Xanthoangelol Isolated from Angelica keiskei Roots Prevents Dextran Sulfate Sodium-Treated Colitis in Mice

Page: [655 - 663] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Background: The therapeutic effects of a number of natural products on Inflammatory Bowel Disease (IBD) have recently been examined in detail. The whole herb and roots of Angelica keiskei (Umblliferae) have traditionally been used as a diuretic, to treat gastrointestinal diseases such as gastric ulcers and diarrhea in Japan.

Objectives: The present study was performed to investigate the effects of xanthoangelol, a major chalcone of Angelica keiskei roots, on diarrhea and inflammation in the large intestine of IBD model mice.

Methods: Xanthoangelol (10 & 25 mg/kg) was orally administered to mice with 3% Dextran Sulfate Sodium (DSS)-induced colitis. Blood samples were collected during the experimental period, subjected to a full blood count test, and colonic cytokine and chemokine levels were measured.

Results: Xanthoangelol (25 mg/kg) reduced the Disease Activity Index (DAI) of colitis. It also attenuated DSS-induced reductions in red blood cell and platelet counts as well as Hb and Ht levels. A histological examination of the colon using direct fast scarlet staining showed that xanthoangelol prevented DSS-induced mucosal ulceration and eosinophil infiltration. Xanthoangelol also reduced DSS-induced increases in colonic MCP-1, IL-1β, and TNF-α levels.

Conclusion: Xanthoangelol reduced DSS-induced increases in colonic IL-1β, TNF-α, and MCP-1 levels and prevented eosinophil infiltration, which supports its potential as a treatment for IBD.

Keywords: Xanthoangelol, dextran sulfate sodium, inflammatory bowel disease, interleukin 1β, tumor necrosis factor-α, monocyte chemoattractant protein 1, eosinophil infiltration.

