A Comprehensive Review on Alginate as Wound Dressing Biomaterial

Page: [3 - 14] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Background: The design and characteristics of alginate biomaterial have a significant role in wound dressing and tissue regeneration. The ideal biomaterial for wound dressing must be biodegradable, biocompatible, non-inflammatory, and non-toxic.

Objective: Wound dressing should promote the re-epithelization process and protect the wound from further infection by creating a moist environment. The physical and mechanical nature of the alginate biopolymer has the potential to influence the pathophysiological mechanisms in the chronic wound. The application of this biomaterial provides ample advantages than synthetic polymers.

Methods: The wound healing process is a critical step involved in different phases. The presence of cross-linkers, various drugs along with alginate leads to a decrease in the mechanical property of dressing. Hence the choice of an effective material for dressing along with alginate is a very critical decision. The therapeutic efficacy of the alginate dressing system (film, hydrogel, wafer, etc.) is influenced by the incorporation of different materials such as bioactive agents, nanoparticles, crosslinkers, nature of the excipients, etc.

Results: The ion exchange occurring between dressing and exudates results in the formation of a gel, due to the presence of glucuronic acid in alginate. This gel absorbs moisture and maintains an appropriate moist environment and actively influences the pathophysiological mechanisms of the chronic wound.

Conclusion: This review provides detailed knowledge to researchers to work with alginate and also knowledge about the incorporation of an appropriate material and its therapeutic efficacy in wound dressing.

Keywords: Alginate, biomaterial, characterization, drug delivery system, tissue engineering, wound dressing.

Graphical Abstract

[1]
Mofazzal Jahromi MA, Sahandi Zangabad P, Moosavi Basri SM, et al. Nanomedicine and advanced technologies for burns: Preventing infection and facilitating wound healing. Adv Drug Deliv Rev 2018; 123(1): 33-64.
[http://dx.doi.org/10.1016/j.addr.2017.08.001] [PMID: 28782570]
[2]
World Health Organization. Violence and injury prevention, Burns.; Available from: . https://www.who.int/violence_injury_prevention/other_injury/burns/en/.html [Accessed March 21, 2020]
[3]
Peck M, Molnar J, Swart D. A global plan for burn prevention and care. Bull World Health Organ 2009; 87(10): 802-3.
[http://dx.doi.org/10.2471/BLT.08.059733] [PMID: 19876549]
[4]
Church D, Elsayed S, Reid O, Winston B, Lindsay R. Burn wound infections. Clin Microbiol Rev 2006; 19(2): 403-34.
[http://dx.doi.org/10.1128/CMR.19.2.403-434.2006 ] [PMID: 16614255]
[5]
Burd A. Research in burns - Present and future. Indian J Plast Surg 2010; 43(9)(Suppl.): S11-4.
[http://dx.doi.org/10.4103/0970-0358.70717] [PMID: 21321644]
[6]
Thomas SJ, Kramer GC, Herndon DN. Burns: Military options and tactical solutions. J Trauma 2003; 54(5)(Suppl.): S207-18.
[PMID: 12768127]
[7]
Hinz B. Formation and function of the myofibroblast during tissue repair. J Invest Dermatol 2007; 127(3): 526-37.
[http://dx.doi.org/10.1038/sj.jid.5700613] [PMID: 17299435]
[8]
Claudinot S, Nicolas M, Oshima H, Rochat A, Barrandon Y. Long-term renewal of hair follicles from clonogenic multipotent stem cells. Proc Natl Acad Sci USA 2005; 102(41): 14677-82.
[http://dx.doi.org/10.1073/pnas.0507250102] [PMID: 16203973]
[9]
Ito M, Liu Y, Yang Z, et al. Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nat Med 2005; 11(12): 1351-4.
[http://dx.doi.org/10.1038/nm1328] [PMID: 16288281]
[10]
Rowan MP, Cancio LC, Elster EA, et al. Burn wound healing and treatment: Review and advancements. Crit Care 2015; 19: 243.
