Pharmaceutical Approaches for Treatment of Hepatitis C virus

Page: [4304 - 4314] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Many studies have been performed to develop an antiviral therapy against the hepatitis C virus (HCV) infections. The usual treatment for HCV infection is a combination of PEGylated interferon and ribavirin which offer restricted efficiency and major side effects. Thus, recent development in molecular biology of HCV and its life cycle led to the design of many drugs that target viral proteins and host factors required for viral replication. These drugs were named as direct-acting antivirals (DAAs) that were specifically designed for inhibition of viral life cycle, promising tolerability, short duration of treatment, higher barrier to resistance, and fewer drug interactions. The use of DAAs for the treatment of HCV infection resulted in high virological cure rates in patients. However, the use of combined DAA regimens may present drug interactions especially in patients under treatment for other co-morbidities. On the other hand, drug resistance against virus infection determines the success of long-term therapy. High genetic diversity among HCV virions due to error-prone polymerase activity led to the reduced susceptibility to DAA-therapy. Therefore, preclinical and clinical analysis of HCV resistance to novel drugs is needed. In this review, we describe pharmaceutical approaches for HCV treatment, structural and functional properties of DAAs, the principles of HCV drug-drug interaction, and finally HCV resistance to DAAs.

Keywords: HCV, direct-acting antivirals, drug resistance, drug-drug interaction, inhibition of viral life cycle, error-prone polymerase activity.

[1]
Zhang X. Direct anti-HCV agents. Acta Pharm Sin B 2016; 6(1): 26-31.
[http://dx.doi.org/10.1016/j.apsb.2015.09.008] [PMID: 26904396]
[2]
Tolan NV, Horowitz GL, Graham CS, Hillyard D, Osburn W, Ray S. New therapies for treating hepatitis C virus: Impact on laboratory testing recommendations and clinical management. Clin Chem 2017; 63(12): 1799-805.
[http://dx.doi.org/10.1373/clinchem.2016.266569] [PMID: 29018029]
[3]
Puchades Renau L, Berenguer M. Introduction to hepatitis C virus infection: Overview and history of hepatitis C virus therapies. Hemodial Int 2018; 22(Suppl. 1): S8-21.
[http://dx.doi.org/10.1111/hdi.12647] [PMID: 29694724]
[4]
Bassendine MF, Nielsen SU, Bridge SH, et al. Hepatitis C virus and atherosclerosis: A legacy after virologic cure? Clin Res Hepatol Gastroenterol 2017; 41(1): 25-30.
[http://dx.doi.org/10.1016/j.clinre.2016.09.008] [PMID: 27840032]
[5]
Chen SL, Morgan TR. The natural history of hepatitis C virus (HCV) infection. Int J Med Sci 2006; 3(2): 47-52.
[http://dx.doi.org/10.7150/ijms.3.47] [PMID: 16614742]
[6]
Alazard-Dany N, Denolly S, Boson B, Cosset FL. Overview of HCV life cycle with a special focus on current and possible future antiviral targets. Viruses 2019; 11(1): 30.
[http://dx.doi.org/10.3390/v11010030] [PMID: 30621318]
[7]
Kim S, Han KH, Ahn SH. Hepatitis C virus and antiviral drug resistance. Gut Liver 2016; 10(6): 890-5.
[http://dx.doi.org/10.5009/gnl15573] [PMID: 27784846]
[8]
Bartenschlager R, Lohmann V, Penin F. The molecular and structural basis of advanced antiviral therapy for hepatitis C virus infection. Nat Rev Microbiol 2013; 11(7): 482-96.
[http://dx.doi.org/10.1038/nrmicro3046] [PMID: 23748342]
[9]
Vahabpour R, Basimi P, Roohvand F, et al. Anti-viral effects of superpositively charged mutant of green fluorescent protein. Protein Pept Lett 2019; 26(12): 930-9.
[http://dx.doi.org/10.2174/0929866526666190823145916] [PMID: 31441722]
[10]
Vahabpour R, Soleymani S, Roohvand F, Zabihollahi R, Bolhassani A. In vitro anti-viral effects of small heat shock proteins 20 and 27: A novel therapeutic approach. Curr Pharm Biotechnol 2019; 20(12): 1011-7.
