Targeted Photodynamic Therapy (PDT) of Lung Cancer with Biotinylated Silicon (IV) Phthalocyanine

Page: [414 - 422] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Background: Lung cancer is the leading cause of cancer-associated mortality in the world. Traditional cancer therapies prolong the life expectancy of patients but often suffer from adverse reactions. Photodynamic Therapy (PDT) has been recommended as a treatment option for lung cancer in several countries, due to its non-invasive procedures, high selectivity and weak side effects.

Objective: We have designed and synthesized a biotin receptor-targeted silicon phthalocyanine (IV) (compound 1) which showed a good therapeutic effect on biotin receptor-positive tumors. Since the overexpression of Biotin Receptor (BR) is also present in human lung cancer cells (A549), we explored the therapeutic properties of compound 1 on A549 xenograft tumor models.

Methods: The selectivity of compound 1 toward A549 cells was studied with a fluorescence microscope and IVIS Spectrum Imaging System. The cytotoxicity was measured using the MTT assay. In vivo anti-tumor activity was investigated on the nude mice bearing A549 xenografts.

Results: In vitro assays proved that compound 1 could selectively accumulate in A549 cells via the BR-mediated internalization. In vivo imaging and distribution experiments showed that compound 1 could selectively accumulate in tumor tissues of tumor-bearing mice. After 16 days of the treatment, the volumes of tumor in the PDT group were obviously smaller than that in other groups.

Conclusion: This study demonstrates that compound 1 is a promising photosensitizer and has broad application prospects in clinical PDT of lung cancers.

Keywords: Lung cancer, Photodynamic Therapy (PDT), silicon phthalocyanine, BR-mediated, photosensitizer, singlet oxygen.

