Current Status of Drug Delivery Approaches and Assay of Anti-Migraine Drugs

Page: [121 - 146] Pages: 26

  • * (Excluding Mailing and Handling)

Abstract

Migraine is a chronic, painful, neurological disorder that affects approximately 15% of the population worldwide. It is a form of neurovascular headache: a disorder in which neural events result in the dilation of blood vessels that, in turn, results in pain and further nerve activation. The pathogenesis of migraine is not completely understood, but it is thought that both central and peripheral stimulations can play a role in migraine. Experimental pharmacological evidence suggests that some drugs can have actions in migraine treatment and oral drug delivery is the first choice for these drugs. However, the oral absorption of many drugs is delayed during migraine attacks. Therefore, there may be an advantage to other drug delivery routes, such as parenteral and intranasal. Moreover, nanoparticles can be used for improved drug delivery of anti-migraine agents as they can protect the encapsulated drug from biological and/or chemical degradation, and extracellular transport by P-gp efflux proteins. Various analytical studies have been performed to sensitive and selective assays of antimigraine drugs from commercial and real samples. Anti-migraines, either single or combined with other drugs, can be easily detected by several analytical methods, such as ultraviolet spectrometry, visible spectrometry, high-performance liquid chromatography, liquid chromatography-mass spectrometry, and high-performance thin layer chromatography. This review focuses on the status of antimigraine drug delivery technologies and possible routes for drug delivery. Moreover, it will present their analytical assays with different methods.

Keywords: Antimigraine drugs, drug delivery system, HPLC, UV spectrophotometry, electrochemical analysis, CNS drug delivery.

Graphical Abstract

[1]
Silberstein, S.; Goadsby, P.J.C. Migraine: preventive treatment. Cephalalgia, 2002, 22, 491-512.
[http://dx.doi.org/10.1046/j.1468-2982.2002.00386.x]
[2]
Goadsby, P.J.; Lipton, R.B.; Ferrari, M.D. Migraine-current understanding and treatment. N. Engl. J. Med., 2002, 346, 257-270.
[3]
Marcus, S.V. Phase 1 of integrated EMDR: an abortive treatment for migraine headache. J. EMDR Pract. Res., 2008, 2, 15.
[4]
Becker, W.J. Acute migraine treatment in adults. Headache, 2015, 55, 778-793.
[5]
Ahmed Kassem, A. Formulation approaches of triptans for management of migraine. Curr. Drug Deliv., 2016, 13, 882-898.
[6]
Silberstein, S.D. Preventive migraine treatment. Neurol. Clin., 2009, 27, 429-443.
[7]
Dahlöf, C.G.J. Non-oral formulations of triptans and their use in acute migraine. Curr. Pain Headache Rep., 2005, 9, 206-212.
[8]
Silberstein, S.D.; Dodick, D.; Freitag, F.; Pearlman, S.H.; Hahn, S.R.; Scher, A.I.; Lipton, R.B. Pharmacological approaches to managing migraine and associated comorbidities--clinical considerations for monotherapy versus polytherapy. Headache, 2007, 47, 585-599.
[9]
Esim, O.; Savaser, A.; Kurbanoglu, S.; Ozkan, C.K.; Ozkan, S.A.; Ozkan, Y.J. Development of assay for determination of eletriptan hydrobromide in loaded PLGA nanoparticles. J. Pharm. Biomed. Anal., 2017, 142, 74-83.
[10]
Girotra, P.; Singh, S.K. A comparative study of orally delivered PBCA and ApoE coupled BSA nanoparticles for brain targeting of sumatriptan succinate in therapeutic management of migraine. Pharm. Res., 2016, 33, 1682-1695.
[11]
Ahmad, I.; Ita, K.B.; Morra, M.J.; Popova, I.E. Microneedle-assisted delivery of anti-migraine drugs across porcine skin: Almotriptan malate and naratriptan hydrochloride. Front. Nanosci. Nanotech., 2018, 4, 1.
[12]
Lipton, R.B.; Bigal, M.; Goadsby, P.J. Double-blind clinical trials of oral triptans vs other classes of acute migraine medication-a review. Cephalalgia, 2004, 24, 321-332.
