Tumor-targeted Drug Delivery by Nanocomposites

Page: [599 - 613] Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

Background: Tumor-targeted delivery by nanoparticles is a great achievement towards the use of highly effective drug at very low doses. The conventional development of tumor-targeted delivery by nanoparticles is based on enhanced permeability and retention (EPR) effect and endocytosis based on receptor-mediated are very demanding due to the biological and natural complications of tumors as well as the restrictions on the design of the accurate nanoparticle delivery systems.

Methods: Different tumor environment stimuli are responsible for triggered multistage drug delivery systems (MSDDS) for tumor therapy and imaging. Physicochemical properties, such as size, hydrophobicity and potential transform by MSDDS because of the physiological blood circulation different, intracellular tumor environment. This system accomplishes tumor penetration, cellular uptake improved, discharge of drugs on accurate time, and endosomal discharge.

Results: Maximum drug delivery by MSDDS mechanism to target therapeutic cells and also tumor tissues and sub cellular organism. Poorly soluble compounds and bioavailability issues have been faced by pharmaceutical industries, which are resolved by nanoparticle formulation.

Conclusion: In our review, we illustrate different types of triggered moods and stimuli of the tumor environment, which help in smart multistage drug delivery systems by nanoparticles, basically a multi-stimuli sensitive delivery system, and elaborate their function, effects, and diagnosis.

Keywords: Nanoparticles, MSDDS, tumor environment, targeting, EPR, therapeutic, zeta potential.

Graphical Abstract

[1]
Gong, B-S.; Wang, R.; Xu, H-X.; Miao, M-Y.; Yao, Z-Z. Nanotherapy targeting the tumor microenvironment. Curr. Cancer Drug Targets, 2019, 19(7), 525-533.
[http://dx.doi.org/10.2174/1568009619666181220103714] [PMID: 30569855]
[2]
Gaspar, N.; Zambito, G.; Löwik, C.M.W.G.; Mezzanotte, L. Active nano-targeting of macrophages. Curr. Pharm. Des., 2019, 25(17), 1951-1961.
[http://dx.doi.org/10.2174/1381612825666190710114108] [PMID: 31291874]
[3]
Hurkat, P.; Jain, S.; Jain, R.; Jain, A. Immunology behind tumors: a mini review. Curr. Cancer Ther. Rev., 2019, 15, 174-183.
[http://dx.doi.org/10.2174/1573394714666180907143433]
[4]
Haider, N.; Fatima, S.; Tahar, M.; Firdous, J.; Ahmad, R.; Mazhar, F.; Khan, M.A.; Khan, M.A. Nanomedicines in diagnosis and treatment of cancer: an update. Curr. Pharm. Des., 2020.
[http://dx.doi.org/10.2174/1381612826666200318170716] [PMID: 32188379]
[5]
Molavipordanjani, S.; Hosseinimehr, S.J. Strategies for conjugation of biomolecules to nanoparticles as tumor targeting agents. Curr. Pharm. Des., 2019, 25(37), 3917-3926.
[http://dx.doi.org/10.2174/1381612825666190903154847] [PMID: 31480999]
[6]
Li, Y.; Du, L.; Wu, C.; Yu, B.; Zhang, H.; An, F. Peptide sequence-dominated enzyme-responsive nanoplatform for anticancer drug delivery. Curr. Top. Med. Chem., 2019, 19(1), 74-97.
[http://dx.doi.org/10.2174/1568026619666190125144621] [PMID: 30686257]
[7]
Alqaraghuli, H.G.J.; Kashanian, S.; Rafipour, R. A review on targeting nanoparticles for breast cancer. Curr. Pharm. Biotechnol., 2019, 20(13), 1087-1107.
[http://dx.doi.org/10.2174/1389201020666190731130001] [PMID: 31364513]
[8]
Shenoy, V.S.; Vijay, I.K.; Murthy, R.S.R. Tumour targeting: biological factors and formulation advances in injectable lipid nanoparticles. J. Pharm. Pharmacol., 2005, 57(4), 411-422.
[http://dx.doi.org/10.1211/0022357055894] [PMID: 15831200]
[9]
Khan, H.; Ullah, H.; Martorell, M.; Valdes, S.E.; Belwal, T.; Tejada, S.; Sureda, A.; Kamal, M.A. Flavonoids nanoparticles in cancer: treatment, prevention and clinical prospects. Semi. Cancer Biol., 2019. [In press].
[http://dx.doi.org/10.1016/j.semcancer.2019.07.023]
[10]
Fonseca, C.; Simões, S.; Gaspar, R. Paclitaxel-loaded PLGA nanoparticles: preparation, physicochemical characterization and in vitro anti-tumoral activity. J. Control. Release, 2002, 83(2), 273-286.
[http://dx.doi.org/10.1016/S0168-3659(02)00212-2] [PMID: 12363453]
[11]
Wang, B.; Yu, X-C.; Xu, S-F.; Xu, M. Paclitaxel and etoposide co-loaded polymeric nanoparticles for the effective combination therapy against human osteosarcoma. J. Nanobiotechnology, 2015, 13, 22.
[http://dx.doi.org/10.1186/s12951-015-0086-4] [PMID: 25880868]
[12]
Park, T.G.; Yoo, H.S. Polymer Preparation. Polym. Parameters, 2002, 41, 992-993.
[13]
Bhadra, D.; Bhadra, S.; Jain, S.; Jain, N.K. A PEGylated dendritic nanoparticulate carrier of fluorouracil. Int. J. Pharm., 2003, 257(1-2), 111-124.
[http://dx.doi.org/10.1016/S0378-5173(03)00132-7] [PMID: 12711167]
[14]
Florin, T.; Movva, R.; Begun, J.; Duley, J.; Oancea, I.; Cuív, P.Ó. Colonic thioguanine pro-drug: Investigation of microbiome and novel host metabolism. Gut Microbes, 2018, 9(2), 175-178.
[http://dx.doi.org/10.1080/19490976.2017.1387343] [PMID: 28976243]
[15]
Rajitha, B.; Malla, R.R.; Vadde, R.; Kasa, P.; Prasad, G.L.V.; Farran, B.; Kumari, S.; Pavitra, E.; Kamal, M.A.; Raju, G.S.R. Horizons of nanotechnology applications in female specific cancers. Semi. Cancer Biol., 2019. [In press].
