Influence of the Intestinal Microbiota on Diabetes Management

Page: [1603 - 1615] Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

In recent decades, there has been a very rapid increase in the prevalence of diabetes globally, with serious health and economic implications. Although today there are several therapeutic treatments for this disease, these do not address the causes of the disease and have serious side effects, so it is necessary to seek new treatments to replace or complement the existing ones. Among these complementary treatments, a strong link between the intestinal microbiota and diabetes has been demonstrated, which has focused attention on the use of biotherapy to regulate the function of the intestinal microbiota and, thus, treat diabetes. In this way, the main objective of this work is to provide a review of the latest scientific evidence on diabetes, gathering information about new trends in its management, and especially, the influence of the intestinal microbiota and microbiome on this pathology. It is possible to conclude that the relationship between the intestinal microbiota and diabetes is carried out through alterations in energy metabolism, the immune system, changes in intestinal permeability, and a state of low-intensity systemic inflammation. Although, currently, most of the experimental work, using probiotics for diabetes management, has been done on experimental animals, the results obtained are promising. Thus, the modification of the microbiota through biotherapy has shown to improve the symptoms and severity of diabetes through various mechanisms related to these alterations.

Keywords: Type 1 diabetes, type 2 diabetes, microbiota, probiotic, prebiotic, fecal transplant, biotherapy.

Graphical Abstract

[2]
Aw, W.; Fukuda, S. Understanding the role of the gut ecosystem in diabetes mellitus. J. Diabetes Investig., 2018, 9(1), 5-12.
[http://dx.doi.org/10.1111/jdi.12673 ] [PMID: 28390093]
[3]
Tan, S.Y.; Mei Wong, J.L.; Sim, Y.J.; Wong, S.S.; Mohamed Elhassan, S.A.; Tan, S.H.; Ling Lim, G.P.; Rong Tay, N.W.; Annan, N.C.; Bhattamisra, S.K.; Candasamy, M. Type 1 and 2 diabetes mellitus: A review on current treatment approach and gene therapy as potential intervention. Diabetes Metab. Syndr., 2019, 13(1), 364-372.
[http://dx.doi.org/10.1016/j.dsx.2018.10.008 ] [PMID: 30641727]
[4]
Velmurugan, G.; Ramprasath, T.; Gilles, M.; Swaminathan, K.; Ramasamy, S. Gut microbiota, endocrine-disrupting chemicals, and the diabetes epidemic. Trends Endocrinol. Metab., 2017, 28(8), 612-625.
[http://dx.doi.org/10.1016/j.tem.2017.05.001 ] [PMID: 28571659]
[5]
Sinisterra-Loaiza, L.; Cardelle-Cobas, A.; Abraham, A.G.; Calderon, M.N.; Espinoza, M.A.; Gonzalez, M.G.; Gotteland, M.; Pazos-Sierra, A.; San Martin, S.; Cepeda, A.; Gagliardino, J.J. The IBEROBDIA project group. Diabetes in Latin America: Prevalence, complications and socioeconomic impact. Int. J. Diabetes Clin. Res., 2019, 6, 112.
[6]
Kalra, S. Sodium glucose Co-Transporter-2 (SGLT2) inhibitors: A review of their basic and clinical pharmacology. Diabetes Ther., 2014, 5(2), 355-366.
[http://dx.doi.org/10.1007/s13300-014-0089-4 ] [PMID: 25424969]
[7]
Harding, J.L.; Pavkov, M.E.; Magliano, D.J.; Shaw, J.E.; Gregg, E.W. Global trends in diabetes complications: A review of current evidence. Diabetologia, 2019, 62(1), 3-16.
[http://dx.doi.org/10.1007/s00125-018-4711-2 ] [PMID: 30171279]
[8]
Bourlioux, P.; Koletzko, B.; Guarner, F.; Braesco, V. The intestine and its microflora are partners for the protection of the host: Report on the Danone Symposium “The Intelligent Intestine,” held in Paris, June 14, 2002. Am. J. Clin. Nutr., 2003, 78(4), 675-683.
[http://dx.doi.org/10.1093/ajcn/78.4.675 ] [PMID: 14522724]
[9]
Conlon, M.A.; Bird, A.R. The impact of diet and lifestyle on gut microbiota and human health. Nutrients, 2014, 7(1), 17-44.