[13]
Ferrari, M.D.; Roon, K.I.; Lipton, R.B.; Goadsby, P.J. Oral triptans (serotonin 5-HT1B/1D agonists) in acute migraine treatment: A meta-analysis of 53 trials. Lancet, 2001, 358, 1668-1675.
[14]
Dahlof, C.J. Characteristics of different routes of administration. Drug Admin., 2001, 10, 80-90.
[15]
Lipton, R.B.; Stewart, W.F. Acute migraine therapy: do doctors understand what patients with migraine want from therapy? Headache J. Head Pain, 1999, 39, S20-S26.
[16]
Fasano, A. Novel approaches for oral delivery of macromolecules. J. Pharm. Sci., 1998, 87, 1351-1356.
[17]
Sastry, S.V.; Nyshadham, J.R.; Fix, J.A. Recent technological advances in oral drug delivery-a review. Pharm. Sci. Technol. Today, 2000, 3, 138-145.
[18]
Silberstein, S.; Holland, S.; Freitag, F.; Dodick, D.W.; Argoff, C.; Ashman, E. Evidence-based guideline update: pharmacologic treatment for episodic migraine prevention in adults: report of the quality standards subcommittee of the American academy of neurology and the American headache society. Neurology, 2012, 78, 1337-1345.
[http://dx.doi.org/10.1212/WNL.0b013e3182535d20]
[19]
Hepp, Z.; Dodick, D.W.; Varon, S.F.; Chia, J.; Matthew, N.; Gillard, P.; Hansen, R.N.; Devine, E.B. Persistence and switching patterns of oral migraine prophylactic medications among patients with chronic migraine: A retrospective claims analysis. Cephalalgia, 2017, 37, 470-485.
[http://dx.doi.org/10.1177/0333102416678382]
[20]
Abdelbary, A.; Bendas, E.R.; Ramadan, A.A.; Mostafa, D.A. Pharmaceutical and pharmacokinetic evaluation of a novel fast dissolving film formulation of flupentixol dihydrochloride. AAPS PharmSciTech, 2014, 15, 1603-1610.
[http://dx.doi.org/10.1208/s12249-014-0186-8]
[21]
Barbanti, P.; Le Pera, D.; Cruccu, G. Sumatriptan fast-disintegrating/rapid-release tablets in the acute treatment of migraine. Expert Rev. Neurother., 2007, 7, 927-934.
[22]
Mahmoud, A.A.; Salah, S. Fast relief from migraine attacks using fast-disintegrating sublingual zolmitriptan tablets. Drug Dev. Ind. Pharm., 2012, 38(6), 762-769.
[http://dx.doi.org/10.3109/03639045.2011.625949] [PMID: 22023340]
[23]
Bayrak, Z.; Tas, C.; Tasdemir, U.; Erol, H.; Ozkan, C.K.; Savaser, A.; Ozkan, Y. Formulation of zolmitriptan sublingual tablets prepared by direct compression with different polymers: in vitro and in vivo evaluation. Eur. J. Biopharm., 2011, 78, 499-505.
[24]
Kalia, V.; Garg, T.; Rath, G.; Goyal, A.K. Development and evaluation of a sublingual film of the antiemetic granisetron hydrochloride. Artif. Cells Nanomed. Biotechnol., 2016, 44, 842-846.
[25]
Esim, O.; Ozkan, C.K.; Kurbanoglu, S.; Arslan, A.; Tas, C.; Savaser, A.; Ozkan, S.A.; Ozkan, Y. Development and in vitro/in vivo evaluation of dihydroergotamine mesylate loaded maltodextrin-pullulan sublingual films. Drug Dev. Ind. Pharm., 2019, 45, 914-921.
[26]
Pavani, J.K.; Pavani, S.; Kumar, Y.S.; Venkatesh, A.; Rao, Y.M. Formulation and evaluation of oral elementary osmotic pump tablets of sumatriptan succinate. Br. J. Pharm. Res., 2014, 4, 1163-1173.
[27]
Charlesworth, B.R.; Dowson, A.J.; Purdy, A.; Becker, W.J.; Boes-Hansen, S.; Färkkilä, M. Speed of onset and efficacy of zolmitriptan nasal spray in the acute treatment of migraine. CNS Drugs, 2003, 17, 653-667.
