi.org/10.1074/jbc.M111.310136] [PMID: 22267734]
[80]
Araki W. Post-translational regulation of the β-secretase BACE1. Brain Res Bull 2016; 126(Pt 2): 170-7.
[http://dx.doi.org/10.1016/j.brainresbull.2016.04.009] [PMID: 27086128]
[81]
Kang EL, Biscaro B, Piazza F, Tesco G. BACE1 protein endocytosis and trafficking are differentially regulated by ubiquitination at lysine 501 and the Di-leucine motif in the carboxyl terminus. J Biol Chem 2012; 287(51): 42867-80.
[http://dx.doi.org/10.1074/jbc.M112.407072] [PMID: 23109336]
[82]
Chia PZC, Toh WH, Sharples R, Gasnereau I, Hill AF, Gleeson PA. Intracellular itinerary of internalised β-secretase, BACE1, and its potential impact on β-amyloid peptide biogenesis. Traffic 2013; 14(9): 997-1013.
[http://dx.doi.org/10.1111/tra.12088] [PMID: 23773724]
[83]
Zhu L, Su M, Lucast L, et al. Dynamin 1 regulates amyloid generation through modulation of BACE-1. PLoS One 2012; 7(9)e45033
[http://dx.doi.org/10.1371/journal.pone.0045033] [PMID: 23024787]
[84]
Goldenring JR. Recycling endosomes. Curr Opin Cell Biol 2015; 35: 117-22.
[http://dx.doi.org/10.1016/j.ceb.2015.04.018] [PMID: 26022676]
[85]
Udayar V, Buggia-Prévot V, Guerreiro RL, et al. AESG. A paired RNAi and RabGAP overexpression screen identifies Rab11 as a regulator of β-amyloid production. Cell Rep 2013; 5(6): 1536-51.
[http://dx.doi.org/10.1016/j.celrep.2013.12.005] [PMID: 24373285]
[86]
Vassar R, Kandalepas PC. The β-secretase enzyme BACE1 as a therapeutic target for Alzheimer’s disease. Alzheimers Res Ther 2011; 3(3): 20.
[http://dx.doi.org/10.1186/alzrt82] [PMID: 21639952]
[87]
Dislich B, Lichtenthaler SF. The membrane-bound aspartyl protease BACE1: molecular and functional properties in Alzheimer’s disease and beyond. Front Physiol 2012; 3: 8.
[http://dx.doi.org/10.3389/fphys.2012.00008] [PMID: 22363289]
[88]
Haass C, Selkoe DJ. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid β-peptide. Nat Rev Mol Cell Biol 2007; 8(2): 101-12.
[http://dx.doi.org/10.1038/nrm2101] [PMID: 17245412]
[89]
Citron M, Oltersdorf T, Haass C, et al. Mutation of the β-amyloid precursor protein in familial Alzheimer’s disease increases β-protein production. Nature 1992; 360(6405): 672-4.
[http://dx.doi.org/10.1038/360672a0] [PMID: 1465129]
[90]
Heber S, Herms J, Gajic V, et al. Mice with combined gene knock-outs reveal essential and partially redundant functions of amyloid precursor protein family members. J Neurosci 2000; 20(21): 7951-63.
[http://dx.doi.org/10.1523/JNEUROSCI.20-21-07951.2000] [PMID: 11050115]
[91]
Eggert S, Paliga K, Soba P, et al. The proteolytic processing of the amyloid precursor protein gene family members APLP-1 and APLP-2 involves α-, β-, γ-, and ϵ-like cleavages: modulation of APLP-1 processing by n-glycosylation. J Biol Chem 2004; 279(18): 18146-56.
[http://dx.doi.org/10.1074/jbc.M311601200] [PMID: 14970212]
[92]
Li Q, Südhof TC. Cleavage of amyloid-β precursor protein and amyloid-β precursor-like protein by BACE 1. J Biol Chem 2004; 279(11): 10542-50.
[http://dx.doi.org/10.1074/jbc.M310001200] [PMID: 14699153]
[93]
Hu X, Hicks CW, He W, et al. Bace1 modulates myelination in the central and peripheral nervous system. Nat Neurosci 2006; 9(12): 1520-5.
[http://dx.doi.org/10.1038/nn1797] [PMID: 17099708]
[94]
Mei L, Xiong WC. Neuregulin 1 in neural development, synaptic plasticity and schizophrenia. Nat Rev Neurosci 2008; 9(6): 437-52.
[http://dx.doi.org/10.1038/nrn2392] [PMID: 18478032]
[95]
Carteron C, Ferrer-Montiel A, Cabedo H. Characterization of a neural-specific splicing form of the human neuregulin 3 gene involved in oligodendrocyte survival. J Cell Sci 2006; 119(Pt 5): 898-909.
[http://dx.doi.org/10.1242/jcs.02799] [PMID: 16478787]
[96]
Kao WT, Wang Y, Kleinman JE, et al. Common genetic variation in Neuregulin 3 (NRG3) influences risk for schizophrenia and impacts NRG3 expression in human brain. Proc Natl Acad Sci USA 2010; 107(35): 15619-24.
[http://dx.doi.org/10.1073/pnas.1005410107] [PMID: 20713722]
[97]
Wong HK, Sakurai T, Oyama F, et al. β Subunits of voltage-gated sodium channels are novel substrates of β-site amyloid precursor protein-cleaving enzyme (BACE1) and γ-secretase. J Biol Chem 2005; 280(24): 23009-17.