[http://dx.doi.org/10.1186/s13054-015-0961-2] [PMID: 26067660]
[11]
American burn association. Burn incidence fact sheet. National Burn Repository 2016 [Available from:. http://www.ameriburn.org/2014NBRAnnualReport.pdf [Accessed on: October 11, 2019].
[12]
Kagan RJ, Peck MD, Ahrenholz DH, et al. Surgical management of the burn wound and use of skin substitutes: An expert panel white paper. J Burn Care Res 2013; 34(2): e60-79.
[http://dx.doi.org/10.1097/BCR.0b013e31827039a6 ] [PMID: 23446645]
[13]
Nisanci M, Eski M, Sahin I, Ilgan S, Isik S. Saving the zone of stasis in burns with activated protein C: An experimental study in rats. Burns 2010; 36(3): 397-402.
[http://dx.doi.org/10.1016/j.burns.2009.06.208] [PMID: 19765907]
[14]
Robins EV. Burn shock. Crit Care Nurs Clin North Am 1990; 2(2): 299-307.
[http://dx.doi.org/10.1016/S0899-5885(18)30830-X ] [PMID: 2357324]
[15]
Pham TN, Cancio LC, Gibran NS. American burn association. American burn association practice guidelines burn shock resuscitation. J Burn Care Res 2008; 29(1): 257-66.
[http://dx.doi.org/10.1097/BCR.0b013e31815f3876 ] [PMID: 18182930]
[16]
Shirani KZ, Vaughan GM, Mason AD Jr, Pruitt BA Jr. Update on current therapeutic approaches in burns. Shock 1996; 5(1): 4-16.
[http://dx.doi.org/10.1097/00024382-199601000-00004 ] [PMID: 8821097]
[17]
Rae L, Fidler P, Gibran N. The physiologic basis of burn shock and the need for Aggressive fluid resuscitation. Crit Care Clin 2016; 32(4): 491-505.
[http://dx.doi.org/10.1016/j.ccc.2016.06.001] [PMID: 27600122]
[18]
Dries DJ. Management of burn injuries--recent developments in resuscitation, infection control and outcomes research. Scand J Trauma Resusc Emerg Med 2009; 17(3): 14.
[http://dx.doi.org/10.1186/1757-7241-17-14] [PMID: 19284591]
[19]
Edgar DW, Fish JS, Gomez M, Wood FM. Local and systemic treatments for acute edema after burn injury: A systematic review of the literature. J Burn Care Res 2011; 32(2): 334-47.
[http://dx.doi.org/10.1097/BCR.0b013e31820ab019 ] [PMID: 21252688]
[20]
Sommer K, Sander AL, Albig M, et al. Delayed wound repair in sepsis is associated with reduced local pro-inflammatory cytokine expression. PLoS One 2013; 8(9)e73992
[http://dx.doi.org/10.1371/journal.pone.0073992] [PMID: 24086305]
[21]
Hettiaratchy S, Dziewulski P. ABC of burns: Pathophysiology and types of burns. BMJ 2004; 328(7453): 1427-9.
[http://dx.doi.org/10.1136/bmj.328.7453.1427] [PMID: 15191982]
[22]
Hussain A, Dunn KW. Predicting length of stay in thermal burns: A systematic review of prognostic factors. Burns 2013; 39(7): 1331-40.
[http://dx.doi.org/10.1016/j.burns.2013.04.026] [PMID: 23768707]
[23]
Wilmore DW, Long JM, Mason AD Jr, Skreen RW, Pruitt BA Jr. Catecholamines: Mediator of the hypermetabolic response to thermal injury. Ann Surg 1974; 180(4): 653-69.
[http://dx.doi.org/10.1097/00000658-197410000-00031 ] [PMID: 4412350]
[24]
Yang C, Hillas PJ, Báez JA, et al. The application of recombinant human collagen in tissue engineering. BioDrugs 2004; 18(2): 103-19.