[http://dx.doi.org/10.2165/00023210-200317090-00005]
[28]
Yates, R.; Sorensen, J.; Bergstrom, M.; Antoni, G.; Kemp, J. Distribution and pharmacokinetics of zolmitriptan following administration by nasal spray. Cephalalgia, 2001, 21, 417-418.
[29]
Dahlöf, C. Sumatriptan nasal spray in the acute treatment of migraine: a review of clinical studies. Cephalalgia, 1999, 19, 769-778.
[http://dx.doi.org/10.1046/j.1468-2982.1999.1909769.x]
[30]
Galgatte, U.C.; Kumbhar, A.B.; Chaudhari, P.D. Development of in situ gel for nasal delivery: design, optimization, in vitro and in vivo evaluation. Drug Deliv., 2014, 21, 62-73.
[31]
Cook, R.O.; Shrewsbury, S.B.; Ramadan, N.M. Reduced adverse event profile of orally inhaled DHE (MAP0004) vs IV DHE: potential mechanism. Headache, 2009, 49, 1423-1434.
[32]
Granella, F. Inhaled migraine drug therapy: a start of the art therapeutic strategy or just another gimmick? Expert Opin. Pharmacother./, 2018, 19(16), 1743-1745.
[http://dx.doi.org/10.1080/14656566.2018.1524873]
[33]
Moskowitz, M.A. Basic mechanisms in vascular headache. Neurol. Clin., 1990, 8, 801-815.
[34]
Thalakoti, S.; Patil, V.V.; Damodaram, S.; Vause, C.V.; Langford, L.E.; Freeman, S.E.; Durham, P.L. Neuron-glia signaling in trigeminal ganglion: implications for migraine pathology. Headache, 2007, 47, 1008-1023.
[35]
Miyake, M.M.; Bleier, B.S. The blood-brain barrier and nasal drug delivery to the central nervous system. Am. J. Rhinol. Allergy, 2015, 29, 124-127.
[36]
Mistry, A.; Stolnik, S.; Illum, L. Nanoparticles for direct nose-to-brain delivery of drugs. Int. J. Pharm., 2009, 379, 146-157.
[37]
May, A.; Goadsby, P.J.J. Eooid Substance P receptor antagonists in the therapy of migraine. Expert Opin. Investig. Drugs, 2001, 10, 673-678.
[38]
Johnson, N.J.; Hanson, L.R.; Frey, W.H. Trigeminal pathways deliver a low molecular weight drug from the nose to the brain and orofacial structures. Mol. Pharm., 2010, 7, 884-893.
[39]
Deepika, D.; Dewangan, H.K.; Maurya, L.; Singh, S. Intranasal drug delivery of frovatriptan succinate-loaded polymeric nanoparticles for brain targeting. J. Pharm. Sci., 2019, 108, 851-859.
[40]
Prausnitz, M.R.; Langer, R. Transdermal drug delivery system: a review. Int. J. Pharma Sci., 2008, 26, 1261.
[41]
Loder, E.W.; Rayhill, M.; Burch, R.C. Safety problems with a transdermal patch for migraine: lessons from the development, approval, and marketing process. Headache, 2018, 58, 1639-1657.
[42]
Ronnander, J.P.; Simon, L.; Koch, A. Transdermal delivery of sumatriptan succinate using iontophoresis and dissolving microneedles. J. Pharm. Sci., 2019, 108, 3649-3656.
[43]
Tas, C.; Joyce, J.C.; Nguyen, H.X.; Eangoor, P.; Knaack, J.S.; Banga, A.K.; Prausnitz, M.R. Dihydroergotamine mesylate-loaded dissolving microneedle patch made of polyvinylpyrrolidone for management of acute migraine therapy. J. Control. Release, 2017, 268, 159-165.
[44]
Desai, H.D.; Shirley, K.L.; Penzak, S.R.; Strom, J.G.; Hon, Y.Y. Pharmacokinetics in healthy volunteers of sumatriptan 25-mg oral tablet versus 25-mg extemporaneous suppository. Int. J. Pharm. Compd., 2003, 7, 481.