[http://dx.doi.org/10.3390/nu7010017 ] [PMID: 25545101]
[10]
Roca-Saavedra, P.; Mendez-Vilabrille, V.; Miranda, J.M.; Nebot, C.; Cardelle-Cobas, A.; Franco, C.M.; Cepeda, A. Food additives, contaminants and other minor components: Effects on human gut microbiota-A review. J. Physiol. Biochem., 2018, 74(1), 69-83.
[http://dx.doi.org/10.1007/s13105-017-0564-2 ] [PMID: 28488210]
[11]
Power, S.E.; O’Toole, P.W.; Stanton, C.; Ross, R.P.; Fitzgerald, G.F. Intestinal microbiota, diet and health. Br. J. Nutr., 2014, 111(3), 387-402.
[http://dx.doi.org/10.1017/S0007114513002560 ] [PMID: 23931069]
[12]
Blandino, G.; Inturri, R.; Lazzara, F.; Di Rosa, M.; Malaguarnera, L. Impact of gut microbiota on diabetes mellitus. Diabetes Metab., 2016, 42(5), 303-315.
[http://dx.doi.org/10.1016/j.diabet.2016.04.004 ] [PMID: 27179626]
[13]
Lecomte, V.; Kaakoush, N.O.; Maloney, C.A.; Raipuria, M.; Huinao, K.D.; Mitchell, H.M.; Morris, M.J. Changes in gut microbiota in rats fed a high diet correlate with obesity parameters. PLoS One, 2015, 10e0126931
[http://dx.doi.org/10.1371/journal.pone.0126931 ] [PMID: 25992554]
[14]
Boleij, A.; Tjalsma, H. Gut bacteria in health and disease: A survey on the interface between intestinal microbiology and colorectal cancer. Biol. Rev. Camb. Philos. Soc., 2012, 87(3), 701-730.
[http://dx.doi.org/10.1111/j.1469-185X.2012.00218.x ] [PMID: 22296522]
[15]
Machado, M.V.; Cortez-Pinto, H. Gut microbiota and nonalcoholic fatty liver disease. Ann. Hepatol., 2012, 11(4), 440-449.
[http://dx.doi.org/10.1016/S1665-2681(19)31457-7 ] [PMID: 22700625]
[16]
Jiang, H.Y.; Zhang, X.; Yu, Z.H.; Zhang, Z.; Deng, M.; Zhao, J.H.; Ruan, B. Altered gut microbiota profile in patients with generalized anxiety disorder. J. Psychiatr. Res., 2018, 104, 130-136.
[http://dx.doi.org/10.1016/j.jpsychires.2018.07.007 ] [PMID: 30029052]
[17]
Stevens, B.R.; Goel, R.; Seungbum, K.; Richards, E.M.; Holbert, R.C.; Pepine, C.J.; Raizada, M.K. Increased human intestinal barrier permeability plasma biomarkers zonulin and FABP2 correlated with plasma LPS and altered gut microbiome in anxiety or depression. Gut, 2018, 67(8), 1555-1557.
[http://dx.doi.org/10.1136/gutjnl-2017-314759 ] [PMID: 28814485]
[18]
Bordalo Tonucci, L.; Dos Santos, K.M.; De Luces Fortes Ferreira, C.L.; Ribeiro, S.M.; De Oliveira, L.L.; Martino, H.S. Gut microbiota and probiotics: Focus on diabetes mellitus. Crit. Rev. Food Sci. Nutr., 2017, 57(11), 2296-2309.
[http://dx.doi.org/10.1080/10408398.2014.934438 ] [PMID: 26499995]
[19]
Clemente, J.C.; Pehrsson, E.C.; Blaser, M.J.; Sandhu, K.; Gao, Z.; Wang, B.; Magris, M.; Hidalgo, G.; Contreras, M.; Noya-Alarcón, Ó.; Lander, O.; McDonald, J.; Cox, M.; Walter, J.; Oh, P.L.; Ruiz, J.F.; Rodriguez, S.; Shen, N.; Song, S.J.; Metcalf, J.; Knight, R.; Dantas, G.; Dominguez-Bello, M.G. The microbiome of uncontacted Amerindians. Sci. Adv., 2015, 1(3)e1500183
[http://dx.doi.org/10.1126/sciadv.1500183 ] [PMID: 26229982]
[20]
Singh, V.; Yeoh, B.S.; Vijay-Kumar, M. Gut microbiome as a novel cardiovascular therapeutic target. Curr. Opin. Pharmacol., 2016, 27, 8-12.
[http://dx.doi.org/10.1016/j.coph.2016.01.002 ] [PMID: 26828626]
[21]
Aydin, Ö.; Nieuwdorp, M.; Gerdes, V. The gut microbiome as a target for the treatment of type 2 diabetes. Curr. Diab. Rep., 2018, 18(8), 55.