[17]
Fraumene, C.; Manghina, V.; Cadoni, E.; Marongiu, F.; Abbondio, M.; Serra, M.; Palomba, A.; Tanca, A.; Laconi, E.; Uzzau, S. Caloric restriction promotes rapid expansion and long-lasting increase of Lactobacillus in the rat fecal microbiota. Gut Microbes, 2018, 9(2), 104-114.
[http://dx.doi.org/10.1080/19490976.2017.1371894] [PMID: 28891744]
[18]
Gomez-Arango, L.F.; Barrett, H.L.; Wilkinson, S.A.; Callaway, L.K.; McIntyre, H.D.; Morrison, M.; Dekker Nitert, M. Low dietary fiber intake increases Collinsella abundance in the gut microbiota of overweight and obese pregnant women. Gut Microbes, 2018, 9(3), 189-201.
[http://dx.doi.org/10.1080/19490976.2017.1406584] [PMID: 29144833]
[19]
Huang, Y.Y.; Martínez-Del Campo, A.; Balskus, E.P. Anaerobic 4-hydroxyproline utilization: discovery of a new glycyl radical enzyme in the human gut microbiome uncovers a widespread microbial metabolic activity. Gut Microbes, 2018, 9(5), 437-451.
[http://dx.doi.org/10.1080/19490976.2018.1435244] [PMID: 29405826]
[20]
Jørgensen, S.M.D.; Erikstrup, C.; Dinh, K.M.; Lemming, L.E.; Dahlerup, J.F.; Hvas, C.L. Recruitment of feces donors among blood donors: results from an observational cohort study. Gut Microbes, 2018, 9(6), 540-550.
[http://dx.doi.org/10.1080/19490976.2018.1458179] [PMID: 29617178]
[21]
Kienesberger, S.; Perez-Perez, G.I.; Olivares, A.Z.; Bardhan, P.; Sarker, S.A.; Hasan, K.Z.; Sack, R.B.; Blaser, M.J. When is Helicobacter pylori acquired in populations in developing countries? A birth-cohort study in Bangladeshi children. Gut Microbes, 2018, 9(3), 252-263.
[http://dx.doi.org/10.1080/19490976.2017.1421887] [PMID: 29494270]
[22]
Vander Heiden, M.G.; Cantley, L.C.; Thompson, C.B. Understanding the warburg effect: the metabolic requirements of cell proliferation. Science (80-. )., 2009, 324, 1029-1033.
[23]
Gatenby, R.A.; Gillies, R.J. Why do cancers have high aerobic glycolysis? Nat. Rev. Cancer, 2004, 4(11), 891-899.
[http://dx.doi.org/10.1038/nrc1478] [PMID: 15516961]
[24]
Harris, S.C.; Devendran, S.; Méndez-García, C.; Mythen, S.M.; Wright, C.L.; Fields, C.J.; Hernandez, A.G.; Cann, I.; Hylemon, P.B.; Ridlon, J.M. Bile acid oxidation by Eggerthella lenta strains C592 and DSM 2243T. Gut Microbes, 2018, 9(6), 523-539.
[http://dx.doi.org/10.1080/19490976.2018.1458180] [PMID: 29617190]
[25]
Kessenbrock, K.; Plaks, V.; Werb, Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell, 2010, 141(1), 52-67.
[http://dx.doi.org/10.1016/j.cell.2010.03.015] [PMID: 20371345]
[26]
Wilson, W.R.; Hay, M.P. Targeting hypoxia in cancer therapy. Nat. Rev. Cancer, 2011, 11(6), 393-410.
[http://dx.doi.org/10.1038/nrc3064] [PMID: 21606941]
[27]
Perche, F.; Biswas, S.; Wang, T.; Zhu, L.; Torchilin, V.P. Hypoxia-targeted siRNA delivery. Angew. Chem. Int. Ed. Engl., 2014, 53(13), 3362-3366.
[http://dx.doi.org/10.1002/anie.201308368] [PMID: 24554550]
[28]
Kuppusamy, P.; Li, H.; Ilangovan, G.; Cardounel, A.J.; Zweier, J.L.; Yamada, K.; Krishna, M.C.; Mitchell, J.B. Noninvasive imaging of tumor redox status and its modification by tissue glutathione levels. Cancer Res., 2002, 62(1), 307-312.
[PMID: 11782393]
[29]
Sun, Y.; Yan, X.; Yuan, T.; Liang, J.; Fan, Y.; Gu, Z.; Zhang, X. Disassemblable micelles based on reduction-degradable amphiphilic graft copolymers for intracellular delivery of doxorubicin. Biomaterials, 2010, 31(27), 7124-7131.
[http://dx.doi.org/10.1016/j.biomaterials.2010.06.011] [PMID: 20580429]
[30]
Li, J.; Huo, M.; Wang, J.; Zhou, J.; Mohammad, J.M.; Zhang, Y.; Zhu, Q.; Waddad, A.Y.; Zhang, Q. Redox-sensitive micelles self-assembled from amphiphilic hyaluronic acid-deoxycholic acid conjugates for targeted intracellular delivery of paclitaxel. Biomaterials, 2012, 33(7), 2310-2320.
[http://dx.doi.org/10.1016/j.biomaterials.2011.11.022] [PMID: 22166223]
[31]
Wu, L.; Zhang, L.; Shi, G.; Ni, C. Zwitterionic pH/redox nanoparticles based on dextran as drug carriers for enhancing tumor intercellular uptake of doxorubicin. Mater. Sci. Eng. C, 2016, 61, 278-285.
[http://dx.doi.org/10.1016/j.msec.2015.12.025] [PMID: 26838851]
[32]
Hou, L.; Yang, X.; Ren, J.; Wang, Y.; Zhang, H.; Feng, Q.; Shi, Y.; Shan, X.; Yuan, Y.; Zhang, Z. A novel redox-sensitive system based on single-walled carbon nanotubes for chemo-photothermal therapy and magnetic resonance imaging. Int. J. Nanomedicine, 2016, 11, 607-624.