[45]
Van der Bijl, P.; Penkler, L.; Penkler, L.; Van Eyk, A.D. Permeation of sumatriptan through human vaginal and buccal mucosa. Headache, 2000, 40, 137-141.
[46]
Charles, A. Migraine. N. Engl. J. Med., 2017, 377, 553-561.
[47]
Sheshala, R.; Khan, N.; Darwis, Y. Formulation and optimization of orally disintegrating tablets of sumatriptan succinate. Chem. Pharm. Bull., 2011, 59, 920-928.
[http://dx.doi.org/10.1248/cpb.59.920]
[48]
Mahajan, H.; Kuchekar, B.; Badhan, A.C. Mouth dissolve tablets of sumatriptan succinate. Indian J. Pharm. Sci., 2004, 66, 238.
[49]
Prajapati, S.T.; Patel, P.B.; Patel, C.N. Formulation and evaluation of sublingual tablets containing Sumatriptan succinate. Int. J. Pharm. Investig., 2012, 2, 162.
[50]
Prasanna, R.I.; Anitha, P.; Chetty, C.M. Formulation and evaluation of bucco-adhesive tablets of sumatriptan succinate. Int. J. Pharm. Investig., 2011, 1, 182.
[51]
Shiledar, R.R.; Tagalpallewar, A.A.; Kokare, C.R. Formulation and in vitro evaluation of xanthan gum-based bilayered mucoadhesive buccal patches of zolmitriptan. Carbohydr. Polym., 2014, 101, 1234-1242.
[52]
Kumria, R.; Al-Dhubiab, B.E.; Shah, J.; Nair, A. Formulation and evaluation of chitosan-based buccal bioadhesive films of zolmitriptan. J. Pharm. Innov., 2018, 13, 133-143.
[53]
Mahmoud, A.A.; Salah, S. Fast relief from migraine attacks using fast-disintegrating sublingual zolmitriptan tablets. Drug Dev. Ind. Pharm., 2012, 38, 762-769.
[54]
Prajapati, V.D.; Chaudhari, A.M.; Gandhi, A.K.; Maheriya, P.J.I. Pullulan based oral thin film formulation of zolmitriptan: Development and optimization using factorial design. J. Biol. Macromol., 2018, 107, 2075-2085.
[55]
Qiu, Y.; Cheskin, H.S.; Engh, K.R.; Poska, R. Once-a-day controlled-release dosage form of divalproex sodium I: formulation design and in vitro/in vivo investigations. J. Pharm. Sci., 2003, 92, 1166-1173.
[56]
Dubey, R.; Martini, L.G.; Christie, M. Duel-acting subcutaneous microemulsion formulation for improved migraine treatment with zolmitriptan and diclofenac: formulation and in vitro-in vivo characterization. AAPS J., 2014, 16, 214-220.
[57]
Majithiya, R.J.; Ghosh, P.K.; Umrethia, M.L.; Murthy, R.S. Thermoreversible-mucoadhesive gel for nasal delivery of sumatriptan. AAPS PharmSciTech, 2006, 7, E80-E86.
[58]
Jain, S.A.; Chauk, D.S.; Mahajan, H.S.; Tekade, A.R.; Tekade, A.R.; Gattani, S.G. Formulation and evaluation of nasal mucoadhesive microspheres of Sumatriptan succinate. J. Microencapsul., 2009, 26, 711-721.
[59]
Alhalaweh, A.; Andersson, S.; Velaga, S.P. Preparation of zolmitriptan-chitosan microparticles by spray drying for nasal delivery. Eur. J. Pharm. Sci., 2009, 38, 206-214.
[60]
Shelke, S.; Shahi, S.; Jalalpure, S.; Dhamecha, D. Poloxamer 407-based intranasal thermoreversible gel of zolmitriptan-loaded nanoethosomes: formulation, optimization, evaluation and permeation studies. J. Liposome Res., 2016, 26, 313-323.
[61]
Kaur, K.; Kaur, G. Formulation and evaluation of chitosan-chondroitin sulphate based nasal inserts for zolmitriptan. BioMed Res. Int., 2013, 2013958465
[62]
Yu, C.; Gu, P.; Zhang, W.; Qi, N.; Cai, C.; He, H.; Tang, X. Preparation and evaluation of zolmitriptan submicron emulsion for rapid and effective nasal absorption in beagle dogs. Drug Dev. Ind. Pharm., 2011, 37, 1509-1516.