[http://dx.doi.org/10.2165/00063030-200418020-00004 ] [PMID: 15046526]
[25]
Mir M, Ali MN, Barakullah A, et al. Synthetic polymeric biomaterials for wound healing: A review. Prog Biomater 2018; 7(1): 1-21.
[http://dx.doi.org/10.1007/s40204-018-0083-4] [PMID: 29446015]
[26]
Lee KY, Mooney DJ. Alginate: Properties and biomedical applications. Prog Polym Sci 2012; 37(1): 106-26.
[http://dx.doi.org/10.1016/j.progpolymsci.2011.06.003 ] [PMID: 22125349]
[27]
Wound source. ALGICELL®Ag Antimicrobial alginate dressing. [Available from: . http://www.woundsource.com/product/algicell-ag-antimicrobial-alginate-dressing.html [Accessed October 25,2019].
[28]
SmithNephew. AlgiSiteM™. Available from: . http://www.smithnephew.com/professional/products/advancedwoundmanagemnt/algisite-m/.html [Accessed October 25, 2019].
[29]
Thomas S. SMTL dressings data card Available from: http://www.dressings.org/Dressings/comfeel-plus.html [Accessed October 25, 2019].
[30]
KALTOSTAT Calcium sodium alginate dressing. Available from:. https://fsastore.com/KALTOSTATCalcium-Sodium-Alginate-Dressing-3-x-4-34-Box-of-10-P23356.aspx.html [Accessed October 25, 2019].
[31]
Sorbsan Flat. Available from: . http://www.aspenmedicaleurope. com/specialist_wound_car/sorbsan-flat/.html [Accessed October 25, 2019].
[32]
O’Meara S, Martyn-St James M, Adderley UJ. Alginate dressings for venous leg ulcers Available from:. http://eprints.whiterose.ac.uk/92499/1/O%27Meara_et_al-2015-The_Cochrane_Library.pdf. [Accessed October 03, 2019].
[33]
Szekalska M, Puciłowska A. Szyma nska E, Ciosek P, Winnicka K. Alginate: Current use and future perspectives in pharmaceutical and biomedical applications. Int J Polym Sci 2016; 8(12): 1-17.
[http://dx.doi.org/10.1155/2016/7697031]
[34]
FIBRACOL™ Plus. Collagen wound dressing with alginate. Available from: . http://www.woundsource.com/product/fibracol-plus-collagen-wound-dressing-alginate [Accessed October 03,2019].
[35]
Trombo guard®. Available from:. http://matopat.ro/wpcontent/uploads/sites/2/2013/12/tromboguardleaflet.pdf [Accessed October 03, 2019]
[36]
Thomas S. Alginate dressings in surgery and wound management--Part 1. J Wound Care 2000; 9(2): 56-60.
[http://dx.doi.org/10.12968/jowc.2000.9.2.26338] [PMID: 11933281]
[37]
Sahana TG, Rekha PD. Biopolymers: Applications in wound healing and skin tissue engineering. Mol Biol Rep 2018; 45(6): 2857-67.
[http://dx.doi.org/10.1007/s11033-018-4296-3] [PMID: 30094529]
[38]
George M, Abraham TE. Polyionic hydrocolloids for the intestinal delivery of protein drugs: Alginate and chitosan--a review. J Control Release 2006; 114(1): 1-14.
[http://dx.doi.org/10.1016/j.jconrel.2006.04.017] [PMID: 16828914]
[39]
O’Meara S, Martyn-St James M, Adderley UJ. Alginate dressings for venous leg ulcers. Cochrane Database Syst Rev 2015; (8): CD010182
[PMID: 26286189]
[40]
Piacquadio D, Nelson DB. Alginates. A “new” dressing alternative. J Dermatol Surg Oncol 1992; 18(11): 992-5.