Graphical Abstract

[1]
Ohkura, N.; Ohnishi, K.; Tanigichi, M.; Nakayama, A.; Usuba, Y.; Fujita, M.; Fujii, A.; Ishibashi, K.; Baba, K.; Atsuni, G. Anti platelet effects of chalcones from Angelica keiskei Koidzumi (Ashitaba) in vivo. Die Pharmazie, 2016, 71, 6651-6654.
[2]
Kim, A.; Lim, J.W.; Kim, H.; Kim, H. Supplementation with Angelica keiskei inhibits expression of inflammatory mediators in the gastric mucosa of Helicobacter pylori-infected mice. Nutr. Res., 2016, 36(5), 488-497.
[http://dx.doi.org/10.1016/j.nutres.2015.12.017 ] [PMID: 27101766]
[3]
Kil, Y.S.; Pham, S.T.; Seo, E.K.; Jafari, M. Angelica keiskei, an emerging medicinal herb with various bioactive constituents and biological activities. Arch. Pharm. Res., 2017, 40(6), 655-675.
[http://dx.doi.org/10.1007/s12272-017-0892-3 ] [PMID: 28439780]
[4]
Ohkura, N.; Atsumi, G.; Ohnishi, K.; Baba, K.; Taniguchi, M. Possible antithrombotic effects of Angelica keiskei (Ashitaba). Pharmazie, 2018, 73(6), 315-317.
[PMID: 29880082]
[5]
Ohta, M.; Fujinami, A.; Oishi, K.; Kobayashi, N.; Ohnishi, K.; Ohkura, N. Ashitba (Angelica keiskei) exudate prevents increases in plasminogen activator inhibitor-1 induced by obesity in Tsumura Suzuki obese diabetic mice. J. Diet. Suppl., 2019, 16(3), 331-344.
[http://dx.doi.org/10.1080/19390211.2018.1458366 ] [PMID: 29708806]
[6]
Kweon, M.; Lee, H.; Park, C.; Choi, Y.H.; Ryu, J.H. A chalcone from Ashitaba (Angelica keiskei) stimulates myoblast differentiation and inhibits dexamethasone-induced muscle atrophy. Nutrients, 2019, 11(10), 11.
[http://dx.doi.org/10.3390/nu11102419 ] [PMID: 31658768]
[7]
Japan Intractable Diseases Information Center Report. Inflammatory diseases (IBD) (Designated intractable disease no.97); Tokyo, Japan , 2017.
[8]
Damião, A.O.M.C.; de Azevedo, M.F.C.; Carlos, A.S.; Wada, M.Y.; Silva, T.V.M.; Feitosa, F.C. Conventional therapy for moderate to severe inflammatory bowel disease: A systematic literature review. World J. Gastroenterol., 2019, 25(9), 1142-1157.
[http://dx.doi.org/10.3748/wjg.v25.i9.1142 ] [PMID: 30863001]
[9]
Khare, V.; Krnjic, A.; Frick, A.; Gmainer, C.; Asboth, M.; Jimenez, K.; Lang, M.; Baumgartner, M.; Evstatiev, R.; Gasche, C. Mesalamine and azathioprine modulate junctional complexes and restore epithelial barrier function in intestinal inflammation. Sci. Rep., 2019, 9(1), 2842.
[http://dx.doi.org/10.1038/s41598-019-39401-0 ] [PMID: 30809073]
[10]
Papamichael, K.; Lin, S.; Moore, M.; Papaioannou, G.; Sattler, L.; Cheifetz, A.S. Infliximab in inflammatory bowel disease. Ther. Adv. Chronic Dis., 2019, 102, 040622319838443.
[http://dx.doi.org/10.1177/2040622319838443 ] [PMID: 30937157]
[11]
Matsuura, M.; Kimura, Y.; Nakata, K.; Baba, K.; Okuda, H. Artery relaxation by chalcones isolated from the roots of Angelica keiskei. Planta Med., 2001, 67(3), 230-235.
[http://dx.doi.org/10.1055/s-2001-12011 ] [PMID: 11345693]
[12]
Kimura, Y.; Baba, K. Antitumor and antimetastatic activities of Angelica keiskei roots, part 1: Isolation of an active substance, xanthoangelol. Int. J. Cancer, 2003, 106(3), 429-437.
[http://dx.doi.org/10.1002/ijc.11256 ] [PMID: 12845685]
[13]
Kimura, Y.; Taniguchi, M.; Baba, K. Antitumor and antimetastatic activities of 4-hydroxyderricin isolated from Angelica keiskei roots. Planta Med., 2004, 70(3), 211-219.