[http://dx.doi.org/10.1007/s11892-018-1020-6 ] [PMID: 29931613]
[22]
Hu, Y.; Wong, F.S.; Wen, L. Antibiotics, gut microbiota, environment in early life and type 1 diabetes. Pharmacol. Res., 2017, 119, 219-226.
[http://dx.doi.org/10.1016/j.phrs.2017.01.034 ] [PMID: 28188825]
[23]
Vallianou, N.G.; Stratigou, T.; Tsagarakis, S. Microbiome and diabetes: Where are we now? Diabetes Res. Clin. Pract., 2018, 146, 111-118.
[http://dx.doi.org/10.1016/j.diabres.2018.10.008 ] [PMID: 30342053]
[24]
Flint, H.J.; Scott, K.P.; Duncan, S.H.; Louis, P.; Forano, E. Microbial degradation of complex carbohydrates in the gut. Gut Microbes, 2012, 3(4), 289-306.
[http://dx.doi.org/10.4161/gmic.19897 ] [PMID: 22572875]
[25]
Sharma, S.; Tripathi, P. Gut microbiome and type 2 diabetes: Where we are and where to go? J. Nutr. Biochem., 2019, 63, 101-108.
[http://dx.doi.org/10.1016/j.jnutbio.2018.10.003 ] [PMID: 30366260]
[26]
Kasselman, L.J.; Vernice, N.A.; DeLeon, J.; Reiss, A.B. The gut microbiome and elevated cardiovascular risk in obesity and autoimmunity. Atherosclerosis, 2018, 271, 203-213.
[http://dx.doi.org/10.1016/j.atherosclerosis.2018.02.036 ] [PMID: 29524863]
[27]
Cresci, G.A.; Bawden, E. Gut microbiome: What we do and don’t know. Nutr. Clin. Pract., 2015, 30(6), 734-746.
[http://dx.doi.org/10.1177/0884533615609899 ] [PMID: 26449893]
[28]
Brown, C.C.; Noelle, R.J. Seeing through the dark: New insights into the immune regulatory functions of vitamin A. Eur. J. Immunol., 2015, 45(5), 1287-1295.
[http://dx.doi.org/10.1002/eji.201344398 ] [PMID: 25808452]
[29]
de Oliveira, G.L.V.; Leite, A.Z.; Higuchi, B.S.; Gonzaga, M.I.; Mariano, V.S. Intestinal dysbiosis and probiotic applications in autoimmune diseases. Immunology, 2017, 152(1), 1-12.
[http://dx.doi.org/10.1111/imm.12765 ] [PMID: 28556916]
[30]
Zheng, P.; Li, Z.; Zhou, Z. Gut microbiome in type 1 diabetes: A comprehensive review. Diabetes Metab. Res. Rev., 2018, 34(7)e3043
[http://dx.doi.org/10.1002/dmrr.3043 ] [PMID: 29929213]
[31]
Leustean, A.M.; Ciocoiu, M.; Sava, A.; Costea, C.F.; Floria, M.; Tarniceriu, C.C.; Tanase, D.M. Review article implications of the intestinal microbiota in diagnosing the progression of diabetes and the presence of cardiovascular complications. J. Diabetes Res., 2018, 20185205126
[http://dx.doi.org/10.1155/2018/5205126 ] [PMID: 30539026]
[32]
Brunton, S. GLP-1 receptor agonists vs. DPP-4 inhibitors for type 2 diabetes: Is one approach more successful or preferable than the other? Int. J. Clin. Pract., 2014, 68(5), 557-567.
[http://dx.doi.org/10.1111/ijcp.12361 ] [PMID: 24499291]
[33]
Lopez-Santamarina, A.; Miranda, J.M.; Mondragon, A.D.C.; Lamas, A.; Cardelle-Cobas, A.; Franco, C.M.; Cepeda, A. Potential use of marine seaweeds as prebiotics: A review. Molecules, 2020, 25(4), 1004.
[http://dx.doi.org/10.3390/molecules25041004 ] [PMID: 32102343]
[34]
Sola, D.; Rossi, L.; Schianca, G.P.C.; Maffioli, P.; Bigliocca, M.; Mella, R.; Corlianò, F.; Fra, G.P.; Bartoli, E.; Derosa, G. Sulfonylureas and their use in clinical practice. Arch. Med. Sci., 2015, 11(4), 840-848.