Graphical Abstract

[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Chen, W.; Zheng, R.; Baade, P.D.; Zhang, S.; Zeng, H.; Bray, F.; Jemal, A.; Yu, X.Q.; He, J. Cancer statistics in China, 2015. CA Cancer J. Clin., 2016, 66(2), 115-132.
[http://dx.doi.org/10.3322/caac.21338] [PMID: 26808342]
[3]
Collett, G.K.; Durcinoska, I.; Rankin, N.M.; Blinman, P.; Barnes, D.J.; Anderiesz, C.; Young, J.M. Patients’ experience of lung cancer care coordination: A quantitative exploration. Support. Care Cancer, 2019, 27(2), 485-493.
[http://dx.doi.org/10.1007/s00520-018-4338-3] [PMID: 29980906]
[4]
Cheng, M.; Cui, Y.X.; Wang, J.; Zhang, J.; Zhu, L.N.; Kong, D.M. G-quadruplex/porphyrin composite photosensitizer: A facile way to promote absorption redshift and photodynamic therapy efficacy. ACS Appl. Mater. Interfaces, 2019, 11(14), 13158-13167.
[http://dx.doi.org/10.1021/acsami.9b02695] [PMID: 30901194]
[5]
Li, L.; He, S.; Yu, L.; Elshazly, E.H.; Wang, H.; Chen, K.; Zhang, S.; Ke, L.; Gong, R. Codelivery of DOX and siRNA by folate-biotin-quaternized starch nanoparticles for promoting synergistic suppression of human lung cancer cells. Drug Deliv., 2019, 26(1), 499-508.
[http://dx.doi.org/10.1080/10717544.2019.1606363 ] [PMID: 31033359]
[6]
Taymouri, S.; Alem, M.; Varshosaz, J.; Rostami, M.; Akbari, V.; Firoozpour, L. Biotin decorated sunitinib loaded nanostructured lipid carriers for tumor targeted chemotherapy of lung cancer. J. Drug Deliv. Sci. Technol., 2019, 50, 237-247.
[http://dx.doi.org/10.1016/j.jddst.2019.01.024]
[7]
Xue, X.; Lindstrom, A.; Li, Y. Porphyrin-based nanomedicines for cancer treatment. Bioconjug. Chem., 2019, 30(6), 1585-1603.
[http://dx.doi.org/10.1021/acs.bioconjchem.9b00231] [PMID: 31023011]
[8]
Sutedja, T.G.; Postmus, P.E. Photodynamic therapy in lung cancer. A review. J. Photochem. Photobiol. B, 1996, 36(2), 199-204.
[http://dx.doi.org/10.1016/S1011-1344(96)07372-1] [PMID: 9002261]
[9]
Li, S.; Sun, Z.; Meng, X.; Deng, G.; Zhang, J.; Zhou, K.; Li, W.; Zhou, L.; Gong, P.; Cai, L. Targeted methotrexate prodrug conjugated with heptamethine cyanine dye improving chemotherapy and monitoring itself activating by dual-modal imaging; Front Mater, 2018, p. 5.
[10]
Suo, A.; Qian, J.; Xu, M.; Xu, W.; Zhang, Y.; Yao, Y. Folate-decorated PEGylated triblock copolymer as a pH/reduction dual-responsive nanovehicle for targeted intracellular co-delivery of doxorubicin and Bcl-2 siRNA. Mater. Sci. Eng. C, 2017, 76, 659-672.
[http://dx.doi.org/10.1016/j.msec.2017.03.124] [PMID: 28482576]
[11]
Hou, H.; Zhang, D.; Lin, J.; Zhang, Y.; Li, C.; Wang, Z.; Ren, J.; Yao, M.; Wong, K.H.; Wang, Y. zein-paclitaxel prodrug nanoparticles for redox-triggered drug delivery and enhanced therapeutic efficiency. J. Agric. Food Chem., 2018, 66(44), 11812-11822.
[http://dx.doi.org/10.1021/acs.jafc.8b04627] [PMID: 30339011]
[12]
Hague, C.; Foran, B.; Hall, E.; Guild, S.; Joseph, O.; Moule, R.; Nutting, C.; Parsons, S.; Prestwich, R.; Slevin, N.; West, C.; Thomson, D. Patient involvement in the design of a phase iii trial comparing intensity-modulated proton therapy and intensity-modulated radiotherapy for oropharyngeal cancer. Clin. Oncol. (R. Coll. Radiol.), 2018, 30(5), 274-276.
[http://dx.doi.org/10.1016/j.clon.2018.01.018] [PMID: 29459100]
[13]
Ujiie, H.; Ding, L.; Fan, R.; Kato, T.; Lee, D.; Fujino, K.; Kinoshita, T.; Lee, C.Y.; Waddell, T.K.; Keshavjee, S.; Wilson, B.C.; Zheng, G.; Chen, J.; Yasufuku, K. porphyrin-high-density lipoprotein: A novel photosensitizing nanoparticle for lung cancer therapy. Ann. Thorac. Surg., 2019, 107(2), 369-377.