[http://dx.doi.org/10.1055/s-2004-815537 ] [PMID: 15114497]
[14]
Sumiyoshi, M.; Taniguchi, M.; Baba, K.; Kimura, Y. Antitumor and antimetastatic actions of xanthoangelol and 4-hydroxyderricin isolated from Angelica keiskei roots through the inhibited activation and differentiation of M2 macrophages. Phytomedicine, 2015, 22(7-8), 759-767.
[http://dx.doi.org/10.1016/j.phymed.2015.05.005 ] [PMID: 26141763]
[15]
Baba, K.; Nakata, K.; Taniguchi, M.; Kido, T.; Kozawa, M. Chalcones from Angelika kesikei. Phytochemistry, 1990, 29, 3907-3910.
[http://dx.doi.org/10.1016/0031-9422(90)85357-L]
[16]
Kozawa, M.; Morita, N.; Baba, K.; Hata, K. The structure of xanthoangelol, a new chalcone from the roots of Angelica keiskei Koidzumi (Umbelliferae). Chem. Pharm. Bull. (Tokyo), 1977, 25, 515-516.
[http://dx.doi.org/10.1248/cpb.25.515]
[17]
Kozawa, M.; Morita, N.; Baba, K.; Hata, K. Chemical components of the roots of Angelica keiskei Koidzumi. II. The structure of the chalcone derivatives (author’s transl). Yakugaku Zasshi, 1978, 98(2), 210-214.
[http://dx.doi.org/10.1248/yakushi1947.98.2_210 ] [PMID: 650396]
[18]
Morris, G.P.; Beck, P.L.; Herridge, M.S.; Depew, W.T.; Szewczuk, M.R.; Wallace, J.L. Hapten-induced model of chronic inflammation and ulceration in the rat colon. Gastroenterology, 1989, 96(3), 795-803.
[http://dx.doi.org/10.1016/0016-5085(89)90904-9 ] [PMID: 2914642]
[19]
Saga, S. Eosinophil granule stain by DFS. Kensa Gijutsu, 2019, 47, 499-502. [In Japanese]
[20]
Shin, M-R.; Kim, K.J.; Kim, S.H.; Kim, S.J.; Seo, B-I.; An, H-J.; Roh, S-S. Comparative evaluation between sulfasalazine alone and in combination with herbal medicine on DSS-induced ulcerative colitis mice. BioMed Res. Int., 2017, 10, 6742652.
[http://dx.doi.org/10.1155/2017/6742652.]
[21]
Jeon, Y-D.; Bang, K-S.; Shin, M-K.; Lee, J-H.; Chang, Y-N.; Jin, J-S. Regulatory effects of glycyrrhizae radix extract on DSS-induced ulcerative colitis. BMC Complement. Altern. Med., 2016, 16(1), 459.
[http://dx.doi.org/10.1186/s12906-016-1390-8 ] [PMID: 27846836]
[22]
Jeon, Y-D.; Kang, S-H.; Bang, K-S.; Chang, Y-N.; Lee, J.H.; Jin, J-S. Glycrrhetic acid ameliorates dextran sulfate sodium-induced ulcerative colitis in vivo. Molecules, 2016, 21(4), 523.
[http://dx.doi.org/10.3390/molecules21040523 ] [PMID: 27110761]
[23]
Jin, B.R.; Chung, K.S.; Cheon, S.Y.; Lee, M.; Hwang, S.; Noh Hwang, S.; Rhee, K.J.; An, H.J. Rosmarinic acid suppresses colonic inflammation in Dextran Sulphate Sodium (DSS)-induced mice via dual inhibition of NF-κB and STAT3 activation. Sci. Rep., 2017, 7, 46252.
[http://dx.doi.org/10.1038/srep46252 ] [PMID: 28383063]
[24]
Krznarić, Ž.; Markoš, P.; Golubić Ćepulić, B.; Čuković-Čavka, S.; Domislović, V.; Bojanić, I.; Barišić, A.; Kekez, D. Leukocytapheresis in the management of severe steroid-dependent ulcerative colitis. Acta Clin. Croat., 2019, 58(3), 529-534.
[http://dx.doi.org/10.20471/acc.2019.58.03.18 ] [PMID: 31969767]
[25]
Kobayashi, T.; Matsuoka, K.; Yokoyama, Y.; Nakamura, T.; Ino, T.; Numata, T.; Shibata, H.; Aoki, H.; Matsuno, Y.; Hibi, T. A multicenter, retrospective, observational study of the clinical outcomes and risk factors for relapse of ulcerative colitis at 1 year after leukocytapheresis. J. Gastroenterol., 2018, 53(3), 387-396.