[http://dx.doi.org/10.5114/aoms.2015.53304 ] [PMID: 26322096]
[35]
Kyriachenko, Y.; Falalyeyeva, T.; Korotkyi, O.; Molochek, N.; Kobyliak, N. Crosstalk between gut microbiota and antidiabetic drug action. World J. Diabetes, 2019, 10(3), 154-168.
[http://dx.doi.org/10.4239/wjd.v10.i3.154 ] [PMID: 30891151]
[36]
Davis-Richardson, A.G.; Ardissone, A.N.; Dias, R.; Simell, V.; Leonard, M.T.; Kemppainen, K.M.; Drew, J.C.; Schatz, D.; Atkinson, M.A.; Kolaczkowski, B.; Ilonen, J.; Knip, M.; Toppari, J.; Nurminen, N.; Hyöty, H.; Veijola, R.; Simell, T.; Mykkänen, J.; Simell, O.; Triplett, E.W. Bacteroides dorei dominates gut microbiome prior to autoimmunity in Finnish children at high risk for type 1 diabetes. Front. Microbiol., 2014, 5(678), 678.
[http://dx.doi.org/10.3389/fmicb.2014.00678 ] [PMID: 25540641]
[37]
Montandon, S.A.; Jornayvaz, F.R. Effects of antidiabetic drugs on gut microbiota composition. Genes (Basel), 2017, 8(10), 250.
[http://dx.doi.org/10.3390/genes8100250 ] [PMID: 28973971]
[38]
Giongo, A.; Gano, K.A.; Crabb, D.B.; Mukherjee, N.; Novelo, L.L.; Casella, G.; Drew, J.C.; Ilonen, J.; Knip, M.; Hyöty, H.; Veijola, R.; Simell, T.; Simell, O.; Neu, J.; Wasserfall, C.H.; Schatz, D.; Atkinson, M.A.; Triplett, E.W. Toward defining the autoimmune microbiome for type 1 diabetes. ISME J., 2011, 5(1), 82-91.
[http://dx.doi.org/10.1038/ismej.2010.92 ] [PMID: 20613793]
[39]
Karlsson, C.L.J.; Onnerfält, J.; Xu, J.; Molin, G.; Ahrné, S.; Thorngren-Jerneck, K. The microbiota of the gut in preschool children with normal and excessive body weight. Obesity (Silver Spring), 2012, 20(11), 2257-2261.
[http://dx.doi.org/10.1038/oby.2012.110 ] [PMID: 22546742]
[40]
de Goffau, M.C.; Luopajärvi, K.; Knip, M.; Ilonen, J.; Ruohtula, T.; Härkönen, T.; Orivuori, L.; Hakala, S.; Welling, G.W.; Harmsen, H.J.; Vaarala, O. Fecal microbiota composition differs between children with β-cell autoimmunity and those without. Diabetes, 2013, 62(4), 1238-1244.
[http://dx.doi.org/10.2337/db12-0526 ] [PMID: 23274889]
[41]
Endesfelder, D.; Engel, M.; Davis-Richardson, A.G.; Ardissone, A.N.; Achenbach, P.; Hummel, S.; Winkler, C.; Atkinson, M.; Schatz, D.; Triplett, E.; Ziegler, A.G.; Castell, Z.W. Towards a functional hypothesis relating anti-islet cell autoimmunity to the dietary impact on microbial communities and butyrate production. Microbiome, 2016, 4, 17.
[http://dx.doi.org/10.1186/s40168-016-0163-4 ] [PMID: 27114075]
[42]
Larsen, N.; Vogensen, F.K.; van den Berg, F.W.; Nielsen, D.S.; Andreasen, A.S.; Pedersen, B.K.; Al-Soud, W.A.; Sørensen, S.J.; Hansen, L.H.; Jakobsen, M. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One, 2010, 5(2)e9085
[http://dx.doi.org/10.1371/journal.pone.0009085 ] [PMID: 20140211]
[43]
Pellegrini, S.; Sordi, V.; Bolla, A.M.; Saita, D.; Ferrarese, R.; Canducci, F.; Clementi, M.; Invernizzi, F.; Mariani, A.; Bonfanti, R.; Barera, G.; Testoni, P.A.; Doglioni, C.; Bosi, E.; Piemonti, L. Duodenal mucosa of patients with Type 1 Diabetes shows distinctive inflammatory profile and microbiota. J. Clin. Endocrinol. Metab., 2017, 102(5), 1468-1477.
