Current Pharmaceutical Biotechnology

Author(s): Germeen N.S. Girgis*

DOI: 10.2174/1389201021666200519133350

Formulation and Evaluation of Atorvastatin Calcium-Poly-ε-Caprolactone Nanoparticles Loaded Ocular Inserts for Sustained Release and Antiinflammatory Efficacy

Page: [1688 - 1698] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Purpose: The work was performed to investigate the feasibility of preparing ocular inserts loaded with Poly-ε-Caprolactone (PCL) nanoparticles as a sustained ocular delivery system.

Methods: First, Atorvastatin Calcium-Poly-ε-Caprolactone (ATC-PCL) nanoparticles were prepared and characterized. Then, the optimized nanoparticles were loaded within inserts formulated with Methylcellulose (MC) and Polyvinyl Alcohol (PVA) by a solvent casting technique and evaluated physically, for in-vitro drug release profile. Finally, an in-vivo study was performed on the selected formulation to prove non-irritability and sustained ocular anti-inflammatory efficacy compared with free drug-loaded ocuserts.

Results: The results revealed (ATC-PCL) nanoparticles prepared with 0.5% pluronic F127 were optimized with 181.72±3.6 nm particle size, 0.12±0.02 (PDI) analysis, -27.4± 0.69 mV zeta potential and 62.41%±4.7% entrapment efficiency. Nanoparticles loaded ocuserts manifested compatibility between drug and formulation polymers. Moreover, formulations complied with average weight 0.055±0.002 to 0.143±0.023 mg, and accepted pH. ATC-PCL nanoparticles loaded inserts prepared by 5% MC showed more sustained, prolonged in-vitro release over 24h. In-vivo study emphasized non-irritability, ocular anti-inflammatory effectiveness represented by smaller lid closure scores, and statistically significant lowering in PMN count after 3h.

Conclusion: These findings proposed a possibly simple, new and affordable price technique to prepare promising (ATC-PCL) nanoparticles loaded inserts to achieve sustained release with prolonged antiinflammatory efficacy.

Keywords: Atorvastatin calcium, Poly-ε-Caprolactone, nanoparticles, sustained release, ocular inserts, anti-inflammatory.