[PMID: 26917960]
[33]
Lin, C-W.; Lu, K-Y.; Wang, S-Y.; Sung, H-W.; Mi, F-L. CD44-specific nanoparticles for redox-triggered reactive oxygen species production and doxorubicin release. Acta Biomater., 2016, 35, 280-292.
[http://dx.doi.org/10.1016/j.actbio.2016.02.005] [PMID: 26853764]
[34]
Qu, Q.; Wang, Y.; Zhang, L.; Zhang, X.; Zhou, S. A Nanoplatform with precise control over release of cargo for enhanced cancer therapy. Small, 2016, 12(10), 1378-1390.
[http://dx.doi.org/10.1002/smll.201503292] [PMID: 26763197]
[35]
Maggini, L.; Cabrera, I.; Ruiz-Carretero, A.; Prasetyanto, E.A.; Robinet, E.; De Cola, L. Breakable mesoporous silica nanoparticles for targeted drug delivery. Nanoscale, 2016, 8(13), 7240-7247.
[http://dx.doi.org/10.1039/C5NR09112H] [PMID: 26974603]
[36]
Mahmoud, E.A.; Sankaranarayanan, J.; Morachis, J.M.; Kim, G.; Almutairi, A. Inflammation responsive logic gate nanoparticles for the delivery of proteins. Bioconjug. Chem., 2011, 22(7), 1416-1421.
[http://dx.doi.org/10.1021/bc200141h] [PMID: 21688843]
[37]
Kwon, J.; Kim, J.; Park, S.; Khang, G.; Kang, P.M.; Lee, D. Inflammation-responsive antioxidant nanoparticles based on a polymeric prodrug of vanillin. Biomacromolecules, 2013, 14(5), 1618-1626.
[http://dx.doi.org/10.1021/bm400256h] [PMID: 23590189]
[38]
Schwerdt, A.; Zintchenko, A.; Concia, M.; Roesen, N.; Fisher, K.; Lindner, L.H.; Issels, R.; Wagner, E.; Ogris, M. Hyperthermia-induced targeting of thermosensitive gene carriers to tumors. Hum. Gene Ther., 2008, 19(11), 1283-1292.
[http://dx.doi.org/10.1089/hum.2008.064] [PMID: 19866491]
[39]
Ge, Z.; Liu, S. Functional block copolymer assemblies responsive to tumor and intracellular microenvironments for site-specific drug delivery and enhanced imaging performance. Chem. Soc. Rev., 2013, 42(17), 7289-7325.
[http://dx.doi.org/10.1039/c3cs60048c] [PMID: 23549663]
[40]
Clarke, S.J.; Sharma, R. Angiogenesis inhibitors in cancer-mechanisms of action. Aust. Prescr., 2006, 29, 9-12.
[http://dx.doi.org/10.18773/austprescr.2006.007]
[41]
Julias, J.G.; Pathak, V.K. Deoxyribonucleoside triphosphate pool imbalances in vivo are associated with an increased retroviral mutation rate. J. Virol., 1998, 72(10), 7941-7949.
[http://dx.doi.org/10.1128/JVI.72.10.7941-7949.1998] [PMID: 9733832]
[42]
Harris, V.; Ali, A.; Fuentes, S.; Korpela, K.; Kazi, M.; Tate, J.; Parashar, U.; Wiersinga, W.J.; Giaquinto, C.; de Weerth, C.; de Vos, W.M. Rotavirus vaccine response correlates with the infant gut microbiota composition in Pakistan. Gut Microbes, 2018, 9(2), 93-101.
[http://dx.doi.org/10.1080/19490976.2017.1376162] [PMID: 28891751]
[43]
Kiely, C.J.; Pavli, P.; O’Brien, C.L. The role of inflammation in temporal shifts in the inflammatory bowel disease mucosal microbiome. Gut Microbes, 2018, 9(6), 477-485.
[http://dx.doi.org/10.1080/19490976.2018.1448742] [PMID: 29543557]
[44]
Hagner, N.; Joerger, M. Cancer chemotherapy: targeting folic acid synthesis. Cancer Manag. Res., 2010, 2, 293-301.
[PMID: 21301589]
[45]
Cerqueira, N.M.; Fernandes, P.A.; Ramos, M.J. Ribonucleotide reductase: a critical enzyme for cancer chemotherapy and antiviral agents. Rec.Pat. Antican. Drug Discov., 2007, 2(1), 11-29.
[http://dx.doi.org/10.2174/157489207779561408] [PMID: 18221051]
[46]
Tanaka, H.; Arakawa, H.; Yamaguchi, T.; Shiraishi, K.; Fukuda, S.; Matsui, K.; Takei, Y.; Nakamura, Y. A ribonucleotide reductase gene involved in a p53-dependent cell-cycle checkpoint for DNA damage. Nature, 2000, 404(6773), 42-49.
[http://dx.doi.org/10.1038/35003506] [PMID: 10716435]
[47]
Zhou, B.; Su, L.; Hu, S.; Hu, W.; Yip, M.L.R.; Wu, J.; Gaur, S.; Smith, D.L.; Yuan, Y-C.; Synold, T.W.; Horne, D.; Yen, Y. A small-molecule blocking ribonucleotide reductase holoenzyme formation inhibits cancer cell growth and overcomes drug resistance. Cancer Res., 2013, 73(21), 6484-6493.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-1094] [PMID: 24072748]
[48]
Kolberg, M.; Strand, K.R.; Graff, P.; Andersson, K.K. Structure, function, and mechanism of ribonucleotide reductases. Biochim. Biophys. Acta, 2004, 1699(1-2), 1-34.
[http://dx.doi.org/10.1016/S1570-9639(04)00054-8] [PMID: 15158709]
[49]
Pereira, S.; Fernandes, P.A.; Ramos, M.J. Mechanism for ribonucleotide reductase inactivation by the anticancer drug gemcitabine. J. Comput. Chem., 2004, 25(10), 1286-1294.
[http://dx.doi.org/10.1002/jcc.20054] [PMID: 15139041]
[50]
Mees, C.; Nemunaitis, J.; Senzer, N. Transcription factors: their potential as targets for an individualized therapeutic approach to cancer. Cancer Gene Ther., 2009, 16(2), 103-112.