[63]
Djupesland, P.; Dočekal, P.; Czech, M.I.G. Intranasal sumatriptan powder delivered by a novel breath-actuated bi-directional device for the acute treatment of migraine: a randomised, placebo-controlled study. Cephalalgia, 2010, 30, 933-942.
[http://dx.doi.org/10.1177/0333102409359314]
[64]
Pitta, S.K.; Dudhipala, N.; Narala, A.; Veerabrahma, K.J. Development of zolmitriptan transfersomes by Box-Behnken design for nasal delivery: in vitro and in vivo evaluation. Drug Dev. Ind. Pharm., 2018, 44, 484-492.
[65]
Abdou, E.M.; Kandil, S.M.; Morsi, A.; Sleem, M.W. In-vitro and in-vivo respiratory deposition of a developed metered dose inhaler formulation of an anti-migraine drug. Drug Deliv., 2019, 26, 689-699.
[66]
Chen, J.; Jiang, X.; Jiang, W.; Gao, X.N.M. Intranasal absorption of rizatriptan-in vivo pharmacokinetics and bioavailability study in humans. Pharmazie, 2005, 60, 39-41.
[67]
Vyas, T.K.; Babbar, A.; Sharma, R.; Singh, S.; Misra, A. Preliminary brain-targeting studies on intranasal mucoadhesive microemulsions of sumatriptan. AAPS PharmSciTech., 2006, 7, E49-E57.
[http://dx.doi.org/10.1208/pt070108]
[68]
Jain, R.; Nabar, S; Dandekar, P; Hassan, P; Aswal, V; Talmon, Y; Shet, T; Borde, L; Ray, K; Patravale, V. Formulation and evaluation of novel micellar nanocarrier for nasal delivery of sumatriptan. Nanomedicine, 2010, 5, 575-587.
[http://dx.doi.org/10.2217/nnm.10.28]
[69]
Vyas, T.K.; Babbar, A.; Sharma, R.K.; Misra, A. Intranasal mucoadhesive microemulsions of zolmitriptan: preliminary studies on brain-targeting. J. Drug Target., 2005, 13, 317-324.
[70]
Abd-Elal, R.M.; Shamma, R.N.; Rashed, H.M.; Bendas, E.R. Trans-nasal zolmitriptan novasomes: in-vitro preparation, optimization and in-vivo evaluation of brain targeting efficiency. Drug Deliv., 2016, 23, 3374-3386.
[71]
Girotra, P.; Singh, S.K.; Kumar, G. Development of zolmitriptan loaded PLGA/poloxamer nanoparticles for migraine using quality by design approach. Int. J. Biol. Macromol., 2016, 85, 92-101.
[72]
Khan, T.; Ranjan, R.; Dogra, Y.; Pandya, S.M.; Shafi, H.; Singh, S.; Yadav, P.N.; Misra, A. Intranasal eutectic powder of zolmitriptan with enhanced bioavailability in the rat brain. Mol. Pharm., 2016, 13, 3234-3240.
[73]
Gavini, E.; Rassu, G.; Ferraro, L.; Beggiato, S.; Alhalaweh, A.; Velaga, S.; Marchetti, N.; Bandiera, P.; Giunchedi, P.; Dalpiaz, A. Influence of polymeric microcarriers on the in vivo intranasal uptake of an anti-migraine drug for brain targeting. Eur. Pharm. J. Biopharm., 2013, 83, 174-183.
[74]
Siegel, S.J.; O’Neill, C.; Dubé, L.M.; Kaldeway, P.; Morris, R.; Jackson, D.; Sebree, T. A unique iontophoretic patch for optimal transdermal delivery of sumatriptan. Pharm. Res., 2007, 24, 1919-1926.
[75]
Subedi, R.K.; Ryoo, J.P.; Moon, C.; Choi, H.K. Influence of formulation variables in transdermal drug delivery system containing zolmitriptan. Int. J. Pharm., 2011, 419, 209-214.
[76]
Niazy, E.M. Influence of oleic acid and other permeation promoters on transdermal delivery of dihydroergotamine through rabbit skin. Int. J. Pharm., 1991, 67, 97-100.