[http://dx.doi.org/10.1111/j.1524-4725.1992.tb02773.x ] [PMID: 1430558]
[41]
Suzuki Y, Tanihara M, Nishimura Y, et al. In vivo evaluation of a novel alginate dressing. J Biomed Mater Res 1999; 48(4): 522-7.
[http://dx.doi.org/10.1002/(SICI)1097-4636(1999)48:4<522:AID-JBM18>3.0.CO;2-O] [PMID: 10421696]
[42]
Lalau JD, Bresson R, Charpentier P, et al. Efficacy and tolerance of calcium alginate versus vaseline gauze dressings in the treatment of diabetic foot lesions. Diabetes Metab 2002; 28(3): 223-9.
[PMID: 12149603]
[43]
Yang D, Jones KS. Effect of alginate on innate immune activation of macrophages. J Biomed Mater Res A 2009; 90(2): 411-8.
[http://dx.doi.org/10.1002/jbm.a.32096] [PMID: 18523947]
[44]
Aderibigbe BA, Buyana B. Alginate in wound dressings. Pharmaceutics 2018; 10(2): 42.
[http://dx.doi.org/10.3390/pharmaceutics10020042 ] [PMID: 29614804]
[45]
Wiegand C, Heinze T, Hipler UC. Comparative in vitro study on cytotoxicity, antimicrobial activity, and binding capacity for pathophysiological factors in chronic wounds of alginate and silver-containing alginate. Wound Repair Regen 2009; 17(4): 511-21.
[http://dx.doi.org/10.1111/j.1524-475X.2009.00503.x ] [PMID: 19614916]
[46]
Qin Y. Silver-containing alginate fibres and dressings. Int Wound J 2005; 2(2): 172-6.
[http://dx.doi.org/10.1111/j.1742-4801.2005.00101.x ] [PMID: 16722867]
[47]
Onsøyen E. Alginates. In: Imeson A.P. Eds Thickening and gelling agents for Food. Boston: Springer 1997; pp. 1-24..
[http://dx.doi.org/10.1007/978-1-4615-2197-6_2]
[48]
Hoseinpour Najar M, Minaiyan M, Taheri A. Preparation and in vivo evaluation of a novel gel-based wound dressing using arginine-alginate surface-modified chitosan nanofibers. J Biomater Appl 2018; 32(6): 689-701.
[http://dx.doi.org/10.1177/0885328217739562] [PMID: 29119880]
[49]
Hoffman AS. Hydrogels for biomedical applications Adv DrugDeliv Rev 2012; 64(sup): 18-23.
[http://dx.doi.org/10.1016/j.addr.2012.09.010]
[50]
Koehler J, Brandl FP, Goepferich AM. hydrogel wound dressings for bioactive treatment of acute and chronic wounds. Eur Polym J 2017; 100: 1-11.
[http://dx.doi.org/10.1016/j.eurpolymj.2017.12.046]
[51]
Qureshi D, Nayak SK, Maji S, Anis A, Kim D, et al. Environment sensitive hydrogels for drug delivery applications. Eur Polym J 2019; 120109220
[http://dx.doi.org/10.1016/j.eurpolymj.2019.109220]
[52]
Schuurman W, Levett PA, Pot MW, et al. Gelatin-methacrylamide hydrogels as potential biomaterials for fabrication of tissue-engineered cartilage constructs. Macromol Biosci 2013; 13(5): 551-61.
[http://dx.doi.org/10.1002/mabi.201200471] [PMID: 23420700]
[53]
Wathoni N, Motoyama K, Higashi T, Okajima M, Kaneko T, Arima H. Physically crosslinked-sacran hydrogel films for wound dressing application. Int J Biol Macromol 2016; 89: 465-70.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.05.006] [PMID: 27151668]
[54]
Saarai A, Sedlacek T, Kasparkova V, Kitano T, Saha P. On the characterization of sodium alginate/gelatine-based hydrogels for wound dressing. J Mech Behav Biomed Mater 2013; 18: 152-66.