[http://dx.doi.org/10.1038/cgt.2008.73] [PMID: 18846113]
[51]
Oka, Y.; Udaka, K.; Tsuboi, A.; Elisseeva, O.A.; Ogawa, H.; Aozasa, K.; Kishimoto, T.; Sugiyama, H. Cancer immunotherapy targeting Wilms’ tumor gene WT1 product. J. Immunol., 2000, 164(4), 1873-1880.
[http://dx.doi.org/10.4049/jimmunol.164.4.1873] [PMID: 10657636]
[52]
Padua, R.A.; Larghero, J.; Robin, M.; le Pogam, C.; Schlageter, M-H.; Muszlak, S.; Fric, J.; West, R.; Rousselot, P.; Phan, T.H.; Mudde, L.; Teisserenc, H.; Carpentier, A.F.; Kogan, S.; Degos, L.; Pla, M.; Bishop, J.M.; Stevenson, F.; Charron, D.; Chomienne, C. PML-RARA-targeted DNA vaccine induces protective immunity in a mouse model of leukemia. Nat. Med., 2003, 9(11), 1413-1417.
[http://dx.doi.org/10.1038/nm949] [PMID: 14566333]
[53]
Villicaña, C.; Cruz, G.; Zurita, M. The basal transcription machinery as a target for cancer therapy. Cancer Cell Int., 2014, 14(1), 18.
[http://dx.doi.org/10.1186/1475-2867-14-18] [PMID: 24576043]
[54]
Zhao, Y.; Butler, E.B.; Tan, M. Targeting cellular metabolism to improve cancer therapeutics. Cell Death Dis., 2013., 4e532
[http://dx.doi.org/10.1038/cddis.2013.60] [PMID: 23470539]
[55]
Kuller, L.H.; Matthews, K.A.; Meilahn, E.N. Estrogens and women’s health: interrelation of coronary heart disease, breast cancer and osteoporosis. J. Steroid Biochem. Mol. Biol., 2000, 74(5), 297-309.
[http://dx.doi.org/10.1016/S0960-0760(00)00106-0] [PMID: 11162938]
[56]
Pfaff, D.W.; Vasudevan, N.; Kia, H.K.; Zhu, Y-S.; Chan, J.; Garey, J.; Morgan, M.; Ogawa, S. Estrogens, brain and behavior: studies in fundamental neurobiology and observations related to women’s health. J. Steroid Biochem. Mol. Biol., 2000, 74(5), 365-373.
[http://dx.doi.org/10.1016/S0960-0760(00)00114-X] [PMID: 11162946]
[57]
Osborne, C.K.; Schiff, R.; Fuqua, S.A.W.; Shou, J. Estrogen receptor: current understanding of its activation and modulation. Clin. Cancer Res., 2001, 7(12)(Suppl.), 4338s-4342s.
[PMID: 11916222]
[58]
Bhat, K.P.L.; Pezzuto, J.M. Natural modulators of estrogen biosynthesis and function as chemopreventive agents. Arch. Pharm. Res., 2001, 24(6), 473-484.
[http://dx.doi.org/10.1007/BF02975150] [PMID: 11794520]
[59]
Balunas, M.J.; Su, B.; Brueggemeier, R.W.; Kinghorn, A.D. Natural products as aromatase inhibitors. Anti-Cancer Agents Med. Chem. (Formerly Curr. Med. Chem. Agents), 2008, 8, 646-682.
[http://dx.doi.org/10.2174/187152008785133092]
[60]
Ferretti, G.; Bria, E.; Giannarelli, D.; Felici, A.; Papaldo, P.; Fabi, A.; Di Cosimo, S.; Ruggeri, E.M.; Milella, M.; Ciccarese, M.; Cecere, F.L.; Gelibter, A.; Nuzzo, C.; Cognetti, F.; Terzoli, E.; Carlini, P. Second- and third-generation aromatase inhibitors as first-line endocrine therapy in postmenopausal metastatic breast cancer patients: a pooled analysis of the randomised trials. Br. J. Cancer, 2006, 94(12), 1789-1796.
[http://dx.doi.org/10.1038/sj.bjc.6603194] [PMID: 16736002]
[61]
Cocconi, G. First generation aromatase inhibitors-aminoglutethimide and testololactone. Breast Cancer Res. Treat., 1994, 30(1), 57-80.
[http://dx.doi.org/10.1007/BF00682741] [PMID: 7949205]
[62]
Champoux, J.J. DNA topoisomerases: structure, function, and mechanism. Annu. Rev. Biochem., 2001, 70, 369-413.
[http://dx.doi.org/10.1146/annurev.biochem.70.1.369] [PMID: 11395412]
[63]
Stewart, L.; Ireton, G.C.; Champoux, J.J. The domain organization of human topoisomerase I. J. Biol. Chem., 1996, 271(13), 7602-7608.
[http://dx.doi.org/10.1074/jbc.271.13.7602] [PMID: 8631794]
[64]
Redinbo, M.R.; Stewart, L.; Kuhn, P.; Champoux, J.J.; Hol, W.G.J. Crystal structures of human topoisomerase i in covalent and noncovalent complexes with dna. Science, 1998, 279, 1504-1513.
[65]
Begum, A.A.; Toth, I.; Hussein, W.M.; Moyle, P.M. Advances in targeted gene delivery. Curr. Drug Deliv., 2019, 16(7), 588-608.
[http://dx.doi.org/10.2174/1567201816666190529072914] [PMID: 31142250]
[66]
Florean, C.; Schnekenburger, M.; Grandjenette, C.; Dicato, M.; Diederich, M. Epigenomics of leukemia: from mechanisms to therapeutic applications. Epigenomics, 2011, 3(5), 581-609.
[http://dx.doi.org/10.2217/epi.11.73] [PMID: 22126248]
[67]
Campbell, R.M.; Tummino, P.J. Cancer epigenetics drug discovery and development: the challenge of hitting the mark. J. Clin. Invest., 2014, 124(1), 64-69.