Graphical Abstract

[1]
Siafaka, P.I.; Titopoulou, A.; Koukaras, E.N.; Kostoglou, M.; Koutris, E.; Karavas, E.; Bikiaris, D.N. Chitosan derivatives as effective nanocarriers for ocular release of timolol drug. Int. J. Pharm., 2015, 495(1), 249-264.
[http://dx.doi.org/10.1016/j.ijpharm.2015.08.100 ] [PMID: 26341322]
[2]
Nagarwal, R.C.; Kant, S.; Singh, P.N.; Maiti, P.; Pandit, J.K. Polymeric nanoparticulate system: A potential approach for ocular drug delivery. J. Control. Release, 2009, 136(1), 2-13.
[http://dx.doi.org/10.1016/j.jconrel.2008.12.018 ] [PMID: 19331856]
[3]
Okur, N.Ü. Improving therapeutic efficacy of voriconazole against fungal keratitis: Thermo-sensitive in situ gels as ophthalmic drug carriers. J. Drug Deliv. Sci. Technol., 2019, 49, 323-333.
[http://dx.doi.org/10.1016/j.jddst.2018.12.005]
[4]
Souto, E.B.; Dias-Ferreira, J.; López-Machado, A.; Ettcheto, M.; Cano, A.; Camins Espuny, A.; Espina, M.; Garcia, M.L.; Sánchez-López, E. Advanced formulation approaches for ocular drug delivery: State-of-the-art and recent patents. Pharmaceutics, 2019, 11(9), 460.
[http://dx.doi.org/10.3390/pharmaceutics11090460 ] [PMID: 31500106]
[5]
Sachdeva, D.; Bhandari, A. Design, formulation, evaluation of levobunolol HCl ocular inserts. J. Pharm. Sci. Res., 2011, 3(12), 1625.
[6]
Patel, H.A. Ophthalmic drug delivery system-a review. Der Pharmacia Lettre, 2010, 2(4), 100-115.
[7]
Ooi, K.G-J.; Wakefield, D.; Billson, F.A.; Watson, S.L. Efficacy and safety of topical atorvastatin for the treatment of dry eye associated with blepharitis: A pilot study. Ophthalmic Res., 2015, 54(1), 26-33.
[http://dx.doi.org/10.1159/000367851] [PMID: 26068735]
[8]
Kumar, N. Atorvastatin calcium loaded PCL nanoparticles: development, optimization, in vitro and in vivo assessments. RSC Advances, 2016, 6(20), 16520-16532.
[http://dx.doi.org/10.1039/C5RA26674B]
[9]
Girgis, G.N. Formulation and evaluation of pluronic F127 thermosetting gels containing atorvastatin calcium as novel ophthalmic delivery systems. Ophthalmol. Res., 2018, 9(3), 1-10.
[http://dx.doi.org/10.9734/OR/2018/44459]
[10]
Ahmed, I.S. Preparation and in-vitro evaluation of poly-ε-caprolactone nanoparticles containing atorvastation calcium. J. Res. Opin., 2014, 4(1), 1-8.
[11]
Wang, J.; Sun, J.; Chen, Q.; Gao, Y.; Li, L.; Li, H.; Leng, D.; Wang, Y.; Sun, Y.; Jing, Y.; Wang, S.; He, Z. Star-shape copolymer of lysine-linked di-tocopherol polyethylene glycol 2000 succinate for doxorubicin delivery with reversal of multidrug resistance. Biomaterials, 2012, 33(28), 6877-6888.
[http://dx.doi.org/10.1016/j.biomaterials.2012.06.019 ] [PMID: 22770799]
[12]
Patel, R.R. Rationally developed core–shell polymeric-lipid hybrid nanoparticles as a delivery vehicle for cromolyn sodium: Implications of lipid envelop on in vitro and in vivo behaviour of nanoparticles upon oral administration. RSC Advances, 2015, 5(93), 76491-76506.
[http://dx.doi.org/10.1039/C5RA12732G]
[13]
Santander-Ortega, M.J.; Stauner, T.; Loretz, B.; Ortega-Vinuesa, J.L.; Bastos-González, D.; Wenz, G.; Schaefer, U.F.; Lehr, C.M. Nanoparticles made from novel starch derivatives for transdermal drug delivery. J. Control. Release, 2010, 141(1), 85-92.
[http://dx.doi.org/10.1016/j.jconrel.2009.08.012 ] [PMID: 19699771]
[14]
Gilhotra, R.M.; Gilhotra, N.; Mishra, D.N. Piroxicam bioadhesive ocular inserts: Physicochemical characterization and evaluation in prostaglandin-induced inflammation. Curr. Eye Res., 2009, 34(12), 1065-1073.
[http://dx.doi.org/10.3109/02713680903340738 ] [PMID: 19958126]
[15]
Patel, U.; Chotai, N.; Nagda, C. Design and evaluation of polymeric ocular drug delivery system for controlled delivery of moxifloxacin hydrochloride: in vitro and in vivo evaluation. Acta Pharmaceut. Sci., 2010, 52(4)
[16]
Deshpande, P.B.; Dandagi, P.; Udupa, N.; Gopal, S.V.; Jain, S.S.; Vasanth, S.G. Controlled release polymeric ocular delivery of acyclovir. Pharm. Dev. Technol., 2010, 15(4), 369-378.
[http://dx.doi.org/10.3109/10837450903262017 ] [PMID: 19772377]
[17]
Charoo, N.A.; Kohli, K.; Ali, A.; Anwer, A. Ophthalmic delivery of ciprofloxacin hydrochloride from different polymer formulations: in vitro and in vivo studies. Drug Dev. Ind. Pharm., 2003, 29(2), 215-221.
[http://dx.doi.org/10.1081/DDC-120016729 ] [PMID: 12648018]
[18]
Mishra, D.; Gilhotra, R. Design and characterization of bioadhesive in-situ gelling ocular inserts of gatifloxacin sesquihydrate. Daru, 2008, 16(1), 1-8.
[19]
Shanmugam, S. Design and evaluation of novel ophthalmic delivery system of aciclovir for herpes simplex infection. Res. J. Pharm. Dos. Forms Technol., 2011, 3(2), 52-56.
[20]
Ghelani, T. Formulation and evaluation of Timolol maleate ocular insert. Asian J. Biochem. Pharmaceut. Res., 2011, 1(1), 166-174.