[http://dx.doi.org/10.2174/1389201020666190729104648] [PMID: 31362669]
[11]
Roberts EA, Yeung L. Maternal-infant transmission of hepatitis C virus infection. Hepatology 2002; 36(5)(Suppl. 1): S106-13.
[PMID: 12407583]
[12]
Ozaras R, Leblebicioglu H. Global epidemiology of chronic hepatitis C virus infection Viral Hepatitis: Chronic Hepatitis C Springer 2019; 1-24.
[http://dx.doi.org/10.1007/978-3-030-03757-4_1]
[13]
Organization WH. Global hepatitis report 2017. World Health Organization 2017.
[14]
Pradat P, Virlogeux V, Trépo E. Epidemiology and elimination of HCV-related liver disease. Viruses 2018; 10(10): 545.
[http://dx.doi.org/10.3390/v10100545] [PMID: 30301201]
[15]
Petruzziello A, Marigliano S, Loquercio G, Cozzolino A, Cacciapuoti C. Global epidemiology of hepatitis C virus infection: An up-date of the distribution and circulation of hepatitis C virus genotypes. World J Gastroenterol 2016; 22(34): 7824-40.
[http://dx.doi.org/10.3748/wjg.v22.i34.7824] [PMID: 27678366]
[16]
Moradpour D, Penin F, Rice CM. Replication of hepatitis C virus. Nat Rev Microbiol 2007; 5(6): 453-63.
[http://dx.doi.org/10.1038/nrmicro1645] [PMID: 17487147]
[17]
Lynch SM, Wu GY. The molecular basis of anti-HCV drug resistance. Update on Hepatitis 2017; C: 217.
[http://dx.doi.org/10.5772/intechopen.70775]
[18]
Kim CW, Chang KM. Hepatitis C virus: virology and life cycle. Clin Mol Hepatol 2013; 19(1): 17-25.
[http://dx.doi.org/10.3350/cmh.2013.19.1.17] [PMID: 23593605]
[19]
Dubuisson J, Helle F, Cocquerel L. Early steps of the hepatitis C virus life cycle. Cell Microbiol 2008; 10(4): 821-7.
[http://dx.doi.org/10.1111/j.1462-5822.2007.01107.x] [PMID: 18081727]
[20]
Penin F, Dubuisson J, Rey FA, Moradpour D, Pawlotsky JM. Structural biology of hepatitis C virus. Hepatology 2004b; 39(1): 5-19.
[http://dx.doi.org/10.1002/hep.20032] [PMID: 14752815]
[21]
Suzuki T, Ishii K, Aizaki H, Wakita T. Hepatitis C viral life cycle. Adv Drug Deliv Rev 2007; 59(12): 1200-12.
[http://dx.doi.org/10.1016/j.addr.2007.04.014] [PMID: 17825945]
[22]
Alizadeh S, Irani S, Bolhassani A, Sadat SM. Simultaneous use of natural adjuvants and cell penetrating peptides improves HCV NS3 antigen-specific immune responses. Immunol Lett 2019; 212: 70-80.
[http://dx.doi.org/10.1016/j.imlet.2019.06.011] [PMID: 31254535]
[23]
Basirnejad M, Bolhassani A. Development of HCV therapeutic vaccines using Hp91 peptide and small heat shock protein 20 as an adjuvant. Protein Pept Lett 2018; 25(10): 924-32.
[http://dx.doi.org/10.2174/0929866525666180925145304] [PMID: 30255740]
[24]
Basirnejad M, Bolhassani A, Sadat SM. The distinct role of small heat shock protein 20 on HCV NS3 expression in HEK-293T cell line. Avicenna J Med Biotechnol 2018; 10(3): 152-7.
[PMID: 30090208]
[25]
Reed K, Rice C. Overview of hepatitis C virus genome structure, polyprotein processing, and protein properties The Hepatitis C Viruses Springer 2000; 55-84.
[http://dx.doi.org/10.1007/978-3-642-59605-6_4]
[26]
Irshad M, Khushboo I, Singh S, Singh S. Hepatitis C virus (HCV): a review of immunological aspects. Int Rev Immunol 2008; 27(6): 497-517.