[http://dx.doi.org/10.1016/j.jmbbm.2012.11.010] [PMID: 23274732]
[55]
Saarai A, Kasparkova V, Sedlacek T, Saha P. A comparative study of crosslinked sodium alginate/gelatin hydrogels for wound dressing. Proceedings of the 4th WSEAS International Conference on Energy and Development 2011 July; Corfu Island Greece.
[56]
Straccia MC, d’Ayala GG, Romano I, Oliva A, Laurienzo P. Alginate hydrogels coated with chitosan for wound dressing. Mar Drugs 2015; 13(5): 2890-908.
[http://dx.doi.org/10.3390/md13052890] [PMID: 25969981]
[57]
Raposio E, Libondi G, Bertozzi N, Grignaffini E, Grieco MP. Effects of topic simvastatin for the treatment of chronic vascular cutaneous ulcers: A pilot study. J Am Coll Clin Wound Spec 2016; 7(1-3): 13-8.
[http://dx.doi.org/10.1016/j.jccw.2016.06.001] [PMID: 28053863]
[58]
Zhou Z, Chen J, Peng C, et al. Fabrication and physical properties of gelatin/sodium alginate/hyaluronic acid composite wound dressing hydrogel. J Macromol Sci Part A 2014; 51(4): 318-25.
[http://dx.doi.org/10.1080/10601325.2014.882693]
[59]
Momin M, Kurhade S, Khanekar P, Mhatre S. Novel biodegradable hydrogel sponge containing curcumin and honey for wound healing. J Wound Care 2016; 25(6): 364-72.
[http://dx.doi.org/10.12968/jowc.2016.25.6.364] [PMID: 27286671]
[60]
Dhivya S, Padma VV, Santhini E. Wound dressings - a review. Biomedicine (Taipei) 2015; 5(4): 22.
[http://dx.doi.org/10.7603/s40681-015-0022-9] [PMID: 26615539]
[61]
Jiang Q, Chen ZH, Wang SB, Chen XD. Comparative effectiveness of different wound dressings for patients with partial-thickness burns: Study protocol of a systematic review and a Bayesian framework network meta-analysis. BMJ Open 2017; 7(3)e013289
[http://dx.doi.org/10.1136/bmjopen-2016-013289] [PMID: 28336737]
[62]
Sood A, Granick MS, Tomaselli NL. Wound dressings and comparative effectiveness data. Adv Wound Care (New Rochelle) 2014; 3(8): 511-29.
[http://dx.doi.org/10.1089/wound.2012.0401] [PMID: 25126472]
[63]
Liakos I, Rizzello L, Scurr DJ, Pompa PP, Bayer IS, Athanassiou A. All-natural composite wound dressing films of essential oils encapsulated in sodium alginate with antimicrobial properties. Int J Pharm 2014; 463(2): 137-45.
[http://dx.doi.org/10.1016/j.ijpharm.2013.10.046] [PMID: 24211443]
[64]
Pereira R, Carvalho A, Vaz DC, Gil MH, Mendes A, Bártolo P. Development of novel alginate based hydrogel films for wound healing applications. Int J Biol Macromol 2013; 52: 221-30.
[http://dx.doi.org/10.1016/j.ijbiomac.2012.09.031] [PMID: 23059189]
[65]
Dantas MD, Cavalcante DR, Araújo FE, et al. Improvement of dermal burn healing by combining sodium alginate/chitosan-based films and low level laser therapy. J Photochem Photobiol B 2011; 105(1): 51-9.
[http://dx.doi.org/10.1016/j.jphotobiol.2011.06.009 ] [PMID: 21803596]
[66]
Pereira R, Tojeira A, Vaz DC, Mendes A, Bártolo P. Preparation and characterization of films based on alginate and Aloe vera. Int J Polym Anal Charact 2011; 16(7): 449-64.
[http://dx.doi.org/10.1080/1023666X.2011.599923]
[67]
Xie H, Chen X. Preparation of chitosan-collagen-alginate composite dressing and its promoting effects on wound healing Int J Biol Macromol 2018; 107(A): 93-104.