[http://dx.doi.org/10.1016/j.athoracsur.2018.08.053 ] [PMID: 30316853]
[14]
Agostinis, P.; Berg, K.; Cengel, K.A.; Foster, T.H.; Girotti, A.W.; Gollnick, S.O.; Hahn, S.M.; Hamblin, M.R.; Juzeniene, A.; Kessel, D.; Korbelik, M.; Moan, J.; Mroz, P.; Nowis, D.; Piette, J.; Wilson, B.C.; Golab, J. Photodynamic therapy of cancer: An update. CA Cancer J. Clin., 2011, 61(4), 250-281.
[http://dx.doi.org/10.3322/caac.20114] [PMID: 21617154]
[15]
Felsher, D.W. Cancer revoked: Oncogenes as therapeutic targets. Nat. Rev. Cancer, 2003, 3(5), 375-380.
[http://dx.doi.org/10.1038/nrc1070] [PMID: 12724735]
[16]
Bonnett, R. Photosensitizers of the porphyrin and phthalocyanine series for photodynamic therapy. Chem. Soc. Rev., 1995, 24(1), 19.
[http://dx.doi.org/10.1039/cs9952400019]
[17]
Triesscheijn, M.; Baas, P.; Schellens, J.H.; Stewart, F.A. Photodynamic therapy in oncology. Oncologist, 2006, 11(9), 1034-1044.
[http://dx.doi.org/10.1634/theoncologist.11-9-1034 ] [PMID: 17030646]
[18]
Garg, A.D.; Nowis, D.; Golab, J.; Agostinis, P. Photodynamic therapy: illuminating the road from cell death towards anti-tumour immunity. Apoptosis, 2010, 15(9), 1050-1071.
[http://dx.doi.org/10.1007/s10495-010-0479-7] [PMID: 20221698]
[19]
Zheng, B-Y.; Yang, X-Q.; Zhao, Y.; Zheng, Q-F.; Ke, M-R.; Lin, T.; Chen, R-X.; Ho, K.K.K.; Kumar, N.; Huang, J-D. Synthesis and photodynamic activities of integrin-targeting silicon(IV) phthalocyanine-cRGD conjugates. Eur. J. Med. Chem., 2018, 155, 24-33.
[http://dx.doi.org/10.1016/j.ejmech.2018.05.039] [PMID: 29852329]
[20]
Chen, Z.; Xu, P.; Chen, J.; Chen, H.; Hu, P.; Chen, X.; Lin, L.; Huang, Y.; Zheng, K.; Zhou, S.; Li, R.; Chen, S.; Liu, J.; Xue, J.; Huang, M. Zinc phthalocyanine conjugated with the amino-terminal fragment of urokinase for tumor-targeting photodynamic therapy. Acta Biomater., 2014, 10(10), 4257-4268.
[http://dx.doi.org/10.1016/j.actbio.2014.06.026] [PMID: 24969665]
[21]
Iqbal, Z.; Chen, J.; Chen, Z.; Huang, M. Phthalocyanine-biomolecule conjugated photosensitizers for targeted photodynamic therapy and imaging. Curr. Drug Metab., 2015, 16(9), 816-832.
[http://dx.doi.org/10.2174/1389200217666151120165404 ] [PMID: 26593738]
[22]
Huang, Z. A review of progress in clinical photodynamic therapy. Technol. Cancer Res. Treat., 2005, 4(3), 283-293.
[http://dx.doi.org/10.1177/153303460500400308] [PMID: 15896084]
[23]
Yanovsky, R.L.; Bartenstein, D.W.; Rogers, G.S.; Isakoff, S.J.; Chen, S.T. Photodynamic therapy for solid tumors: A review of the literature. Photodermatol. Photoimmunol. Photomed., 2019, 35(5), 295-303.
[http://dx.doi.org/10.1111/phpp.12489] [PMID: 31155747]
[24]
Wiedmann, M.W.; Caca, K. General principles of Photodynamic Therapy (PDT) and gastrointestinal applications. Curr. Pharm. Biotechnol., 2004, 5(4), 397-408.
[http://dx.doi.org/10.2174/1389201043376805] [PMID: 15320770]
[25]
Loewen, G.M.; Pandey, R.; Bellnier, D.; Henderson, B.; Dougherty, T. Endobronchial photodynamic therapy for lung cancer. Lasers Surg. Med., 2006, 38(5), 364-370.
[http://dx.doi.org/10.1002/lsm.20354] [PMID: 16788932]
[26]
Allison, R.; Moghissi, K.; Downie, G.; Dixon, K. Photodynamic Therapy (PDT) for lung cancer. Photodiagn. Photodyn. Ther., 2011, 8(3), 231-239.
[http://dx.doi.org/10.1016/j.pdpdt.2011.03.342] [PMID: 21864796]
[27]
Shafirstein, G.; Battoo, A.; Harris, K.; Baumann, H.; Gollnick, S.O.; Lindenmann, J.; Nwogu, C.E. Photodynamic therapy of non-small cell lung cancer. Narrative review and future directions. Ann. Am. Thorac. Soc., 2016, 13(2), 265-275.