[http://dx.doi.org/10.1080/08830180802432178] [PMID: 19065353]
[27]
Willberg C, Barnes E, Klenerman P. HCV immunology--death and the maiden T cell. Cell Death Differ 2003; 10(S1)(Suppl. 1): S39-47.
[http://dx.doi.org/10.1038/sj.cdd.4401122] [PMID: 12655345]
[28]
Bigger CB, Brasky KM, Lanford RE. DNA microarray analysis of chimpanzee liver during acute resolving hepatitis C virus infection. J Virol 2001; 75(15): 7059-66.
[http://dx.doi.org/10.1128/JVI.75.15.7059-7066.2001] [PMID: 11435586]
[29]
Su AI, Pezacki JP, Wodicka L, et al. Genomic analysis of the host response to hepatitis C virus infection. Proc Natl Acad Sci USA 2002; 99(24): 15669-74.
[http://dx.doi.org/10.1073/pnas.202608199] [PMID: 12441396]
[30]
Gerlach JT, Diepolder HM, Zachoval R, et al. Acute hepatitis C: high rate of both spontaneous and treatment-induced viral clearance. Gastroenterology 2003; 125(1): 80-8.
[http://dx.doi.org/10.1016/S0016-5085(03)00668-1] [PMID: 12851873]
[31]
Rehermann B, Nascimbeni M. Immunology of hepatitis B virus and hepatitis C virus infection. Nat Rev Immunol 2005; 5(3): 215-29.
[http://dx.doi.org/10.1038/nri1573] [PMID: 15738952]
[32]
Schinazi R, Halfon P, Marcellin P, Asselah T. HCV direct-acting antiviral agents: the best interferon-free combinations. Liver Int 2014; 34(Suppl. 1): 69-78.
[http://dx.doi.org/10.1111/liv.12423] [PMID: 24373081]
[33]
Davis GL, Balart LA, Schiff ER, et al. Hepatitis interventional therapy group. Treatment of chronic hepatitis C with recombinant interferon alfa. A multicenter randomized, controlled trial. N Engl J Med 1989; 321(22): 1501-6.
[http://dx.doi.org/10.1056/NEJM198911303212203] [PMID: 2509916]
[34]
Di Bisceglie AM, Martin P, Kassianides C, et al. Recombinant interferon alfa therapy for chronic hepatitis C. A randomized, double-blind, placebo-controlled trial. N Engl J Med 1989; 321(22): 1506-10.
[http://dx.doi.org/10.1056/NEJM198911303212204] [PMID: 2509917]
[35]
McHutchison JG, Gordon SC, Schiff ER, et al. Hepatitis Interventional Therapy Group. Interferon alfa-2b alone or in combination with ribavirin as initial treatment for chronic hepatitis C. N Engl J Med 1998; 339(21): 1485-92.
[http://dx.doi.org/10.1056/NEJM199811193392101] [PMID: 9819446]
[36]
Li DK, Chung RT. Overview of direct-acting antiviral drugs and drug resistance of hepatitis C virus Hepatitis C Virus Protocols Springer 2019; 3-32.
[http://dx.doi.org/10.1007/978-1-4939-8976-8_1]
[37]
Feld JJ, Hoofnagle JH. Mechanism of action of interferon and ribavirin in treatment of hepatitis C. Nature 2005; 436(7053): 967-72.
[http://dx.doi.org/10.1038/nature04082] [PMID: 16107837]
[38]
Zając M, Muszalska I, Sobczak A, et al. New drugs and treatment prospects. Eur J Med Chem 2019; 165: 225-49.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.025] [PMID: 30685524]
[39]
Irshad M, Gupta P, Irshad K. Molecular targeting of antiviral drugs used against hepatitis C virus infection. Hepatoma Res 2018; 4: 23.
[http://dx.doi.org/10.20517/2394-5079.2018.25]
[40]
Gong GZ, Cao J, Jiang YF, Zhou Y, Liu B. Hepatitis C virus nonstructural 5A abrogates signal transducer and activator of transcription-1 nuclear translocation induced by IFN-α through dephosphorylation. World J Gastroenterol 2007; 13(30): 4080-4.