[http://dx.doi.org/10.1007/s00535-017-1356-8 ] [PMID: 28597225]
[26]
Wang, D.; Chen, L.; Fu, Y.; Kang, Q.; Wang, X.; Ma, X.; Li, X.; Sheng, J. Avertin affects murine colitis by regulating neutrophils and macrophages. Int. Immunopharmacol., 2020, 80, 106153.
[http://dx.doi.org/10.1016/j.intimp.2019.106153 ] [PMID: 31931369]
[27]
Abron, J.D.; Singh, N.P.; Price, R.L.; Nagarkatti, M.; Nagarkatti, P.S.; Singh, U.P. Genistein induces macrophage polarization and systemic cytokine to ameliorate experimental colitis. PLoS One, 2018, 13(7), e0199631.
[http://dx.doi.org/10.1371/journal.pone.0199631 ] [PMID: 30024891]
[28]
Cho, J-M.; Yun, S.M.; Choi, Y-H.; Heo, J.; Kim, N-J.; Kim, S-H.; Kim, E.H. Xanthohumol prevents dextran sulfate sodium-induced colitis via inhibition of IKKβ/NF-κB signaling in mice. Oncotarget, 2017, 9(1), 866-880.
[PMID: 29416662]
[29]
Park, J.S.; Joe, I.; Rhee, P.D.; Jeong, C.S.; Jeong, G. A lactic acid bacterium isolated from kimchi ameliorates intestinal inflammation in DSS-induced colitis. J. Microbiol., 2017, 55(4), 304-310.
[http://dx.doi.org/10.1007/s12275-017-6447-y ] [PMID: 28124779]
[30]
Zhang, Z.; Wu, X.; Cao, S.; Wang, L.; Wang, D.; Yang, H.; Feng, Y.; Wang, S.; Li, L. Caffeic acid ameliorates colitis in association with increased Akkermansia population in the gut microbiota of mice. Oncotarget, 2016, 7(22), 31790-31799.
[http://dx.doi.org/10.18632/oncotarget.9306 ] [PMID: 27177331]
[31]
Zhang, W.; Xu, L.; Cho, S.Y.; Min, K.J.; Oda, T.; Zhang, L.; Yu, Q.; Jin, J.O. Ginseng berry extract attenuates dextran sodium sulfate-induced acute and chronic colitis. Nutrients, 2016, 8(4), 199.
[http://dx.doi.org/10.3390/nu8040199 ] [PMID: 27058552]
[32]
Mehta, P.; Furuta, G.T. Eosinophils in gastrointestinal disorders-eosinophilic gastrointestinal disease, celiac disease, inflammatory bowel diseases and parasitic infections. Immunol. Allergy Clin. North Am., 2015, 35(3), 413-437.
[http://dx.doi.org/10.1016/j.iac.2015.04.003 ] [PMID: 26209893]
[33]
Wang, Z.; Adachi, S.; Kong, L.; Watanabe, D.; Nakanishi, Y.; Ohteki, T.; Hoshi, N.; Kodama, Y. Role of eosinophils in a murine model of inflammatory bowel disease. Biochem. Biophys. Res. Commun., 2019, 511(1), 99-104.
[http://dx.doi.org/10.1016/j.bbrc.2019.02.056 ] [PMID: 30771903]
[34]
Filippone, R.T.; Sahakian, L.; Apostolopoulos, V.; Nurgali, K. Eosinophils in inflammatory bowel disease. Inflamm. Bowel Dis., 2019, 25(7), 1140-1151.
[http://dx.doi.org/10.1093/ibd/izz024 ] [PMID: 30856253]
[35]
Loktionov, A. Eosinophils in the gastrointestinal tract and their role in the pathogenesis of major colorectal disorders. World J. Gastroenterol., 2019, 25(27), 3503-3526.
[http://dx.doi.org/10.3748/wjg.v25.i27.3503 ] [PMID: 31367153]
[36]
Smyth, C.M.; Akasheh, N.; Woods, S.; Kay, E.; Morgan, R.K.; Thornton, M.A.; O’Grady, A.; Cummins, R.; Sheils, O.; Smyth, P.; Gleich, G.J.; Murray, F.M.; Costello, R.W. Activated eosinophils in association with enteric nerves in inflammatory bowel disease. PLoS One, 2013, 8(5), e64216.
[http://dx.doi.org/10.1371/journal.pone.0064216 ] [PMID: 23717571]
[37]
Dvorak, A.M. Ultrastructural evidence for release of major basic protein-containing crystalline cores of eosinophil granules in vivo: Cytotoxic potential in Crohn’s disease. J. Immunol., 1980, 125(1), 460-462.
[PMID: 6155407]