[68]
Rezvanian M, Amin MCIM, Ng SF. Development and physicochemical characterization of alginate composite film loaded with simvastatin as a potential wound dressing. Carbohydr Polym 2016; 137: 295-304.
[http://dx.doi.org/10.1016/j.carbpol.2015.10.091] [PMID: 26686133]
[69]
Lee SM, Park IK, Kim YS, et al. Physical, morphological, and wound healing properties of a polyurethane foam-film dressing. Biomater Res 2016; 20: 15.
[http://dx.doi.org/10.1186/s40824-016-0063-5] [PMID: 27274861]
[70]
WoundEducators.com Foam dressings. [Available from:. https://woundeducators.com/foam-dressings [Accessed October 23, 2019]
[71]
Wang Y, Feng Y, Yao J. Construction of hydrophobic alginate-based foams induced by zirconium ions for oil and organic solvent cleanup. J Colloid Interface Sci 2019; 533: 182-9.
[http://dx.doi.org/10.1016/j.jcis.2018.08.073] [PMID: 30153595]
[72]
Hegge AB, Andersen T, Melvik JE, Bruzell E, Kristensen S, Tønnesen HH. Formulation and bacterial phototoxicity of curcumin loaded alginate foams for wound treatment applications: Studies on curcumin and curcuminoides XLII. J Pharm Sci 2011; 100(1): 174-85.
[http://dx.doi.org/10.1002/jps.22263] [PMID: 20575064]
[73]
Valerón Bergh VJ, Johannessen E, Andersen T, Tønnesen HH. Evaluation of porphyrin loaded dry alginate foams containing poloxamer 407 and β-cyclodextrin-derivatives intended for wound treatment. Pharm Dev Technol 2018; 23(8): 761-70.
[http://dx.doi.org/10.1080/10837450.2017.1314492 ] [PMID: 28359224]
[74]
Costa JSR, de Oliveira Cruvinel K, Oliveira-Nascimento L. A mini-review on drug delivery through wafer technology: Formulation and manufacturing of buccal and oral lyophilizates. J Adv Res 2019; 20(11): 33-41.
[http://dx.doi.org/10.1016/j.jare.2019.04.010] [PMID: 31193385]
[75]
Lipsky BA, Hoey C. Topical antimicrobial therapy for treating chronic wounds. Clin Infect Dis 2009; 49(10): 1541-9.
[http://dx.doi.org/10.1086/644732] [PMID: 19842981]
[76]
Akiyode O, Boateng J. Composite biopolymer-based wafer dressings loaded with microbial biosurfactants for potential application in chronic wounds. Polymers (Basel) 2018; 10(8): 918.
[http://dx.doi.org/10.3390/polym10080918] [PMID: 30960843]
[77]
Ahmed A, Getti G, Boateng J. Ciprofloxacin-loaded calcium alginate wafers prepared by freeze-drying technique for potential healing of chronic diabetic foot ulcers. Drug Deliv Transl Res 2018; 8(6): 1751-68.
[http://dx.doi.org/10.1007/s13346-017-0445-9] [PMID: 29134555]
[78]
Labovitiadi O, Lamb AJ, Matthews KH. Lyophilised wafers as vehicles for the topical release of chlorhexidine digluconate--release kinetics and efficacy against Pseudomonas aeruginosa. Int J Pharm 2012; 439(1-2): 157-64.
[http://dx.doi.org/10.1016/j.ijpharm.2012.10.017] [PMID: 23085374]
[79]
Matthews KH, Stevens HN, Auffret AD, Humphrey MJ, Eccleston GM. Gamma-irradiation of lyophilised wound healing wafers. Int J Pharm 2006; 313(1-2): 78-86.