[77]
Wu, D.; Tanaka, Y.; Jin, Y.; Yoneto, K.; Alama, T.; Quan, Y.; Kamiyama, F.; Kusamori, K.; Katsumi, H.; Sakane, T.; Yamamoto, A. Development of a novel transdermal patch containing sumatriptan succinate for the treatment of migraine: in vitro and in vivo characterization. J. Drug Deliv. Sci. Technol., 2014, 24, 695-701.
[78]
Hosny, E.A.; Niazy, E.M.; El-Gorashi, M. Effect of polycarbophil concentration on in vitro release and in vivo availability in beagle dogs of dihydroergotamine mesylate suppositories. Int. J. Pharm., 1995, 117, 147-150.
[79]
Siqueira, M.R.; da Rosa, L.C.; Santos, R.O.; Lopes, M.P.S.; Paumgartten, F.J.R.; Moreira, D.L. A newly validated HPLC-DAD-UV method to study the effects of medicinal plants extracts, fractions and isolate compounds on gastric emptying in rodents. Rev. Bras. Farmacogn., 2019, 29, 597-604.
[80]
Vandelli, D.; Palazzoli, F.; Verri, P.; Rustichelli, C.; Marchesi, F.; Ferrari, A.; Baraldi, C.; Giuliani, E.; Licata, M.; Silingardi, E. Development and validation of a liquid chromatography-tandem mass spectrometric assay for quantitative analyses of triptans in hair. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2016, 1017, 136-144.
[81]
Nair, S.G.; Shah, J.V.; Shah, P.A.; Sanyal, M.; Shrivastav, P.S. Spectrophotometric determination of five commercial drugs in pure form and pharmaceutical formulations by ion-pair complexation with alizarin red S. Eurasian J. Analyt. Chem., 2015, 10, 68-83.
[82]
Tulasamma, P.; Venkateswarlu, P. Spectrophotometric determination of nifedipine in pharmaceutical formulations, serum and urine samples via oxidative coupling reaction. Arab. J. Chem., 2016, 9, S1603-S1609.
[http://dx.doi.org/10.1016/j.arabjc.2012.04.025]
[83]
Khairy, M.; Khorshed, A.A.; Rashwan, F.A.; Salah, G.A.; Abdel-Wadood, H.M.; Banks, C.E. Simultaneous voltammetric determination of antihypertensive drugs nifedipine and atenolol utilizing MgO nanoplatelet modified screen-printed electrodes in pharmaceuticals and human fluids. Sens. Actuators B Chem., 2017, 252, 1045-1054.
[http://dx.doi.org/10.1016/j.snb.2017.06.105]
[84]
Madrakian, T.; Maleki, S.; Heidari, M.; Afkhami, A. An electrochemical sensor for rizatriptan benzoate determination using Fe3O4 nanoparticle/multiwall carbon nanotube-modified glassy carbon electrode in real samples. Mater. Sci. Eng. C, 2016, 63, 637-643.
[http://dx.doi.org/10.1016/j.msec.2016.03.041] [PMID: 27040259]
[85]
Cook, S.F.; King, A.D.; van den Anker, J.N.; Wilkins, D.G. Simultaneous quantification of acetaminophen and five acetaminophen metabolites in human plasma and urine by high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry: method validation and application to a neonatal pharmacokinetic study. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2015, 1007, 30-42.
[86]
Cha, J.; Kim, B.K.; Gwon, M.R.; Lee, J.; Ohk, B.; Kang, W.Y.; Lim, Ms.; Seong, S.J.; Kim, H.J.; Lee, H.W.; Yoon, Y.R. Development and validation of a UPLC-MS/MS method for the quantification of acetaminophen in human plasma and its application to pharmacokinetic studies. Transl. Clin. Pharmacol., 2016, 24, 30-36.
[87]
Saleem, A.; Anwar, S.; Hussain, T.; Ahmad, R.; Mustafa, G.; Ashfaq, M. Simultaneous determination of acetaminophen, pamabrom and pyrilamine maleate in pharmaceutical formulations using stability indicating HPLC assay method. J. Mex. Chem. Soc., 2015, 59(2), 93-98.