[http://dx.doi.org/10.1172/JCI71605] [PMID: 24382391]
[68]
Lehrmann, H.; Pritchard, L.L.; Harel-Bellan, A. Histone acetyltransferases and deacetylases in the control of cell proliferation and differentiation. Adv. Cancer Res., 2002, 86, 41-65.
[http://dx.doi.org/10.1016/S0065-230X(02)86002-X]
[69]
Jenuwein, T.; Allis, C.D. Translating the histone code. Science, 2001, 293, 1074-1080.
[http://dx.doi.org/10.1126/science.1063127]
[70]
Campas-Moya, C. Romidepsin for the treatment of cutaneous T-Cell lymphoma. Drug. Today, 2009, 45, 787-795.
[71]
Mann, B.S.; Johnson, J.R.; Cohen, M.H.; Justice, R.; Pazdur, R. FDA approval summary: vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. Oncologist, 2007, 12(10), 1247-1252.
[http://dx.doi.org/10.1634/theoncologist.12-10-1247] [PMID: 17962618]
[72]
Ding, W-Q.; Liu, B.; Vaught, J.L.; Yamauchi, H.; Lind, S.E. Anticancer activity of the antibiotic clioquinol. Cancer Res., 2005, 65(8), 3389-3395.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-3577] [PMID: 15833873]
[73]
Zheng, J.; Benbrook, D.M.; Yu, H.; Ding, W-Q. Clioquinol suppresses cyclin D1 gene expression through transcriptional and post-transcriptional mechanisms. Anticancer Res., 2011, 31(9), 2739-2747.
[PMID: 21868515 ]
[74]
Thiebaut, F.; Tsuruo, T.; Hamada, H.; Gottesman, M.M.; Pastan, I.; Willingham, M.C. Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Proc. Natl. Acad. Sci. USA, 1987, 84(21), 7735-7738.
[http://dx.doi.org/10.1073/pnas.84.21.7735] [PMID: 2444983]
[75]
Srivalli, K.M.R.; Lakshmi, P.K. Overview of P-glycoprotein inhibitors: a rational outlook. Braz. J. Pharm. Sci., 2012, 48, 353-367.
[http://dx.doi.org/10.1590/S1984-82502012000300002]
[76]
Heffeter, P.; Jakupec, M.A.; Körner, W.; Chiba, P.; Pirker, C.; Dornetshuber, R.; Elbling, L.; Sutterlüty, H.; Micksche, M.; Keppler, B.K.; Berger, W. Multidrug-resistant cancer cells are preferential targets of the new antineoplastic lanthanum compound KP772 (FFC24). Biochem. Pharmacol., 2007, 73(12), 1873-1886.
[http://dx.doi.org/10.1016/j.bcp.2007.03.002] [PMID: 17445775]
[77]
Hall, A. The cytoskeleton and cancer. Cancer Metastasis Rev., 2009, 28(1-2), 5-14.
[http://dx.doi.org/10.1007/s10555-008-9166-3] [PMID: 19153674]
[78]
Jordan, M.A.; Wilson, L. Microtubules as a target for anticancer drugs. Nat. Rev. Cancer, 2004, 4(4), 253-265.
[http://dx.doi.org/10.1038/nrc1317] [PMID: 15057285]
[79]
Mollinedo, F.; Gajate, C. Microtubules, microtubule-interfering agents and apoptosis. Apoptosis, 2003, 8(5), 413-450.
[http://dx.doi.org/10.1023/A:1025513106330] [PMID: 12975575]
[80]
Perez, E.A. Microtubule inhibitors: Differentiating tubulin-inhibiting agents based on mechanisms of action, clinical activity, and resistance. Mol. Cancer Ther., 2009, 8(8), 2086-2095.
[http://dx.doi.org/10.1158/1535-7163.MCT-09-0366] [PMID: 19671735]
[81]
Carlson, R.O. New tubulin targeting agents currently in clinical development. Expert Opin. Investig. Drugs, 2008, 17(5), 707-722.
[http://dx.doi.org/10.1517/13543784.17.5.707] [PMID: 18447597]
[82]
Morris, P.G.; Fornier, M.N. Microtubule active agents: beyond the taxane frontier. Clin. Cancer Res., 2008, 14(22), 7167-7172.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-0169] [PMID: 19010832]
[83]
Gascoigne, K.E.; Taylor, S.S. How do anti-mitotic drugs kill cancer cells? J. Cell Sci., 2009, 122(Pt 15), 2579-2585.
[http://dx.doi.org/10.1242/jcs.039719] [PMID: 19625502]
[84]
Xi, J.; Zhu, X.; Feng, Y.; Huang, N.; Luo, G.; Mao, Y.; Han, X.; Tian, W.; Wang, G.; Han, X.; Luo, R.; Huang, Z.; An, J. Development of a novel class of tubulin inhibitors with promising anticancer activities. Mol. Cancer Res., 2013, 11(8), 856-864.
[http://dx.doi.org/10.1158/1541-7786.MCR-12-0177] [PMID: 23666368]
[85]
Lopus, M. Mechanism of mitotic arrest induced by dolastatin 15 involves loss of tension across kinetochore pairs. Mol. Cell. Biochem., 2013, 382(1-2), 93-102.
[http://dx.doi.org/10.1007/s11010-013-1721-8] [PMID: 23744533]
[86]
Singh, P.; Rathinasamy, K.; Mohan, R.; Panda, D. Microtubule assembly dynamics: an attractive target for anticancer drugs. IUBMB Life, 2008, 60(6), 368-375.
[http://dx.doi.org/10.1002/iub.42] [PMID: 18384115]
[87]
Al-Sharif, M.M.Z. Studies on the genotoxic effects of anticancer drug paclitaxel (taxol) in mice. World Appl. Sci. J., 2012, 16, 989-997.
[88]
Nagar, N.; Jat, R.K.; Saharan, R.; Verma, S.; Sharma, D.; Bansal, K. Podophyllotoxin and their glycosidic derivatives. Pharmacophore, 2011, 2, 124-134.
[89]
Behrangi, N.; Hashemi, M.; Borna, H.; Akbarzadeh, A. Microtubules and tubulins as target for some natural anticancer agents extracted from marines, bacteruim, and fungus. Adv. Stud. Biol., 2012, 4, 1-9.