[http://dx.doi.org/10.1016/j.ijpharm.2006.01.023] [PMID: 16503387]
[80]
Boateng J, Burgos-Amador R, Okeke O, Pawar H. Composite alginate and gelatin based bio-polymeric wafers containing silver sulfadiazine for wound healing. Int J Biol Macromol 2015; 79: 63-71.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.04.048] [PMID: 25936500]
[81]
Ye K, Kuang H, You Z, Morsi Y, Mo X. Electrospun nanofibers for tissue engineering with drug loading and release. Pharmaceutics 2019; 11(4): 182.
[http://dx.doi.org/10.3390/pharmaceutics11040182 ] [PMID: 30991742]
[82]
Vasita R, Katti DS. Nanofibers and their applications in tissue engineering. Int J Nanomedicine 2006; 1(1): 15-30.
[http://dx.doi.org/10.2147/nano.2006.1.1.15] [PMID: 17722259]
[83]
Khajavi R, Abbasipour M, Bahador A. Electrospun biodegradable nanofibers scaffolds for bone tissue engineering. J Appl Polym Sci 2015; 133(3): 42883.
[http://dx.doi.org/10.1002/app.42883]]
[84]
Doshi J, Reneker DH. Electospinning process and application of electrospun fibers. J Electrost 1995; 35: 151-60.
[http://dx.doi.org/10.1016/0304-3886(95)00041-8]
[85]
Manoukian OS, Matta R, Letendre J, Collins P, Mazzocca AD, Kumbar SG. Electrospun nanofiber scaffolds and their hydrogel composites for the engineering and regeneration of soft tissues. Methods Mol Biol 2017; 1570: 261-78.
[http://dx.doi.org/10.1007/978-1-4939-6840-4_18] [PMID: 28238143]
[86]
Paduraru A, Ghitulica C, Trusca R, et al. Antimicrobial Wound dressings as potential materials for skin tissue regeneration. Materials (Basel) 2019; 12(11): 1859.
[http://dx.doi.org/10.3390/ma12111859] [PMID: 31181760]
[87]
Percival SL, Slone W, Linton S, Okel T, Corum L, Thomas JG. The antimicrobial efficacy of a silver alginate dressing against a broad spectrum of clinically relevant wound isolates. Int Wound J 2011; 8(3): 237-43.
[http://dx.doi.org/10.1111/j.1742-481X.2011.00774.x ] [PMID: 21470369]
[88]
Hu C, Gong RH, Zhou FL. Electrospun sodium alginate/polyethylene oxide fibers and nanocoated yarns. Int J Polym Sci 2015; 2015: 1-12.
[http://dx.doi.org/10.1155/2015/126041]
[89]
Jeong SI, Krebs MD, Bonino CA, Khan SA, Alsberg E. Electrospun alginate nanofibers with controlled cell adhesion for tissue engineering. Macromol Biosci 2010; 10(8): 934-43.
[http://dx.doi.org/10.1002/mabi.201000046 ] [PMID: 20533533]
[90]
Hajiali H, Summa M, Russo D, et al. Alginate-lavender nanofibers with antibacterial and anti-inflammatory activity to effectively promote burn healing. J Mater Chem B Mater Biol Med 2016; 4(9): 1686-95.
[http://dx.doi.org/10.1039/C5TB02174J ] [PMID: 32263019]
[91]
Sobhanian P, Khorram M, Hashemi SS, Mohammadi A. Development of nanofibrous collagen-grafted poly (vinyl alcohol)/gelatin/alginate scaffolds as potential skin substitute. Int J Biol Macromol 2019; 130: 977-87.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.03.045 ] [PMID: 30851329]
[92]
Coşkun G, Karaca E, Ozyurtlu M, Ozbek S, Yermezler A, Cavuşoğlu I. Histological evaluation of wound healing performance of electrospun poly(vinyl alcohol)/sodium alginate as wound dressing in vivo. Biomed Mater Eng 2014; 24(2): 1527-36.