[http://dx.doi.org/10.3748/wjg.v13.i30.4080] [PMID: 17696225]
[41]
Lan KH, Lan KL, Lee WP, et al. HCV NS5A inhibits interferon-α signaling through suppression of STAT1 phosphorylation in hepatocyte-derived cell lines. J Hepatol 2007; 46(5): 759-67.
[http://dx.doi.org/10.1016/j.jhep.2006.11.013] [PMID: 17275127]
[42]
Kumthip K, Maneekarn N. The role of HCV proteins on treatment outcomes. Virol J 2015; 12(1): 217.
[http://dx.doi.org/10.1186/s12985-015-0450-x] [PMID: 26666318]
[43]
Paul D, Madan V, Bartenschlager R. Hepatitis C virus RNA replication and assembly: living on the fat of the land. Cell Host Microbe 2014; 16(5): 569-79.
[http://dx.doi.org/10.1016/j.chom.2014.10.008] [PMID: 25525790]
[44]
Zhang Y, Jamaluddin M, Wang S, et al. Ribavirin treatment up-regulates antiviral gene expression via the interferon-stimulated response element in respiratory syncytial virus-infected epithelial cells. J Virol 2003; 77(10): 5933-47.
[http://dx.doi.org/10.1128/JVI.77.10.5933-5947.2003] [PMID: 12719586]
[45]
Fiedler MA, Wernke-Dollries K, Stark JM. Inhibition of viral replication reverses respiratory syncytial virus-induced NF-kappaB activation and interleukin-8 gene expression in A549 cells. J Virol 1996; 70(12): 9079-82.
[http://dx.doi.org/10.1128/JVI.70.12.9079-9082.1996] [PMID: 8971048]
[46]
Sulkowski MS, Cooper C, Hunyady B, et al. Management of adverse effects of Peg-IFN and ribavirin therapy for hepatitis C. Nat Rev Gastroenterol Hepatol 2011; 8(4): 212-23.
[http://dx.doi.org/10.1038/nrgastro.2011.21] [PMID: 21386812]
[47]
Feld JJ, Jacobson IM, Sulkowski MS, Poordad F, Tatsch F, Pawlotsky JM. Ribavirin revisited in the era of direct-acting antiviral therapy for hepatitis C virus infection. Liver Int 2017; 37(1): 5-18.
[http://dx.doi.org/10.1111/liv.13212] [PMID: 27473533]
[48]
Koizumi Y, Ohashi H, Nakajima S, et al. Quantifying antiviral activity optimizes drug combinations against hepatitis C virus infection. Proc Natl Acad Sci USA 2017; 114(8): 1922-7.
[http://dx.doi.org/10.1073/pnas.1610197114] [PMID: 28174263]
[49]
Geddawy A, Ibrahim YF, Elbahie NM, Ibrahim MA. Direct acting anti-hepatitis C virus drugs: Clinical pharmacology and future direction. J Transl Int Med 2017; 5(1): 8-17.
[http://dx.doi.org/10.1515/jtim-2017-0007] [PMID: 28680834]
[50]
Chae HB, Park SM, Youn SJ. Direct-acting antivirals for the treatment of chronic hepatitis C: Open issues and future perspectives. Scientific World J 2013; 2013: 1-9.
[51]
US Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) Chronic hepatitis C virus infection: Developing direct-acting antiviral drugs for treatment guidance for industry Clinical/Antimicrobial 2017; 1-40.
[52]
Kanwal F, Kramer JR, Ilyas J, Duan Z, El-Serag HB. HCV genotype 3 is associated with an increased risk of cirrhosis and hepatocellular cancer in a national sample of U.S. Veterans with HCV. Hepatology 2014; 60(1): 98-105.
[http://dx.doi.org/10.1002/hep.27095] [PMID: 24615981]
[53]
Abdurakhmanov E. Discovery and evaluation of direct acting antivirals against hepatitis C virus Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 2015; 1-49.
[54]
Vermehren J, Sarrazin C. The role of resistance in HCV treatment. Best Pract Res Clin Gastroenterol 2012; 26(4): 487-503.