[PMID: 26646726]
[28]
Alexiades-Armenakas, M. Laser-mediated photodynamic therapy. Clin. Dermatol., 2006, 24(1), 16-25.
[http://dx.doi.org/10.1016/j.clindermatol.2005.10.027 ] [PMID: 16427502]
[29]
Ethirajan, M.; Chen, Y.; Joshi, P.; Pandey, R.K. The role of porphyrin chemistry in tumor imaging and photodynamic therapy. Chem. Soc. Rev., 2011, 40(1), 340-362.
[http://dx.doi.org/10.1039/B915149B] [PMID: 20694259]
[30]
Mallidi, S.; Anbil, S.; Bulin, A-L.; Obaid, G.; Ichikawa, M.; Hasan, T. Beyond the barriers of light penetration: Strategies, perspectives and possibilities for photodynamic therapy. Theranostics, 2016, 6(13), 2458-2487.
[http://dx.doi.org/10.7150/thno.16183] [PMID: 27877247]
[31]
Li, K.; Dong, W.; Liu, Q.; Lv, G.; Xie, M.; Sun, X.; Qiu, L.; Lin, J. A biotin receptor-targeted silicon(IV) phthalocyanine for in vivo tumor imaging and photodynamic therapy. J. Photochem. Photobiol. B, 2019, 190, 1-7.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.09.001 ] [PMID: 30453160]
[32]
Shi, J-F.; Wu, P.; Jiang, Z-H.; Wei, X-Y. Synthesis and tumor cell growth inhibitory activity of biotinylated annonaceous acetogenins. Eur. J. Med. Chem., 2014, 71, 219-228.
[http://dx.doi.org/10.1016/j.ejmech.2013.11.012] [PMID: 24308999]
[33]
Rompicharla, S.V.K.; Kumari, P.; Bhatt, H.; Ghosh, B.; Biswas, S. Biotin functionalized PEGylated poly(amidoamine) dendrimer conjugate for active targeting of paclitaxel in cancer. Int. J. Pharm., 2019, 557, 329-341.
[http://dx.doi.org/10.1016/j.ijpharm.2018.12.069] [PMID: 30599231]
[34]
Hsieh, Y.T.; Lin, M.H.; Ho, H.Y.; Chen, L.C.; Chen, C.C.; Shu, J.C. Glucose-6-Phosphate Dehydrogenase (G6PD)-deficient epithelial cells are less tolerant to infection by Staphylococcus aureus. PLoS One, 2013, 8(11), e79566.
[http://dx.doi.org/10.1371/journal.pone.0079566] [PMID: 24223971]
[35]
Li, M.; Xia, J.; Tian, R.; Wang, J.; Fan, J.; Du, J.; Long, S.; Song, X.; Foley, J.W.; Peng, X. Near-infrared light-initiated molecular superoxide radical generator: Rejuvenating photodynamic therapy against hypoxic tumors. J. Am. Chem. Soc., 2018, 140(44), 14851-14859.
[http://dx.doi.org/10.1021/jacs.8b08658] [PMID: 30362735]
[36]
Guo, X.; Qu, J.; Zhu, C.; Li, W.; Luo, L.; Yang, J.; Yin, X.; Li, Q.; Du, Y.; Chen, D.; Qiu, Y.; Lou, Y.; You, J. Synchronous delivery of oxygen and photosensitizer for alleviation of hypoxia tumor microenvironment and dramatically enhanced photodynamic therapy. Drug Deliv., 2018, 25(1), 585-599.
[http://dx.doi.org/10.1080/10717544.2018.1435751 ] [PMID: 29461122]
[37]
Kizaki, M.; Xian, M.; Sagawa, M.; Ikeda, Y. Induction of apoptosis via the modulation of Reactive Oxygen Species (ROS) production in the treatment of myeloid leukemia. Curr. Pharm. Biotechnol., 2006, 7(5), 323-329.
[http://dx.doi.org/10.2174/138920106778521541] [PMID: 17076648]
[38]
Yellepeddi, V.K.; Kumar, A.; Maher, D.M.; Chauhan, S.C.; Vangara, K.K.; Palakurthi, S. Biotinylated PAMAM dendrimers for intracellular delivery of cisplatin to ovarian cancer: Role of SMVT. Anticancer Res., 2011, 31(3), 897-906.
[PMID: 21498711]
[39]
Mou, J.; Lin, T.; Huang, F.; Chen, H.; Shi, J. Black titania-based theranostic nanoplatform for single NIR laser induced dual-modal imaging-guided PTT/PDT. Biomaterials, 2016, 84, 13-24.
[http://dx.doi.org/10.1016/j.biomaterials.2016.01.009 ] [PMID: 26803408]
[40]
Han, L.; Chen, Y.; Niu, J.; Peng, L.; Mao, Z.; Gao, C. Encapsulation of a photosensitizer into cell membrane capsules for photodynamic therapy. RSC Adv., 2016, 6(43), 37212-37220.
[http://dx.doi.org/10.1039/C6RA07480D]