[http://dx.doi.org/10.3233/BME-130956] [PMID: 24642979]
[93]
Ustünda˘g GC, Özbek S, Karaca E. Çavu so glu I. In vivo evaluation of electrospun poly (vinyl alcohol)/sodium alginate nanofibrousmat as wound dressing. Tekstil ve Konfeksiyon 2010; 20: 290-8.
[94]
Drug development and delivery. Topical delivery- The importance of the right formulation in topical drug development. Available from:. http://drug-dev.com/topical-delivery-the-importance-of-the-right-formulation-in-topical-drug-development/ [Accessed December 22, 2019].
[95]
Mirzaei B, Etemadian S, Goli HR, et al. Construction and analysis of alginate-based honey hydrogel as an ointment to heal of rat burn wound related infections. Int J Burns Trauma 2018; 8(4): 88-97.
[PMID: 30245913]
[96]
Ahmed MM, Jahangir MA, Saleem MA, Kazmi I, Bhavani PD, Muheem A. Formulation and evaluation of fucidin topical gel containing wound healing modifiersAm J Pharm Tech Res 2015; 5(10): 232-42 Available From: http://www.ajptr.com/
[97]
Dhaliwal K, Lopez N. Hydrogel dressings and their application in burn wound care Br J Community Nurs 2018; 23(Sup9): S24-7.
[http://dx.doi.org/10.12968/bjcn.2018.23.Sup9.S24]
[98]
Catanzano O, D’Esposito V, Formisano P, Boateng JS, Quaglia F. composite alginate-hyaluronan sponges for the delivery of tranexamic acid in postextractive alveolar wounds. J Pharm Sci 2018; 107(2): 654-61.
[http://dx.doi.org/10.1016/j.xphs.2017.09.026] [PMID: 28987501]
[99]
Smith AM, Moxon S, Morris GA. Biopolymers as wound healing materials. In: In: Agren MS, Ed Wound Healing Biomaterials Woodhead Publishing. 2016; Vol. 2: pp. 261-87.
[100]
Hamedi H, Moradi S, Hudson SM, Tonelli AE. Chitosan based hydrogels and their applications for drug delivery in wound dressings: A review. Carbohydr Polym 2018; 199: 445-60.
[http://dx.doi.org/10.1016/j.carbpol.2018.06.114] [PMID: 30143150]
[101]
Oryan A, Sahvieh S. Effectiveness of chitosan scaffold in skin, bone and cartilage healing Int J Biol Macromol 2017; 104(Pt A):1003-11.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.06.124]
[102]
Naseri-Nosar M, Ziora ZM. Wound dressings from naturally-occurring polymers: A review on homopolysaccharide-based composites. Carbohydr Polym 2018; 189: 379-98.
[http://dx.doi.org/10.1016/j.carbpol.2018.02.003] [PMID: 29580422]
[103]
Boateng JS, Matthews KH, Stevens HN, Eccleston GM. Wound healing dressings and drug delivery systems: A review. J Pharm Sci 2008; 97(8): 2892-923.
[http://dx.doi.org/10.1002/jps.21210] [PMID: 17963217]
[104]
Lara-Espinoza C, Elizabeth Carvajal-Millán ID, Balandrán-Quintana R, Yolanda López-Franco ID. Agustín rascón-chu. Pectin and pectin-based composite materials: Beyond food texture. Molecules 2018; 23: 942.
[http://dx.doi.org/10.3390/molecules23040942]
[105]
Hussain Z, Thu HE, Shuid AN, Katas H, Hussain F. Recent advances in polymer-based wound dressings for the treatment of diabetic foot ulcer: An overview of state-of-the-art. Curr Drug Targets 2018; 19(5): 527-50.
[http://dx.doi.org/10.2174/1389450118666170704132523 ] [PMID: 28676002]
[106]
Tracy LE, Minasian RA, Caterson EJ. Extracellular Matrix and dermal fibroblast function in the healing wound. Adv Wound Care (New Rochelle) 2016; 5(3): 119-36.
[http://dx.doi.org/10.1089/wound.2014.0561] [PMID: 26989578]