[http://dx.doi.org/10.1016/j.bpg.2012.09.011] [PMID: 23199507]
[55]
Schaefer EA, Chung RT. Anti-hepatitis C virus drugs in development. Gastroenterology 2012; 142(6): 1340-1350.e1.
[http://dx.doi.org/10.1053/j.gastro.2012.02.015] [PMID: 22537441]
[56]
De Francesco R, Migliaccio G. Challenges and successes in developing new therapies for hepatitis C. Nature 2005; 436(7053): 953-60.
[http://dx.doi.org/10.1038/nature04080] [PMID: 16107835]
[57]
Li H, Shi ST. Non-nucleoside inhibitors of hepatitis C virus polymerase: current progress and future challenges. Future Med Chem 2010; 2(1): 121-41.
[http://dx.doi.org/10.4155/fmc.09.148] [PMID: 21426049]
[58]
Gaultier I. 8-week efficacy and safety of ABT-333 or ABT-972 with standard-of-care, following 3-day monotherapy in genotype 1 HCV-infected treatment-naive subjects. Hepatol Int 2011; 5.
[59]
Sarrazin C. The importance of resistance to direct antiviral drugs in HCV infection in clinical practice. J Hepatol 2016; 64(2): 486-504.
[http://dx.doi.org/10.1016/j.jhep.2015.09.011] [PMID: 26409317]
[60]
Gitto S, Gamal N, Andreone P. NS5A inhibitors for the treatment of hepatitis C infection. J Viral Hepat 2017; 24(3): 180-6.
[http://dx.doi.org/10.1111/jvh.12657] [PMID: 27925362]
[61]
Menon RM, Badri PS, Wang T, et al. Drug-drug interaction profile of the all-oral anti-hepatitis C virus regimen of paritaprevir/ritonavir, ombitasvir, and dasabuvir. J Hepatol 2015; 63(1): 20-9.
[http://dx.doi.org/10.1016/j.jhep.2015.01.026] [PMID: 25646891]
[62]
Kiser JJ, Burton JR Jr, Everson GT. Drug-drug interactions during antiviral therapy for chronic hepatitis C. Nat Rev Gastroenterol Hepatol 2013; 10(10): 596-606.
[http://dx.doi.org/10.1038/nrgastro.2013.106] [PMID: 23817323]
[63]
El-Sherif O, Khoo S, Solas C. Key drug-drug interactions with direct-acting antiviral in HIV-HCV coinfection. Curr Opin HIV AIDS 2015; 10(5): 348-54.
[http://dx.doi.org/10.1097/COH.0000000000000185] [PMID: 26248122]
[64]
Ahmed A, Lutchman GA, Kwo PY. Drug-drug interactions in hepatitis C virus treatment: Do they really matter? Clin Liver Dis (Hoboken) 2017; 10(5): 111-5.
[http://dx.doi.org/10.1002/cld.668] [PMID: 30992768]
[65]
Romano KP, Ali A, Aydin C, et al. The molecular basis of drug resistance against hepatitis C virus NS3/4A protease inhibitors. PLoS Pathog 2012; 8(7): e1002832.
[http://dx.doi.org/10.1371/journal.ppat.1002832] [PMID: 22910833]
[66]
Pawlotsky JM. Hepatitis C virus resistance to direct-acting antiviral drugs in interferon-free regimens. Gastroenterology 2016; 151(1): 70-86.
[http://dx.doi.org/10.1053/j.gastro.2016.04.003] [PMID: 27080301]
[67]
McCown MF, Rajyaguru S, Kular S, Cammack N, Nájera I. GT-1a or GT-1b subtype-specific resistance profiles for hepatitis C virus inhibitors telaprevir and HCV-796. Antimicrob Agents Chemother 2009; 53(5): 2129-32.
[http://dx.doi.org/10.1128/AAC.01598-08] [PMID: 19273674]
[68]
Sorbo MC, Cento V, Di Maio VC, et al. Hepatitis C virus drug resistance associated substitutions and their clinical relevance: Update 2018. Drug Resist Updat 2018; 37: 17-39.
[http://dx.doi.org/10.1016/j.drup.2018.01.004] [PMID: 29525636]
[69]
Hézode C, Forestier N, Dusheiko G, et al. PROVE2 Study Team. Telaprevir and peginterferon with or without ribavirin for chronic HCV infection. N Engl J Med 2009; 360(18): 1839-50.
