Endocrine, Metabolic & Immune Disorders - Drug Targets

Author(s): Yogesh A. Kulkarni* and Sachin V. Suryavanshi

DOI: 10.2174/1871530320666200516163919

Combination of Naringenin and Lisinopril Ameliorates Nephropathy in Type-1 Diabetic Rats

Page: [173 - 182] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Background: Diabetes is a metabolic disorder affecting a large percentage of the population worldwide. The chronic hyperglycemic condition leads to the generation of advanced glycation end products, reactive oxygen species and inflammatory cytokines, which worsen the functioning of the kidney. Clinical management of diabetic nephropathy is difficult as it requires a multi-focused approach. Hence, a combination of lisinopril a drug used in clinical practice for nephropathy, and naringenin, a flavonoid reported to have a significant effect in nephropathy, may show additive or synergistic effect with less side effects.

Objective: The objective of the present study was to evaluate the effect of a combination of lisinopril with naringenin in diabetic nephropathy.

Methods: Diabetes was induced in male Sprague Dawley rats by streptozotocin (55 mg/kg, i.p.). After four weeks of diabetes induction animals were treated with naringenin alone and a combination of Lisinopril and naringenin for the next four weeks. At the end of the study, various urine and biochemical parameters were evaluated. Oxidative stress parameters like malondialdehyde, reduced glutathione; catalase and superoxide dismutase for kidney tissues were estimated and histopathology studies of kidneys were carried out.

Results: The combination of lisinopril (10 mg/kg) and naringenin (25 and 50 mg/kg) treatment showed significant improvement in the biochemical and urine parameters. Combination treatment also attenuated renal oxidative stress and renal damage as observed in histopathological studies.

Conclusion: Treatment with a combination of lisinopril and naringenin showed a promising effect on diabetic nephropathy in rats.

Keywords: Diabetic nephropathy, naringenin, lisinopril, flavonoids, Type-1 diabetes, diabetic complications.