[http://dx.doi.org/10.1210/jc.2016-3222 ] [PMID: 28324102]
[44]
Salamon, D.; Sroka-Oleksiak, A.; Kapusta, P.; Szopa, M.; Mrozińska, S.; Ludwig-Słomczyńska, A.H.; Wołkow, P.P.; Bulanda, M.; Klupa, T.; Małecki, M.T.; Gosiewski, T. Characteristics of gut microbiota in adult patients with type 1 and type 2 diabetes based on next-generation sequencing of the 16S rRNA gene fragment. Pol. Arch. Intern. Med., 2018, 128(6), 336-343.
[http://dx.doi.org/10.20452/pamw.4246 ] [PMID: 29657308]
[45]
Qin, J.; Li, Y.; Cai, Z.; Li, S.; Zhu, J.; Zhang, F.; Liang, S.; Zhang, W.; Guan, Y.; Shen, D.; Peng, Y.; Zhang, D.; Jie, Z.; Wu, W.; Qin, Y.; Xue, W.; Li, J.; Han, L.; Lu, D.; Wu, P.; Dai, Y.; Sun, X.; Li, Z.; Tang, A.; Zhong, S.; Li, X.; Chen, W.; Xu, R.; Wang, M.; Feng, Q.; Gong, M.; Yu, J.; Zhang, Y.; Zhang, M.; Hansen, T.; Sanchez, G.; Raes, J.; Falony, G.; Okuda, S.; Almeida, M.; LeChatelier, E.; Renault, P.; Pons, N.; Batto, J.M.; Zhang, Z.; Chen, H.; Yang, R.; Zheng, W.; Li, S.; Yang, H.; Wang, J.; Ehrlich, S.D.; Nielsen, R.; Pedersen, O.; Kristiansen, K.; Wang, J. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature, 2012, 490(7418), 55-60.
[http://dx.doi.org/10.1038/nature11450 ] [PMID: 23023125]
[46]
Yassour, M.; Lim, M.Y.; Yun, H.S.; Tickle, T.L.; Sung, J.; Song, Y-M.; Lee, K.; Franzosa, E.A.; Morgan, X.C.; Gevers, D.; Lander, E.S.; Xavier, R.J.; Birren, B.W.; Ko, G.; Huttenhower, C. Sub-clinical detection of gut microbial biomarkers of obesity and type 2 diabetes. Genome Med., 2016, 8(1), 17.
[http://dx.doi.org/10.1186/s13073-016-0271-6 ] [PMID: 26884067]
[47]
Ahmad, A.; Yang, W.; Chen, G.; Shafiq, M.; Javed, S.; Ali Zaidi, S.S.; Shahid, R.; Liu, C.; Bokhari, H. Analysis of gut microbiota of obese individuals with type 2 diabetes and healthy individuals. PLoS One, 2019, 14(12)e0226372
[http://dx.doi.org/10.1371/journal.pone.0226372 ] [PMID: 31891582]
[48]
Zhao, L.; Lou, H.; Peng, Y.; Chen, S.; Zhang, Y.; Li, X. Comprehensive relationships between gut microbiome and faecal metabolome in individuals with type 2 diabetes and its complications. Endocrine, 2019, 66(3), 526-537.
[http://dx.doi.org/10.1007/s12020-019-02103-8 ] [PMID: 31591683]
[49]
Wang, J.L.W.; Wang, C.; Wang, L.; He, T.; Hu, H.; Song, J.; Cui, C.; Quao, J.; Qing, L.L.; Zang, N.; Wang, K.; Wu, C.; Qi, L.; Ma, A.; Zheng, H.; Liu, F.; Chen, L. Enterotype bacteroides is associated with a high risk in patients with diabetes: A pilot study. J. Diab. Res., 2020, 6047145, 1-11.
[50]
Zhang, X.; Shen, D.; Fang, Z.; Jie, Z.; Qiu, X.; Zhang, C.; Chen, Y.; Ji, L. Human gut microbiota changes reveal the progression of glucose intolerance. PLoS One, 2013, 8(8)e71108
[http://dx.doi.org/10.1371/journal.pone.0071108 ] [PMID: 24013136]
[51]
Sircana, A.; Framarin, L.; Leone, N.; Berrutti, M.; Castellino, F.; Parente, R.; De Michieli, F.; Paschetta, E.; Musso, G. Altered gut microbiota in type 2 diabetes: Just a coincidence? Curr. Diab. Rep., 2018, 18(10), 98.
[http://dx.doi.org/10.1007/s11892-018-1057-6 ] [PMID: 30215149]
[52]
Gentile, C.L.; Weir, T.L. The gut microbiota at the intersection of diet and human health. Science, 2018, 362(6416), 776-780.