[90]
Ngan, V.K.; Bellman, K.; Hill, B.T.; Wilson, L.; Jordan, M.A. Mechanism of mitotic block and inhibition of cell proliferation by the semisynthetic Vinca alkaloids vinorelbine and its newer derivative vinflunine. Mol. Pharmacol., 2001, 60(1), 225-232.
[http://dx.doi.org/10.1124/mol.60.1.225] [PMID: 11408618]
[91]
Li, S-D.; Huang, L. Stealth nanoparticles: high density but sheddable PEG is a key for tumor targeting. J. Control. Release, 2010, 145(3), 178-181.
[http://dx.doi.org/10.1016/j.jconrel.2010.03.016] [PMID: 20338200]
[92]
Dong, H.; Tang, M.; Li, Y.; Li, Y.; Qian, D.; Shi, D. Disulfide-bridged cleavable PEGylation in polymeric nanomedicine for controlled therapeutic delivery. Nanomedicine (Lond.), 2015, 10(12), 1941-1958.
[http://dx.doi.org/10.2217/nnm.15.38] [PMID: 26139127]
[93]
Xu, C-F.; Zhang, H-B.; Sun, C-Y.; Liu, Y.; Shen, S.; Yang, X-Z.; Zhu, Y-H.; Wang, J. Tumor acidity-sensitive linkage-bridged block copolymer for therapeutic siRNA delivery. Biomaterials, 2016, 88, 48-59.
[http://dx.doi.org/10.1016/j.biomaterials.2016.02.031] [PMID: 26945455]
[94]
Das, R.P.; Gandhi, V.V.; Singh, B.G.; Kunwar, A. Passive and active drug targeting: role of nanocarriers in rational design of anticancer formulations. Curr. Pharm. Des., 2019, 25(28), 3034-3056.
[http://dx.doi.org/10.2174/1381612825666190830155319] [PMID: 31470779]
[95]
Zorko, M.; Langel, U. Cell-penetrating peptides: mechanism and kinetics of cargo delivery. Adv. Drug Deliv. Rev., 2005, 57(4), 529-545.
[http://dx.doi.org/10.1016/j.addr.2004.10.010] [PMID: 15722162]
[96]
Fu, J.; Yu, C.; Li, L.; Yao, S.Q. Intracellular delivery of functional proteins and native drugs by cell-penetrating poly(disulfide)s. J. Am. Chem. Soc., 2015, 137(37), 12153-12160.
[http://dx.doi.org/10.1021/jacs.5b08130] [PMID: 26340272]
[97]
Vives, E. Present and future of cell-penetrating peptide mediated delivery systems: “is the Trojan horse too wild to go only to Troy?". J. Control. Release, 2005, 109(1-3), 77-85.
[http://dx.doi.org/10.1016/j.jconrel.2005.09.032] [PMID: 16271792]
[98]
Jiang, T.; Olson, E.S.; Nguyen, Q.T.; Roy, M.; Jennings, P.A.; Tsien, R.Y. Tumor imaging by means of proteolytic activation of cell-penetrating peptides. Proc. Natl. Acad. Sci. USA, 2004, 101(51), 17867-17872.
[http://dx.doi.org/10.1073/pnas.0408191101] [PMID: 15601762]
[99]
Olson, E.S.; Jiang, T.; Aguilera, T.A.; Nguyen, Q.T.; Ellies, L.G.; Scadeng, M.; Tsien, R.Y. Activatable cell penetrating peptides linked to nanoparticles as dual probes for in vivo fluorescence and MR imaging of proteases. Proc. Natl. Acad. Sci. USA, 2010, 107(9), 4311-4316.
[http://dx.doi.org/10.1073/pnas.0910283107] [PMID: 20160077]
[100]
Li, S-Y.; Cheng, H.; Qiu, W-X.; Liu, L-H.; Chen, S.; Hu, Y.; Xie, B-R.; Li, B.; Zhang, X-Z. Protease-activable cell-penetrating peptide-protoporphyrin conjugate for targeted photodynamic therapy in vivo. ACS Appl. Mater. Interfaces, 2015, 7(51), 28319-28329.
[http://dx.doi.org/10.1021/acsami.5b08637] [PMID: 26634784]
[101]
Gao, W.; Xiang, B.; Meng, T-T.; Liu, F.; Qi, X-R. Chemotherapeutic drug delivery to cancer cells using a combination of folate targeting and tumor microenvironment-sensitive polypeptides. Biomaterials, 2013, 34(16), 4137-4149.
[http://dx.doi.org/10.1016/j.biomaterials.2013.02.014] [PMID: 23453200]
[102]
Zhang, B.; Zhang, Y.; Liao, Z.; Jiang, T.; Zhao, J.; Tuo, Y.; She, X.; Shen, S.; Chen, J.; Zhang, Q.; Jiang, X.; Hu, Y.; Pang, Z. UPA-sensitive ACPP-conjugated nanoparticles for multi-targeting therapy of brain glioma. Biomaterials, 2015, 36, 98-109.
[http://dx.doi.org/10.1016/j.biomaterials.2014.09.008] [PMID: 25443789]
[103]
van Duijnhoven, S.M.J.; Robillard, M.S.; Nicolay, K.; Grüll, H. Tumor targeting of MMP-2/9 activatable cell-penetrating imaging probes is caused by tumor-independent activation. J. Nucl. Med., 2011, 52(2), 279-286.
[http://dx.doi.org/10.2967/jnumed.110.082503] [PMID: 21233187]
[104]
Sethuraman, V.A.; Bae, Y.H. TAT peptide-based micelle system for potential active targeting of anti-cancer agents to acidic solid tumors. J. Control. Release, 2007, 118(2), 216-224.
[http://dx.doi.org/10.1016/j.jconrel.2006.12.008] [PMID: 17239466]
[105]
Jin, E.; Zhang, B.; Sun, X.; Zhou, Z.; Ma, X.; Sun, Q.; Tang, J.; Shen, Y.; Van Kirk, E.; Murdoch, W.J.; Radosz, M. Acid-active cell-penetrating peptides for in vivo tumor-targeted drug delivery. J. Am. Chem. Soc., 2013, 135(2), 933-940.