[21]
Gilhotra, R.M.; Mishra, D.N. Alginate-chitosan film for ocular drug delivery: Effect of surface cross-linking on film properties and characterization. Pharmazie, 2008, 63(8), 576-579.
[PMID: 18771005]
[22]
Sultana, Y.; Aqil, M.; Ali, A. Ocular inserts for controlled delivery of pefloxacin mesylate: Preparation and evaluation. Acta Pharm., 2005, 55(3), 305-314.
[PMID: 16375841]
[23]
Costa, P.; Sousa Lobo, J.M. Modeling and comparison of dissolution profiles. Eur. J. Pharm. Sci., 2001, 13(2), 123-133.
[http://dx.doi.org/10.1016/S0928-0987(01)00095-1 ] [PMID: 11297896]
[24]
Kaur, I.P.; Singh, M.; Kanwar, M. Formulation and evaluation of ophthalmic preparations of acetazolamide. Int. J. Pharm., 2000, 199(2), 119-127.
[http://dx.doi.org/10.1016/S0378-5173(00)00359-8 ] [PMID: 10802405]
[25]
Sankar, V. Design and evaluation of diclofenac sodium ophthalmic inserts. Acta Pharmaceut. Sciencia, 2006, 48(1)
[26]
Pignatello, R.; Bucolo, C.; Puglisi, G. Ocular tolerability of Eudragit RS100 and RL100 nanosuspensions as carriers for ophthalmic controlled drug delivery. J. Pharm. Sci., 2002, 91(12), 2636-2641.
[http://dx.doi.org/10.1002/jps.10227] [PMID: 12434408]
[27]
Gupta, A.K.; Madan, S.; Majumdar, D.K.; Maitra, A. Ketorolac entrapped in polymeric micelles: Preparation, characterisation and ocular anti-inflammatory studies. Int. J. Pharm., 2000, 209(1-2), 1-14.
[http://dx.doi.org/10.1016/S0378-5173(00)00508-1 ] [PMID: 11084241]
[28]
Malhotra, M.; Majumdar, D.K. Aqueous, oil, and ointment formulations of ketorolac: Efficacy against prostaglandin E2-induced ocular inflammation and safety: A technical note. AAPS PharmSciTech, 2006, 7(4), 96.
[http://dx.doi.org/10.1208/pt070496] [PMID: 17285752]
[29]
Srinivasan, B.D.; Kulkarni, P.S. The role of arachidonic acid metabolites in the mediation of the polymorphonuclear leukocyte response following corneal injury. Invest. Ophthalmol. Vis. Sci., 1980, 19(9), 1087-1093.
[PMID: 7409999]
[30]
Sood, R. Medical Laboratory Technology: Methods and Interpretations; Jaypee Brothers: New Delhi, 1999, pp. 169-177.
[31]
Li, Z. The studies of PLGA nanoparticles loading atorvastatin calcium for oral administration in vitro and in vivo. Asian J. Pharm. Sci., 2017, 12(3), 285-291.
[32]
Nagarsenker, M.S.; Londhe, V.Y.; Nadkarni, G.D. Preparation and evaluation of liposomal formulations of tropicamide for ocular delivery. Int. J. Pharm., 1999, 190(1), 63-71.
[http://dx.doi.org/10.1016/S0378-5173(99)00265-3 ] [PMID: 10528098]
[33]
Feng, S.; Huang, G. Effects of emulsifiers on the controlled release of paclitaxel (Taxol) from nanospheres of biodegradable polymers. J. Control. Release, 2001, 71(1), 53-69.
[http://dx.doi.org/10.1016/S0168-3659(00)00364-3 ] [PMID: 11245908]
[34]
Bathool, A. Development and characterization of atorvastatin calcium loaded chitosan nanoparticles for sustain drug delivery. Adv. Mat. Lett., 2012, 3(6), 466-470.
[http://dx.doi.org/10.5185/amlett.2012.icnano.153]
[35]
Piñón-Segundo, E.; Ganem-Quintanar, A.; Alonso-Pérez, V.; Quintanar-Guerrero, D. Preparation and characterization of triclosan nanoparticles for periodontal treatment. Int. J. Pharm., 2005, 294(1-2), 217-232.
[http://dx.doi.org/10.1016/j.ijpharm.2004.11.010 ] [PMID: 15814246]
[36]
Govender, T.; Stolnik, S.; Garnett, M.C.; Illum, L.; Davis, S.S. PLGA nanoparticles prepared by nanoprecipitation: Drug loading and release studies of a water-soluble drug. J. Control. Release, 1999, 57(2), 171-185.
[http://dx.doi.org/10.1016/S0168-3659(98)00116-3 ] [PMID: 9971898]
[37]
Shukr, M. Formulation, in vitro and in vivo evaluation of lidocaine HCl ocular inserts for topical ocular anesthesia. Arch. Pharm. Res., 2014, 37(7), 882-889.
[http://dx.doi.org/10.1007/s12272-013-0317-x] [PMID: 24395530]
[38]
Vasita, R. Surface hydrophilization of electrospun PLGA micro-/nano-fibers by blending with Pluronic® F-108. Polymer (Guildf.), 2010, 51(16), 3706-3714.
[http://dx.doi.org/10.1016/j.polymer.2010.05.048]
[39]
Arafa, M.G.; Girgis, G.N.S.; El-Dahan, M.S. Chitosan-coated PLGA nanoparticles for enhanced ocular anti-inflammatory efficacy of atorvastatin calcium. Int. J. Nanomedicine, 2020, 15, 1335-1347.
[http://dx.doi.org/10.2147/IJN.S237314] [PMID: 32184589]
[40]
Gupta, H.; Aqil, M.; Khar, R.K.; Ali, A.; Bhatnagar, A.; Mittal, G. Sparfloxacin-loaded PLGA nanoparticles for sustained ocular drug delivery. Nanomedicine (Lond.), 2010, 6(2), 324-333.
[http://dx.doi.org/10.1016/j.nano.2009.10.004 ] [PMID: 19857606]
[41]
Marchal-Heussler, L.; Sirbat, D.; Hoffman, M.; Maincent, P. Poly(ε-caprolactone) nanocapsules in carteolol ophthalmic delivery. Pharm. Res., 1993, 10(3), 386-390.
[http://dx.doi.org/10.1023/A:1018936205485] [PMID: 8464811]