[http://dx.doi.org/10.1126/science.aau5812 ] [PMID: 30442802]
[53]
Eldor, R.; DeFronzo, R.A.; Abdul-Ghani, M. In vivo actions of peroxisome proliferator-activated receptors: glycemic control, insulin sensitivity, and insulin secretion. Diabetes Care, 2013, 36(Suppl. 2), S162-S174.
[http://dx.doi.org/10.2337/dcS13-2003 ] [PMID: 23882042]
[55]
Cani, P.D.; Jordan, B.F. Gut microbiota-mediated inflammation in obesity: A link with gastrointestinal cancer. Nat. Rev. Gastroenterol. Hepatol., 2018, 15(11), 671-682.
[http://dx.doi.org/10.1038/s41575-018-0025-6 ] [PMID: 29844585]
[56]
Choque Delgado, G.T.; Tamashiro, W.M.D.S.C.; Maria, W.; Tamashiro, C. Role of prebiotics in regulation of microbiota and prevention of obesity. Food Res. Int., 2018, 113, 183-188.
[http://dx.doi.org/10.1016/j.foodres.2018.07.013 ] [PMID: 30195512]
[57]
Sabatino, A.; Regolisti, G.; Cosola, C.; Gesualdo, L.; Fiaccadori, E. Intestinal microbiota in type 2 diabetes and chronic kidney disease. Curr. Diab. Rep., 2017, 17(3), 16.
[http://dx.doi.org/10.1007/s11892-017-0841-z ] [PMID: 28271466]
[58]
Ho, J.; Reimer, R.A.; Doulla, M.; Huang, C. Effect of prebiotic intake on gut microbiota, intestinal permeability and glycemic control in children with type 1 diabetes: Study protocol for a randomized controlled trial. Trials, 2016, 17(1), 347.
[http://dx.doi.org/10.1186/s13063-016-1486-y ] [PMID: 27456494]
[59]
Bernaud, F.S.; Beretta, M.V.; do Nascimento, C.; Escobar, F.; Gross, J.L.; Azevedo, M.J.; Rodrigues, T.C. Fiber intake and inflammation in type 1 diabetes. Diabetol. Metab. Syndr., 2014, 6, 66.
[http://dx.doi.org/10.1186/1758-5996-6-66 ] [PMID: 25002911]
[60]
Bodinham, C.L.; Smith, L.; Thomas, E.L.; Bell, J.D.; Swann, J.R.; Costabile, A.; Russell-Jones, D.; Umpleby, A.M.; Robertson, M.D. Efficacy of increased resistant starch consumption in human type 2 diabetes. Endocr. Connect., 2014, 3(2), 75-84.
[http://dx.doi.org/10.1530/EC-14-0036 ] [PMID: 24671124]
[61]
Chen, H-L.; Sheu, W.H-H.; Tai, T-S.; Liaw, Y-P.; Chen, Y-C. Konjac supplement alleviated hypercholesterolemia and hyperglycemia in type 2 diabetic subjects--a randomized double-blind trial. J. Am. Coll. Nutr., 2003, 22(1), 36-42.
[http://dx.doi.org/10.1080/07315724.2003.10719273 ] [PMID: 12569112]
[62]
Sheu, W.H-H.; Lee, I-T.; Chen, W.; Chan, Y.C. Effects of xylooligosaccharides in type 2 diabetes mellitus. J. Nutr. Sci. Vitaminol. (Tokyo), 2008, 54(5), 396-401.
[http://dx.doi.org/10.3177/jnsv.54.396 ] [PMID: 19001772]
[63]
Dallálba, V.; Silva, F.M.; Antonio, J.P. Improvement of the metabolic syndrome profile by soluble fibra-guar gum-in patients with type 2 diabetes. Br. J. Nutr., 2013, 110(9), 1601-1610.
[http://dx.doi.org/10.1017/S0007114513001025 ] [PMID: 23551992]
[64]
Lin, S.H.; Cheng, P.C.; Tu, S.T.; Hsu, S.R.; Cheng, Y.C.; Liu, Y.H. Effect of metformin monotherapy on serum lipid profile in statin-naïve individuals with newly diagnosed type 2 diabetes mellitus: A cohort study. PeerJ, 2018, 6e4578
[http://dx.doi.org/10.7717/peerj.4578 ] [PMID: 29666753]
[65]
Nagpal, R.; Wang, S.; Ahmadi, S.; Hayes, J.; Gagliano, J.; Subashchandrabose, S.; Kitzman, D.W.; Becton, T.; Read, R.; Yadav, H. Human-origin probiotic cocktail increases short-chain fatty acid production via modulation of mice and human gut microbiome. Sci. Rep., 2018, 8(1), 12649.