[http://dx.doi.org/10.1074/jbc.M414648200] [PMID: 15824102]
[98]
Kim DY, Carey BW, Wang H, et al. BACE1 regulates voltage-gated sodium channels and neuronal activity. Nat Cell Biol 2007; 9(7): 755-64.
[http://dx.doi.org/10.1038/ncb1602] [PMID: 17576410]
[99]
Kovacs DM, Gersbacher MT, Kim DY. Alzheimer’s secretases regulate voltage-gated sodium channels. Neurosci Lett 2010; 486(2): 68-72.
[http://dx.doi.org/10.1016/j.neulet.2010.08.048] [PMID: 20817076]
[100]
Kitazume S, Nakagawa K, Oka R, et al. In vivo cleavage of alpha2,6-sialyltransferase by Alzheimer beta-secretase. J Biol Chem 2005; 280(9): 8589-95.
[http://dx.doi.org/10.1074/jbc.M409417200] [PMID: 15364953]
[101]
Sugimoto I, Futakawa S, Oka R, et al. Beta-galactoside alpha2,6-sialyltransferase I cleavage by BACE1 enhances the sialylation of soluble glycoproteins. A novel regulatory mechanism for alpha2,6-sialylation. J Biol Chem 2007; 282(48): 34896-903.
[http://dx.doi.org/10.1074/jbc.M704766200] [PMID: 17897958]
[102]
Lichtenthaler SF, Dominguez DI, Westmeyer GG, et al. The cell adhesion protein P-selectin glycoprotein ligand-1 is a substrate for the aspartyl protease BACE1. J Biol Chem 2003; 278(49): 48713-9.
[http://dx.doi.org/10.1074/jbc.M303861200] [PMID: 14507929]
[103]
Carlow DA, Gossens K, Naus S, Veerman KM, Seo W, Ziltener HJ. PSGL-1 function in immunity and steady state homeostasis. Immunol Rev 2009; 230(1): 75-96.
[http://dx.doi.org/10.1111/j.1600-065X.2009.00797.x] [PMID: 19594630]
[104]
Kuhn PH, Marjaux E, Imhof A, De Strooper B, Haass C, Lichtenthaler SF. Regulated intramembrane proteolysis of the interleukin-1 receptor II by alpha-, beta-, and gamma-secretase. J Biol Chem 2007; 282(16): 11982-95.
[http://dx.doi.org/10.1074/jbc.M700356200] [PMID: 17307738]
[105]
Lillis AP, Van Duyn LB, Murphy-Ullrich JE, Strickland DK. LDL receptor-related protein 1: unique tissue-specific functions revealed by selective gene knockout studies. Physiol Rev 2008; 88(3): 887-918.
[http://dx.doi.org/10.1152/physrev.00033.2007] [PMID: 18626063]
[106]
Wagner T, Pietrzik CU. The role of lipoprotein receptors on the physiological function of APP. Exp Brain Res 2012; 217(3-4): 377-87.
[http://dx.doi.org/10.1007/s00221-011-2876-8] [PMID: 21947084]
[107]
Basi G, Frigon N, Barbour R, et al. Antagonistic effects of β-site amyloid precursor protein-cleaving enzymes 1 and 2 on β-amyloid peptide production in cells. J Biol Chem 2003; 278(34): 31512-20.
[http://dx.doi.org/10.1074/jbc.M300169200] [PMID: 12801932]
[108]
Bennett BD, Babu-Khan S, Loeloff R, et al. Expression analysis of BACE2 in brain and peripheral tissues. J Biol Chem 2000; 275(27): 20647-51.
[http://dx.doi.org/10.1074/jbc.M002688200] [PMID: 10749877]
[109]
Esterházy D, Stützer I, Wang H, et al. Bace2 is a β cell-enriched protease that regulates pancreatic β cell function and mass. Cell Metab 2011; 14(3): 365-77.
[http://dx.doi.org/10.1016/j.cmet.2011.06.018] [PMID: 21907142]
[110]
Ahmed RR, Holler CJ, Webb RL, Li F, Beckett TL, Murphy MP. BACE1 and BACE2 enzymatic activities in Alzheimer’s disease. J Neurochem 2010; 112(4): 1045-53.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06528.x] [PMID: 19968762]
[111]
Oehlrich D, Prokopcova H, Gijsen HJM. The evolution of amidine-based brain penetrant BACE1 inhibitors. Bioorg Med Chem Lett 2014; 24(9): 2033-45.
[http://dx.doi.org/10.1016/j.bmcl.2014.03.025] [PMID: 24704031]
[112]
Yan R, Vassar R. Targeting the β secretase BACE1 for Alzheimer’s disease therapy. Lancet Neurol 2014; 13(3): 319-29.
[http://dx.doi.org/10.1016/S1474-4422(13)70276-X] [PMID: 24556009]
[113]
Mullard A. BACE inhibitor bust in Alzheimer trial. Nat Rev Drug Discov 2017; 16(3): 155.
[PMID: 28248932]
[114]
Piton M, Hirtz C, Desmetz C, et al. Alzheimer’s disease: advances in drug development. J Alzheimers Dis 2018; 65(1): 3-13.
[http://dx.doi.org/10.3233/JAD-180145] [PMID: 30040716]