[http://dx.doi.org/10.1056/NEJMoa0807650] [PMID: 19403903]
[70]
McHutchison JG, Everson GT, Gordon SC, et al. PROVE1 Study Team. Telaprevir with peginterferon and ribavirin for chronic HCV genotype 1 infection. N Engl J Med 2009; 360(18): 1827-38.
[http://dx.doi.org/10.1056/NEJMoa0806104] [PMID: 19403902]
[71]
Poordad F, McCone J Jr, Bacon BR, et al. SPRINT-2 Investigators. Boceprevir for untreated chronic HCV genotype 1 infection. N Engl J Med 2011; 364(13): 1195-206.
[http://dx.doi.org/10.1056/NEJMoa1010494] [PMID: 21449783]
[72]
Welsch C, Zeuzem S. Clinical relevance of HCV antiviral drug resistance. Curr Opin Virol 2012; 2(5): 651-5.
[http://dx.doi.org/10.1016/j.coviro.2012.08.008] [PMID: 23006585]
[73]
Paolucci S, Premoli M, Novati S, et al. Baseline and breakthrough resistance mutations in HCV patients failing DAAs. Sci Rep 2017; 7(1): 16017.
[http://dx.doi.org/10.1038/s41598-017-15987-1] [PMID: 29167469]
[74]
Ahmed A, Felmlee DJ. Mechanisms of hepatitis C viral resistance to direct acting antivirals. Viruses 2015; 7(12): 6716-29.
[http://dx.doi.org/10.3390/v7122968] [PMID: 26694454]
[75]
González-Colominas E, Broquetas T, Retamero A, et al. Drug-drug interactions of telaprevir and boceprevir in HCV-monoinfected and HIV/HCV-coinfected patients can modify the adherence. Liver Int 2015; 35(5): 1557-65.
[http://dx.doi.org/10.1111/liv.12729] [PMID: 25385188]
[76]
Izquierdo L, Helle F, François C, Castelain S, Duverlie G, Brochot E. Simeprevir for the treatment of hepatitis C virus infection. Pharm Genomics Pers Med 2014; 7: 241-9.
[PMID: 25206310]
[77]
Eley T, Garimella T, Li W, Bertz RJ. Asunaprevir: a review of preclinical and clinical pharmacokinetics and drug-drug interactions. Clin Pharmacokinet 2015; 54(12): 1205-22.
[http://dx.doi.org/10.1007/s40262-015-0299-6] [PMID: 26177803]
[78]
Ng TI, Tripathi R, Reisch T, et al. In vitro antiviral activity and resistance profile of the next-generation hepatitis C virus NS3/4A protease inhibitor glecaprevir. Antimicrob Agents Chemother 2017; 62(1): e01620-17.
[http://dx.doi.org/10.1128/AAC.01620-17] [PMID: 29084747]
[79]
Cheng G, Tian Y, Doehle B, et al. In vitro antiviral activity and resistance profile characterization of the hepatitis C virus NS5A inhibitor ledipasvir. Antimicrob Agents Chemother 2016; 60(3): 1847-53.
[http://dx.doi.org/10.1128/AAC.02524-15] [PMID: 26824950]
[80]
McCormack PL. Daclatasvir: a review of its use in adult patients with chronic hepatitis C virus infection. Drugs 2015; 75(5): 515-24.
[http://dx.doi.org/10.1007/s40265-015-0362-5] [PMID: 25721433]
[81]
Real LM, Macías J, Pérez AB, et al. Baseline resistance-guided therapy does not enhance the response to interferon-free treatment of HCV infection in real life. Sci Rep 2018; 8(1): 14905.
[http://dx.doi.org/10.1038/s41598-018-33367-1] [PMID: 30297726]
[82]
Bilello JP, Lallos LB, McCarville JF, et al. In vitro activity and resistance profile of samatasvir, a novel NS5A replication inhibitor of hepatitis C virus. Antimicrob Agents Chemother 2014; 58(8): 4431-42.
[http://dx.doi.org/10.1128/AAC.02777-13] [PMID: 24867983]