[http://dx.doi.org/10.1038/s41598-018-30114-4 ] [PMID: 30139941]
[66]
Azad, M.A.K.; Sarker, M.; Li, T.; Yin, J. Probiotic species in the modulation of gut microbiota: An overview. BioMed Res. Int., 2018, 20189478630
[http://dx.doi.org/10.1155/2018/9478630 ] [PMID: 29854813]
[67]
Miraghajani, M.; Dehsoukhteh, S.S.M.; Rafie, N.; Hamedani, S.G.; Sabihi, S.; Ghiasvand, R. Potential mechanisms linking probiotics to diabetes: A narrative review of the literature. Sao Paulo Med. J., 2017, 135(2), 169-178.
[http://dx.doi.org/10.1590/1516-3180.2016.0311271216 ] [PMID: 28538869]
[68]
Fusco, A.; Savio, V.; Cammarota, M.; Alfano, A.; Schiraldi, C.; Donnarumma, G. Beta-defensin-2 and beta-defensin-3 reduce intestinal damage caused by Salmonella typhimurium modulating the expression of cytokines and enhancing the probiotic activity of Enterococcus faecium. J. Immunol. Res., 2017, 20176976935
[http://dx.doi.org/10.1155/2017/6976935 ] [PMID: 29250559]
[69]
Daillère, R.; Vétizou, M.; Waldschmitt, N.; Yamazaki, T.; Isnard, C.; Poirier-Colame, V.; Duong, C.P.M.; Flament, C.; Lepage, P.; Roberti, M.P.; Routy, B.; Jacquelot, N.; Apetoh, L.; Becharef, S.; Rusakiewicz, S.; Langella, P.; Sokol, H.; Kroemer, G.; Enot, D.; Roux, A.; Eggermont, A.; Tartour, E.; Johannes, L.; Woerther, P.L.; Chachaty, E.; Soria, J.C.; Golden, E.; Formenti, S.; Plebanski, M.; Madondo, M.; Rosenstiel, P.; Raoult, D.; Cattoir, V.; Boneca, I.G.; Chamaillard, M.; Zitvogel, L. Enterococcus hirae and Barnesiella intestinihominis facilitate cyclophosphamide-induced therapeutic immunomodulatory effects. Immunity, 2016, 45(4), 931-943.
[http://dx.doi.org/10.1016/j.immuni.2016.09.009 ] [PMID: 27717798]
[70]
Xue, L.; He, J.; Gao, N.; Lu, X.; Li, M.; Wu, X.; Liu, Z.; Jin, Y.; Liu, J.; Xu, J.; Geng, Y. Probiotics may delay the progression of nonalcoholic fatty liver disease by restoring the gut microbiota structure and improving intestinal endotoxemia. Sci. Rep., 2017, 7, 45176.
[http://dx.doi.org/10.1038/srep45176 ] [PMID: 28349964]
[71]
Aumeunier, A.; Grela, F.; Ramadan, A.; Pham Van, L.; Bardel, E.; Gomez Alcala, A.; Jeannin, P.; Akira, S.; Bach, J.F.; Thieblemont, N. Systemic Toll-like receptor stimulation suppresses experimental allergic asthma and autoimmune diabetes in NOD mice. PLoS One, 2010, 5(7)e11484
[http://dx.doi.org/10.1371/journal.pone.0011484 ] [PMID: 20628601]
[72]
Kingma, S.D.K.; Li, N.; Sun, F.; Valladares, R.B.; Neu, J.; Lorca, G.L. Lactobacillus johnsonii N6.2 stimulates the innate immune response through Toll-like receptor 9 in Caco-2 cells and increases intestinal crypt Paneth cell number in biobreeding diabetes-prone rats. J. Nutr., 2011, 141(6), 1023-1028.
[http://dx.doi.org/10.3945/jn.110.135517 ] [PMID: 21490291]
[73]
Hsieh, F.C.; Lee, C.L.; Chai, C.Y.; Chen, W.T.; Lu, Y.C.; Wu, C.S. Oral administration of Lactobacillus reuteri GMNL-263 improves insulin resistance and ameliorates hepatic steatosis in high fructose-fed rats. Nutr. Metab. (Lond.), 2013, 10(1), 35.