Graphical Abstract

[1]
Suryavanshi, S.V.; Kulkarni, Y.A. NF-κβ: A potential target in the management of vascular complications of diabetes. Front. Pharmacol., 2017, 8, 798.
[http://dx.doi.org/10.3389/fphar.2017.00798] [PMID: 29163178]
[2]
Reutens, A.T.; Atkins, R.C. Epidemiology of diabetic nephropathy. Contrib. Nephrol., 2011, 170, 1-7.
[http://dx.doi.org/10.1159/000324934] [PMID: 21659752]
[3]
Gross, J.L.; de Azevedo, M.J.; Silveiro, S.P.; Canani, L.H.; Caramori, M.L.; Zelmanovitz, T. Diabetic nephropathy: diagnosis, prevention, and treatment. Diabetes Care, 2005, 28(1), 164-176.
[http://dx.doi.org/10.2337/diacare.28.1.164] [PMID: 15616252]
[4]
WHO. Global Report on Diabetes, 2016, Vol. 978. https://doi.org/ISBN
[5]
Pradeepa, R.; Mohan, V. Prevalence of type 2 diabetes and its complications in India and economic costs to the nation. Eur. J. Clin. Nutr., 2017, 71(7), 816-824.
[http://dx.doi.org/10.1038/ejcn.2017.40] [PMID: 28422124]
[6]
Amann, B.; Tinzmann, R.; Angelkort, B. ACE inhibitors improve diabetic nephropathy through suppression of renal MCP-1. Diabetes Care, 2003, 26(8), 2421-2425.
[http://dx.doi.org/10.2337/diacare.26.8.2421] [PMID: 12882873]
[7]
Loeffler, I.; Wolf, G. Transforming growth factor-β and the progression of renal disease. Nephrol. Dial. Transplant., 2014, 29(Suppl. 1), i37-i45.
[http://dx.doi.org/10.1093/ndt/gft267] [PMID: 24030832]
[8]
Brownlee, M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes, 2005, 54(6), 1615-1625.
[http://dx.doi.org/10.2337/diabetes.54.6.1615] [PMID: 15919781]
[9]
Yan, N.; Wen, L.; Peng, R.; Li, H.; Liu, H.; Peng, H.; Sun, Y.; Wu, T.; Chen, L.; Duan, Q.; Sun, Y.; Zhou, Q.; Wei, L.; Zhang, Z. Naringenin ameliorated kidney injury through Let-7a/TGFBR1 signaling in diabetic nephropathy. J. Diabetes Res., 2016.20168738760
[http://dx.doi.org/10.1155/2016/8738760] [PMID: 27446963]
[10]
Kulkarni, Y.A.; Garud, M.S.; Oza, M.J.; Barve, K.H.; Gaikwad, A.B. Diabetes, diabetic complications, and flavonoids. Fruits, Vegetables, and Herbs; Preedy, R.R; Watson, V., Ed.; Academic Press: New York, London, 2016, pp. 77-104.
[http://dx.doi.org/10.1016/B978-0-12-802972-5.00005-6]
[11]
Felgines, C.; Texier, O.; Morand, C.; Manach, C.; Scalbert, A.; Régerat, F.; Rémésy, C. Bioavailability of the flavanone naringenin and its glycosides in rats. Am. J. Physiol. Gastrointest. Liver Physiol., 2000, 279(6), G1148-G1154.
[http://dx.doi.org/10.1152/ajpgi.2000.279.6.G1148] [PMID: 11093936]
[12]
Roy, S.; Ahmed, F.; Banerjee, S.; Saha, U. Naringenin ameliorates streptozotocin-induced diabetic rat renal impairment by downregulation of TGF-β1 and IL-1 via modulation of oxidative stress correlates with decreased apoptotic events. Pharm. Biol., 2016, 54(9), 1616-1627.
[http://dx.doi.org/10.3109/13880209.2015.1110599] [PMID: 26928632]
[13]
Gaber, L.; Walton, C.; Brown, S.; Bakris, G. Effects of different antihypertensive treatments on morphologic progression of diabetic nephropathy in uninephrectomized dogs. Kidney Int., 1994, 46(1), 161-169.
[http://dx.doi.org/10.1038/ki.1994.255] [PMID: 7933834]
[14]
Allen, H.D.; Flanigan, K.M.; Thrush, P.T.; Dvorchik, I.; Yin, H.; Canter, C.; Connolly, A.M.; Parrish, M.; McDonald, C.M.; Braunlin, E.; Colan, S.D.; Day, J.; Darras, B.; Mendell, J.R. A randomized, double-blind trial of lisinopril and losartan for the treatment of cardiomyopathy in duchenne muscular dystrophy. PLoS Curr., 2013, 5(DEC), 1-15.
[http://dx.doi.org/10.1371/currents.md.2cc69a1dae4be7dfe2bcb420024ea865] [PMID: 24459612]
[15]
Chen, K.; Wei, Y.; Sharp, G.C.; Braley-Mullen, H. Inhibition of TGFbeta1 by anti-TGFbeta1 antibody or lisinopril reduces thyroid fibrosis in granulomatous experimental autoimmune thyroiditis. J. Immunol., 2002, 169(11), 6530-6538.
[http://dx.doi.org/10.4049/jimmunol.169.11.6530] [PMID: 12444164]
[16]
Kulkarni, Y.; Addepalli, V. Amelioration of STZ induced type I diabetic nephropathy in rats by a phytomedicine: gmelina arborea. FASEB J., 2010, 24(1 Supplement), 569.5-569.5.
[17]
Pestel, S.; Krzykalla, V.; Weckesser, G. Measurement of glomerular filtration rate in the conscious rat. J. Pharmacol. Toxicol. Methods, 2007, 56(3), 277-289.
[http://dx.doi.org/10.1016/j.vascn.2007.03.001] [PMID: 17582786]
[18]
Hosten, A.O. BUN and Creatinine. Clinical Methods: The History, Physical, and Laboratory Examinations; H Kenneth Walker, MD; W Dallas Hall, MD; J Willis Hurst, M. Butterworths; , 1990.
[19]
