Abstract
Background: In addition to the well-known role played in lactation and parturition, Oxytocin
(OT) and OT receptor (OTR) are involved in many other aspects such as the control of maternal
and social behavior, the regulation of the growth of the neocortex, the maintenance of blood supply to
the cortex, the stimulation of limbic olfactory area to mother-infant recognition bond, and the modulation
of the autonomic nervous system via the vagal pathway. Moreover, OT and OTR show antiinflammatory,
anti-oxidant, anti-pain, anti-diabetic, anti-dyslipidemic and anti-atherogenic effects.
Objective: The aim of this narrative review is to summarize the main data coming from the literature
dealing with the role of OT and OTR in physiology and pathologic conditions focusing on the most
relevant aspects.
Methods: Appropriate keywords and MeSH terms were identified and searched in Pubmed. Finally,
references of original articles and reviews were examined.
Results: We report the most significant and updated data on the role played by OT and OTR in physiology
and different clinical contexts.
Conclusion: Emerging evidence indicates the involvement of OT system in several pathophysiological
mechanisms influencing brain anatomy, cognition, language, sense of safety and trust and maternal
behavior, with the possible use of exogenous administered OT in the treatment of specific neuropsychiatric
conditions. Furthermore, it modulates pancreatic β-cell responsiveness and lipid metabolism
leading to possible therapeutic use in diabetic and dyslipidemic patients and for limiting and even
reversing atherosclerotic lesions.
Keywords:
Oxytocin, oxytocin receptor, maternal behavior, social behavior, metabolic homeostasis, atherosclerosis, pain, neuroinflammation,
autism, schizophrenia, depression, bipolar disorder.
Graphical Abstract
[8]
Iovino, M.; Giagulli, V.A.; Licchelli, B.; Iovino, E.; Guastamacchia, E.; Triggiani, V. Synaptic inputs of neural efferent pathways to vasopressin- and oxytocin-secreting neurons of supraoptic and paraventricular hypothalamic nuclei. Endocr. Metab. Immune Disord. Drug Targets, 2016, 16(42), 6702-6713.
[9]
Yamamoto, Y.; Liang, M.; Higashida, H. Vascular RAGE transports oxytocin into the brain to elicit its maternal bonding behavior in mice. Commun. Biol., 2019, 2, 76.
[119]
Hardy, S.B. Mothers and Others: The Evolutionary Origins of Mutual Understanding; Belknap Press, Harvard Univ. Press: Cambridge, MA, 2009.
[187]
Wang, Y-F. Center role of the oxytocin-secreting system in neuroendocrine-immune network revisited. J. Clin. Exp. Neuroimmunol., 2016, 1, 102.
[189]
Deblon, N.; Veyrat-Durebex, C.; Bourgoin, L.; Caillon, A.; Bussier, A.L.; Petrosino, S.; Piscitelli, F.; Legros, J.J.; Geenen, V.; Foti, M.; Wahli, W.; Di Marzo, V.; Rohner-Jeanrenaud, F. Mechanisms of the anti-obesity effects of oxytocin in diet-induced obese rats. PLoS One, 2011, 6(9)e25565
[193]
Wang, S.C.; Meng, D.; Yang, H.; Wang, X.; Jia, S.; Wang, P.; Wang, Y-F. Pathological basis of cardiac arrhythmias: Vicious cycle of immune-metabolic dysregulation. Cardiovasc. Disord. Med., 2018, 3, 1-7.
[197]
Wang, P.; Wang, S.C.; Yang, H.; Lv, C.; Jia, S.; Liu, X.; Wang, X.; Meng, D.; Qin, D.; Zhu, H.; Wang, Y.F. Therapeutic potential of oxytocin in atherosclerotic cardiovascular disease: Mechanisms and signaling pathways. Front. Neurosci., 2019, 13, 454.
[209]
Munesue, T.; Yokoyama, S.; Nakamura, K.; Anitha, A.; Yamada, K.; Hayashi, K.; Asaka, T.; Liu, H.X.; Jin, D.; Koizumi, K.; Islam, M.S.; Huang, J.J.; Ma, W.J.; Kim, U.H.; Kim, S.J.; Park, K.; Kim, D.; Kikuchi, M.; Ono, Y.; Nakatani, H.; Suda, S.; Miyachi, T.; Hirai, H.; Salmina, A.; Pichugina, Y.A.; Soumarokov, A.A.; Takei, N.; Mori, N.; Tsujii, M.; Sugiyama, T.; Yagi, K.; Yamagishi, M.; Sasaki, T.; Yamasue, H.; Kato, N.; Hashimoto, R.; Taniike, M.; Hayashi, Y.; Hamada, J.; Suzuki, S.; Ooi, A.; Noda, M.; Kamiyama, Y.; Kido, M.A.; Lopatina, O.; Hashii, M.; Amina, S.; Malavasi, F.; Huang, E.J.; Zhang, J.; Shimizu, N.; Yoshikawa, T.; Matsushima, A.; Minabe, Y.; Higashida, H. Two genetic variants of CD38 in subjects with autism spectrum disorder and controls.
Neurosci. Res., 2010,
67(2), 181-191.
[
http://dx.doi.org/10.1016/j.neures.2010.03.004] [PMID:
20435366]
[235]
Insel, T.R.; Young, L.J. The neurobiology of attachment. Nat. Rev. Neurosci., 2001, 2, 129-136.