[http://dx.doi.org/10.1021/ja311180x] [PMID: 23253016]
[106]
Itaka, K.; Kataoka, K. Progress and prospects of polyplex nanomicelles for plasmid DNA delivery. Curr. Gene Ther., 2011, 11(6), 457-465.
[http://dx.doi.org/10.2174/156652311798192879] [PMID: 22023475]
[107]
Zhu, L.; Wang, T.; Perche, F.; Taigind, A.; Torchilin, V.P. Enhanced anticancer activity of nanopreparation containing an MMP2-sensitive PEG-drug conjugate and cell-penetrating moiety. Proc. Natl. Acad. Sci. USA, 2013, 110(42), 17047-17052.
[http://dx.doi.org/10.1073/pnas.1304987110] [PMID: 24062440]
[108]
Koren, E.; Apte, A.; Jani, A.; Torchilin, V.P. Multifunctional PEGylated 2C5-immunoliposomes containing pH-sensitive bonds and TAT peptide for enhanced tumor cell internalization and cytotoxicity. J. Control. Release, 2012, 160(2), 264-273.
[http://dx.doi.org/10.1016/j.jconrel.2011.12.002] [PMID: 22182771]
[109]
Karve, S.; Bandekar, A.; Ali, M.R.; Sofou, S. The pH-dependent association with cancer cells of tunable functionalized lipid vesicles with encapsulated doxorubicin for high cell-kill selectivity. Biomaterials, 2010, 31(15), 4409-4416.
[http://dx.doi.org/10.1016/j.biomaterials.2010.01.064] [PMID: 20189243]
[110]
Bandekar, A.; Karve, S.; Chang, M-Y.; Mu, Q.; Rotolo, J.; Sofou, S. Antitumor efficacy following the intracellular and interstitial release of liposomal doxorubicin. Biomaterials, 2012, 33(17), 4345-4352.
[http://dx.doi.org/10.1016/j.biomaterials.2012.02.039] [PMID: 22429980]
[111]
Shen, Z.; Wu, H.; Yang, S.; Ma, X.; Li, Z.; Tan, M.; Wu, A. A novel Trojan-horse targeting strategy to reduce the non-specific uptake of nanocarriers by non-cancerous cells. Biomaterials, 2015, 70, 1-11.
[http://dx.doi.org/10.1016/j.biomaterials.2015.08.022] [PMID: 26295434]
[112]
Ma, S-F.; Nishikawa, M.; Katsumi, H.; Yamashita, F.; Hashida, M. Cationic charge-dependent hepatic delivery of amidated serum albumin. J. Control. Release, 2005, 102(3), 583-594.
[http://dx.doi.org/10.1016/j.jconrel.2004.11.006] [PMID: 15681081]
[113]
Fischer, D.; Li, Y.; Ahlemeyer, B.; Krieglstein, J.; Kissel, T. In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials, 2003, 24(7), 1121-1131.
[http://dx.doi.org/10.1016/S0142-9612(02)00445-3] [PMID: 12527253]
[114]
Du, J-Z.; Mao, C-Q.; Yuan, Y-Y.; Yang, X-Z.; Wang, J. Tumor extracellular acidity-activated nanoparticles as drug delivery systems for enhanced cancer therapy. Biotechnol. Adv., 2014, 32(4), 789-803.
[http://dx.doi.org/10.1016/j.biotechadv.2013.08.002] [PMID: 23933109]
[115]
Bhattarai, N.; Gunn, J.; Zhang, M. Chitosan-based hydrogels for controlled, localized drug delivery. Adv. Drug Deliv. Rev., 2010, 62(1), 83-99.
[http://dx.doi.org/10.1016/j.addr.2009.07.019] [PMID: 19799949]
[116]
Deng, Z.; Zhen, Z.; Hu, X.; Wu, S.; Xu, Z.; Chu, P.K. Hollow chitosan-silica nanospheres as pH-sensitive targeted delivery carriers in breast cancer therapy. Biomaterials, 2011, 32(21), 4976-4986.
[http://dx.doi.org/10.1016/j.biomaterials.2011.03.050] [PMID: 21486679]
[117]
Crayton, S.H.; Tsourkas, A. pH-titratable superparamagnetic iron oxide for improved nanoparticle accumulation in acidic tumor microenvironments. ACS Nano, 2011, 5(12), 9592-9601.
[http://dx.doi.org/10.1021/nn202863x] [PMID: 22035454]
[118]
Yan, L.; Crayton, S.H.; Thawani, J.P.; Amirshaghaghi, A.; Tsourkas, A.; Cheng, Z. A pH-responsive drug-delivery platform based on glycol chitosan-coated liposomes. Small, 2015, 11(37), 4870-4874.
[http://dx.doi.org/10.1002/smll.201501412] [PMID: 26183232]
[119]
Pavitra, E.; Dariya, B.; Srivani, G.; Kang, S-M.; Alam, A.; Putty-Reddy, S.; Kamal, M.A.; Raju, G.S.R.; Han, Y-K.; Lakkakula, B.V.K.S. Engineered nanoparticles for imaging and drug delivery in colorectal cancer. Semi. Cancer Biol., 2019. [In press].
[http://dx.doi.org/10.1016/j.semcancer.2019.06.017]
[120]
Dai, W.; Yang, F.; Ma, L.; Fan, Y.; He, B.; He, Q.; Wang, X.; Zhang, H.; Zhang, Q. Combined mTOR inhibitor rapamycin and doxorubicin-loaded cyclic octapeptide modified liposomes for targeting integrin α3 in triple-negative breast cancer. Biomaterials, 2014, 35(20), 5347-5358.
[http://dx.doi.org/10.1016/j.biomaterials.2014.03.036] [PMID: 24726747]
[121]
Qin, C.; He, B.; Dai, W.; Zhang, H.; Wang, X.; Wang, J.; Zhang, X.; Wang, G.; Yin, L.; Zhang, Q. Inhibition of metastatic tumor growth and metastasis via targeting metastatic breast cancer by chlorotoxin-modified liposomes. Mol. Pharm., 2014, 11(10), 3233-3241.