Keane, W.F.; Eknoyan, G. Proteinuria, albuminuria, risk, assessment, detection, elimination (PARADE): a position paper of the National Kidney Foundation. Am. J. Kidney Dis., 1999, 33(5), 1004-1010.
[http://dx.doi.org/10.1016/S0272-6386(99)70442-7] [PMID: 10213663]
[20]
Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem., 1951, 193(1), 265-275.
[http://dx.doi.org/10.1016/0304-3894(92)87011-4] [PMID: 14907713]
[21]
Garud, M.S.; Kulkarni, Y.A. Attenuation of renal damage in type I diabetic rats by umbelliferone - a coumarin derivative. Pharmacol. Rep., 2017, 69(6), 1263-1269.
[http://dx.doi.org/10.1016/j.pharep.2017.06.014] [PMID: 29128808]
[22]
Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem., 1979, 95(2), 351-358.
[http://dx.doi.org/10.1016/0003-2697(79)90738-3] [PMID: 36810]
[23]
Ellman, G.L. Tissue sulfhydryl groups. Arch. Biochem. Biophys., 1959, 82(1), 70-77.
[http://dx.doi.org/10.1016/0003-9861(59)90090-6] [PMID: 13650640]
[24]
Luck, H. Catalase. Methods of Enzymatic Analysis; Academic Press: New York, London, 1965, pp. 885-894.
[http://dx.doi.org/10.1016/B978-0-12-395630-9.50158-4]
[25]
Paoletti, F.; Mocali, A.; Aldinucci, D. Superoxide-driven NAD(P)H oxidation induced by EDTA-manganese complex and mercaptoethanol. Chem. Biol. Interact., 1990, 76(1), 3-18.
[http://dx.doi.org/10.1016/0009-2797(90)90030-Q] [PMID: 2168295]
[26]
Tikoo, K.; Meena, R.L.; Kabra, D.G.; Gaikwad, A.B. Change in post-translational modifications of histone H3, heat-shock protein-27 and MAP kinase p38 expression by curcumin in streptozotocin-induced type I diabetic nephropathy. Br. J. Pharmacol., 2008, 153(6), 1225-1231.
[http://dx.doi.org/10.1038/sj.bjp.0707666] [PMID: 18204486]
[27]
Garud, M.S.; Kulkarni, Y.A. Hyperglycemia to nephropathy via transforming growth factor beta. Curr. Diabetes Rev., 2014, 10(3), 182-189.
[http://dx.doi.org/10.2174/1573399810666140606103645] [PMID: 24919657]
[28]
Braga Gomes, K.; Fontana Rodrigues, K.; Fernandes, A.P. The role of transforming growth factor-beta in diabetic nephropathy. Int. J. Med. Genet., 2014, 2014, 1-6.
[http://dx.doi.org/10.1155/2014/180270]
[29]
Hoffman, B.B.; Sharma, K.; Ziyadeh, F.N. Potential role of TGF-beta in diabetic nephropathy. Miner. Electrolyte Metab., 1998, 24(2-3), 190-196.
[http://dx.doi.org/10.1159/000057369] [PMID: 9525704]
[30]
Harris, R. Angiotensin-converting enzyme inhibition in diabetic nephropathy: it’s all the RAGE. J. Am. Soc. Nephrol., 2005, 16(8), 2251-2253.
[http://dx.doi.org/10.1681/ASN.2005060595] [PMID: 15975994]
[31]
Garud, M.S.; Kulkarni, Y.A. Eugenol ameliorates renal damage in Streptozotocin-induced diabetic rats. Flavour Fragrance J., 2017, 32(1), 54-62.
[http://dx.doi.org/10.1002/ffj.3357]
[32]
Yang, S.; Wang, S.; Yang, B.; Zheng, J.; Cai, Y.; Yang, Z. Weight loss before a diagnosis of type 2 diabetes mellitus is a risk factor for diabetes complications. Medicine (Baltimore), 2016, 95(49)e5618
[http://dx.doi.org/10.1097/MD.0000000000005618] [PMID: 27930591]
[33]
de Courten, B.; de Courten, M.P.; Soldatos, G.; Dougherty, S.L.; Straznicky, N.; Schlaich, M.; Sourris, K.C.; Chand, V.; Scheijen, J.L.; Kingwell, B.A.; Cooper, M.E.; Schalkwijk, C.G.; Walker, K.Z.; Forbes, J.M. Diet low in advanced glycation end products increases insulin sensitivity in healthy overweight individuals: a double-blind, randomized, crossover trial. Am. J. Clin. Nutr., 2016, 103(6), 1426-1433.
[http://dx.doi.org/10.3945/ajcn.115.125427] [PMID: 27030534]
[34]
Wu, C-H.; Yen, G-C. Inhibitory effect of naturally occurring flavonoids on the formation of advanced glycation endproducts. J. Agric. Food Chem., 2005, 53(8), 3167-3173.
[http://dx.doi.org/10.1021/jf048550u] [PMID: 15826074]
[35]
Oza, M.J.; Kulkarni, Y.A. Formononetin attenuates kidney damage in type 2 diabetic rats. Life Sci., 2019, 219, 109-121.
[http://dx.doi.org/10.1016/j.lfs.2019.01.013] [PMID: 30641085]
[36]
Wolf, G.; Ziyadeh, F.N. Molecular mechanisms of diabetic renal hypertrophy. Kidney Int., 1999, 56(2), 393-405.
[http://dx.doi.org/10.1046/j.1523-1755.1999.00590.x] [PMID: 10432377]
[37]
Garud, M.S.; Kulkarni, Y.A. Gallic acid attenuates type I diabetic nephropathy in rats. Chem. Biol. Interact., 2018, 282, 69-76.
[http://dx.doi.org/10.1016/j.cbi.2018.01.010] [PMID: 29331653]
[38]
De Muro, P.; Faedda, R.; Fresu, P.; Masala, A.; Cigni, A.; Concas, G.; Mela, M.G.; Satta, A.; Carcassi, A.; Sanna, G.M.; Cherchi, G.M. Urinary transforming growth factor-beta 1 in various types of nephropathy. Pharmacol. Res., 2004, 49(3), 293-298.
[http://dx.doi.org/10.1016/j.phrs.2003.10.003] [PMID: 14726227]