[http://dx.doi.org/10.1186/1743-7075-10-35 ] [PMID: 23590862]
[74]
Everard, A.; Matamoros, S.; Geurts, L.; Delzenne, N.M.; Cani, P.D. Saccharomyces boulardii administration changes gut microbiota and reduces hepatic steatosis, low-grade inflammation, and fat mass in obese and type 2 diabetic db/db mice. MBio, 2014, 5(3), e01011-e01014.
[http://dx.doi.org/10.1128/mBio.01011-14 ] [PMID: 24917595]
[75]
Li, C.; Ding, Q.; Nie, S.P.; Zhang, Y.S.; Xiong, T.; Xie, M.Y. Carrot juice fermented with Lactobacillus plantarum NCU116 ameliorates type 2 diabetes in rats. J. Agric. Food Chem., 2014, 62(49), 11884-11891.
[http://dx.doi.org/10.1021/jf503681r ] [PMID: 25341087]
[76]
Le, T.K.; Hosaka, T.; Nguyen, T.T.; Kassu, A.; Dang, T.O.; Tran, H.B.; Pham, T.P.; Tran, Q.B.; Le, T.H.; Pham, X.D. Bifidobacterium species lower serum glucose, increase expressions of insulin signaling proteins, and improve adipokine profile in diabetic mice. Biomed. Res., 2015, 36(1), 63-70.
[http://dx.doi.org/10.2220/biomedres.36.63 ] [PMID: 25749152]
[77]
Tian, P.; Li, B.; He, C.; Song, W.; Hou, A.; Tian, S.; Meng, X.; Li, K.; Shan, Y. Antidiabetic (type 2) effects of Lactobacillus G15 and Q14 in rats through regulation of intestinal permeability and microbiota. Food Funct., 2016, 7(9), 3789-3797.
[http://dx.doi.org/10.1039/C6FO00831C ] [PMID: 27713957]
[78]
Sabico, S.; Al-Mashharawi, A.; Al-Daghri, N.M.; Yakout, S.; Alnaami, A.M.; Alokail, M.S.; McTernan, P.G. Effects of a multi-strain probiotic supplement for 12 weeks in circulating endotoxin levels and cardiometabolic profiles of medication naïve T2DM patients: A randomized clinical trial. J. Transl. Med., 2017, 15(1), 249.
[http://dx.doi.org/10.1186/s12967-017-1354-x ] [PMID: 29228964]
[79]
Abdelazez, A.; Abdelmotaal, H.; Evivie, S.E.; Melak, S.; Jia, F.F.; Khoso, M.H.; Zhu, Z.T.; Zhang, L.J.; Sami, R.; Meng, X.C. Screening potential probiotic characteristics of Lactobacillus brevis strains in vitro and intervention effect on type I diabetes in vivo. BioMed Res. Int., 2018, 20187356173
[http://dx.doi.org/10.1155/2018/7356173 ] [PMID: 30327780]
[80]
Balakumar, M.; Prabhu, D.; Sathishkumar, C.; Prabu, P.; Rokana, N.; Kumar, R.; Raghavan, S.; Soundarajan, A.; Grover, S.; Batish, V.K.; Mohan, V.; Balasubramanyam, M. Improvement in glucose tolerance and insulin sensitivity by probiotic strains of Indian gut origin in high-fat diet-fed C57BL/6J mice. Eur. J. Nutr., 2018, 57(1), 279-295.
[http://dx.doi.org/10.1007/s00394-016-1317-7 ] [PMID: 27757592]
[81]
Andreasen, A.S.; Larsen, N.; Pedersen-Skovsgaard, T.; Berg, R.M.G.; Møller, K.; Svendsen, K.D.; Jakobsen, M.; Pedersen, B.K. Effects of Lactobacillus acidophilus NCFM on insulin sensitivity and the systemic inflammatory response in human subjects. Br. J. Nutr., 2010, 104(12), 1831-1838.
[http://dx.doi.org/10.1017/S0007114510002874 ] [PMID: 20815975]
[82]
Chanyi, R.M.; Craven, L.; Harvey, B.; Reid, G.; Silverman, M.J.; Burton, J.P. Faecal microbiota transplantation: Where did it start? What have studies taught us? Where is it going? SAGE Open Med., 2017.52050312117708712
[http://dx.doi.org/10.1177/2050312117708712 ] [PMID: 28540051]
[83]
Sharma, S.; Tripathi, P. Gut microbiome and type 2 diabetes: Where we are and where to go? J. Nutr. Biochem., 2019, 63, 101-108.