[http://dx.doi.org/10.1021/mp400691z] [PMID: 24559485]
[122]
Slingerland, M.; Guchelaar, H-J.; Gelderblom, H. Liposomal drug formulations in cancer therapy: 15 years along the road. Drug Discov. Today, 2012, 17(3-4), 160-166.
[http://dx.doi.org/10.1016/j.drudis.2011.09.015] [PMID: 21983329]
[123]
Li, S.; Wu, W.; Xiu, K.; Xu, F.; Li, Z.; Li, J. Doxorubicin loaded pH-responsive micelles capable of rapid intracellular drug release for potential tumor therapy. J. Biomed. Nanotechnol., 2014, 10(8), 1480-1489.
[http://dx.doi.org/10.1166/jbn.2014.1846] [PMID: 25016648]
[124]
Xu, X.; Wu, J.; Liu, Y.; Yu, M.; Zhao, L.; Zhu, X.; Bhasin, S.; Li, Q.; Ha, E.; Shi, J.; Farokhzad, O.C. Ultra-pH-responsive and tumor-penetrating nanoplatform for targeted siRNA delivery with robust anti-cancer efficacy. Angew. Chem. Int. Ed. Engl., 2016, 55(25), 7091-7094.
[http://dx.doi.org/10.1002/anie.201601273] [PMID: 27140428]
[125]
Mohammad, A.; Iraqi, E.; Khan, I.A. Use of nonionic poly(ethylene glycol) p-isooctyl-phenyl ether (Triton X-1 00) surfactant mobile phases in the thin-layer chromatography of heavy-metal cations. J. Chromatogr. Sci., 2002, 40(3), 162-169.
[http://dx.doi.org/10.1093/chromsci/40.3.162] [PMID: 11954654]
[126]
Zhao, X.; Liu, P. Reduction-responsive core-shell-corona micelles based on triblock copolymers: novel synthetic strategy, characterization, and application as a tumor microenvironment-responsive drug delivery system. ACS Appl. Mater. Interfaces, 2015, 7(1), 166-174.
[http://dx.doi.org/10.1021/am505531e] [PMID: 25394962]
[127]
Ke, C-J.; Chiang, W-L.; Liao, Z-X.; Chen, H-L.; Lai, P-S.; Sun, J-S.; Sung, H-W. Real-time visualization of pH-responsive PLGA hollow particles containing a gas-generating agent targeted for acidic organelles for overcoming multi-drug resistance. Biomaterials, 2013, 34(1), 1-10.
[http://dx.doi.org/10.1016/j.biomaterials.2012.09.023] [PMID: 23044041]
[128]
Rodrigues, P.; Scheuermann, K.; Stockmar, C.; Maier, G.; Fiebig, H.; Unger, C.; Mülhaupt, R.; Kratz, F. Synthesis and in vitro efficacy of acid-sensitive poly(ethylene glycol) paclitaxel conjugates. Bioorg. Med. Chem. Lett., 2003, 13(3), 355-360.
[http://dx.doi.org/10.1016/S0960-894X(02)01002-8] [PMID: 12882225]
[129]
Liu, H.N.; Guo, N.N.; Guo, W.W.; Huang-Fu, M.Y.; Vakili, M.R.; Chen, J.J.; Xu, W.H.; Wei, Q.C.; Han, M.; Lavasanifar, A.; Gao, J.Q. Delivery of mitochondriotropic doxorubicin derivatives using self-assembling hyaluronic acid nanocarriers in doxorubicin-resistant breast cancer. Acta Pharmacol. Sin., 2018, 39(10), 1681-1692.
[http://dx.doi.org/10.1038/aps.2018.9] [PMID: 29849132]
[130]
Xu, R.; Zhang, G.; Mai, J.; Deng, X.; Segura-Ibarra, V.; Wu, S.; Shen, J.; Liu, H.; Hu, Z.; Chen, L.; Huang, Y.; Koay, E.; Huang, Y.; Liu, J.; Ensor, J.E.; Blanco, E.; Liu, X.; Ferrari, M.; Shen, H. An injectable nanoparticle generator enhances delivery of cancer therapeutics. Nat. Biotechnol., 2016, 34(4), 414-418.
[http://dx.doi.org/10.1038/nbt.3506] [PMID: 26974511]
[131]
He, Q.; Shi, J. MSN anti-cancer nanomedicines: chemotherapy enhancement, overcoming of drug resistance, and metastasis inhibition. Adv. Mater., 2014, 26(3), 391-411.
[http://dx.doi.org/10.1002/adma.201303123] [PMID: 24142549]
[132]
Schlossbauer, A.; Kecht, J.; Bein, T. Biotin-avidin as a protease-responsive cap system for controlled guest release from colloidal mesoporous silica. Angew. Chem. Int. Ed. Engl., 2009, 48(17), 3092-3095.
[http://dx.doi.org/10.1002/anie.200805818] [PMID: 19309022]
[133]
Zhang, J.; Yuan, Z-F.; Wang, Y.; Chen, W-H.; Luo, G-F.; Cheng, S-X.; Zhuo, R-X.; Zhang, X-Z. Multifunctional envelope-type mesoporous silica nanoparticles for tumor-triggered targeting drug delivery. J. Am. Chem. Soc., 2013, 135(13), 5068-5073.
[http://dx.doi.org/10.1021/ja312004m] [PMID: 23464924]
[134]
Guan, S.; Zhang, Q.; Bao, J.; Hu, R.; Czech, T.; Tang, J. Recognition Sites for Cancer-targeting Drug Delivery Systems. Curr. Drug Metab., 2019, 20(10), 815-834.
[http://dx.doi.org/10.2174/1389200220666191003161114] [PMID: 31580248]
[135]
Oladimeji, O.; Akinyelu, J.; Singh, M. Nanomedicines for Subcellular Targeting: The Mitochondrial Perspective. Curr. Med. Chem., 2020. [Epub ahead of print]
[PMID: 31763965]
[136]
Rajabi, M.; Adeyeye, M.; Mousa, S.A. Peptide-conjugated nanoparticles as targeted anti-angiogenesis therapeutic and diagnostic in cancer. Curr. Med. Chem., 2019, 26(30), 5664-5683.
[http://dx.doi.org/10.2174/0929867326666190620100800] [PMID: 31250748]