[88]
Zhang, X.; Li, R.; Hu, W.; Zeng, J.; Jiang, X.; Wang, A. reliable LC-MS/MS method for the quantification of N-acetyl-p-benzoquinoneimine, acetaminophen glutathione and acetaminophen glucuronide in mouse plasma, liver and kidney: Method validation and application to a pharmacokinetic study. Biomed. Chrom., 2018, 32e4331
[89]
Radi, M.; Ramli, Y.; El Karbane, M.; Marzak, S.; Bougrin, K.; El Bourkadi, K.; Chahdi, F.O.; Issmaili, S.; Bakhous, K. Ali.; Validation of a method for simultaneous determination of acetaminophen and caffeine by HPLC in different pharmaceutical forms: tablet, capsule and sachet. J. Mater. Environ. Sci., 2016, 7(12), 4608-4613.
[90]
Licata, M.; Rustichelli, C.; Palazzoli, F.; Ferrari, A.; Baraldi, C.; Vandelli, D.; Verri, P.; Marchesi, F.; Silingardi, E. Hair testing in clinical setting: simultaneous determination of 50 psychoactive drugs and metabolites in headache patients by LC tandem MS. J. Pharm. Biomed. Anal., 2016, 126, 14-25.
[PMID: 27136283]
[91]
Saibaba, B.; Vishnuvardhan, C.; Johnsi Rani, P. P, Satheesh Kumar N.; Stability-indicating reversed-phase UHPLC method development and characterization of degradation products of almotriptan maleate by LC-QTOF-MS/MS. J. Chromatogr. Sci., 2017, 56, 6-17.
[92]
Kothapuvari, P.K.; Rawat, S.; Bhikshapathi, D. Estimation of almotriptan malate in oral film dosage form by RP-HPLC. Der Pharmacia Lettre, 2015, 7(10), 291-298.
[93]
Zare, F.; Ghaedi, M.; Daneshfar, A. Solid phase extraction of antidepressant drugs amitriptyline and nortriptyline from plasma samples using core-shell nanoparticles of the type Fe3O4@ ZrO2@ N-cetylpyridinium, and their subsequent determination by HPLC with UV detection. Microchim. Acta, 2015, 182, 1893-1902.
[94]
Rao, J.R.; Yadav, S.S. Micellar liquid chromatographic method for simultaneous determination of atenolol and aspirin in bulk and pharmaceutical dosage form. Int. J. Pharm. Sci. Rev. Res., 2016, 37, 151-155.
[95]
Patel, V.B.; Patel, A.D.; Shah, D. Stability indicating liquid chromatographic method for simultaneous determination of aspirin and omeprazole. Curr. Drug Discov. Technol., 2018, 15, 351-360.
[96]
Chamkouri, N.; Zare-shahabadi, V.; Niazi, A. Ultrasound-assisted emulsification microextraction coupled with HPLC-DAD for the simultaneous determination trace levels of aspirin and diclofenac in in human urine samples. Int. J. Pharm. Technol, 2016, 8(2), 13240-13250.
[97]
Shah, JV; Patel, DP; Shah, PA; Sanyal, M; Shrivastav, P Simultaneous quantification of atenolol and chlorthalidone in human plasma by ultra-performance liquid chromatography-tandem mass spectrometry. Biomed. Chrom., 2016, 30, 208-216.
[http://dx.doi.org/10.1002/bmc.3537]
[98]
Phyo Lwin, E.M.; Gerber, C.; Song, Y.; Leggett, C.; Ritchie, U.; Turner, S.; Garg, S. A new LC-MS/MS bioanalytical method for atenolol in human plasma and milk. Bioanalysis, 2017, 9, 517-530.
[99]
Minaii, M; Qomi, M; Hoseini, SS; Sadri, A Preconcentration and determination of cyproheptadine by using liquid phase microextraction and solvent bar in biological fluids in trace level. Biosci. Biotechnol. Res. Asia,, 2015, 12, 521-529.
[http://dx.doi.org/10.13005/bbra/1693]
[100]
Rajput, S.J.; Sathe, M.A. New bioanalytical HPLC method for the determination of cyproheptadine hydrochloride in human plasma and its application to rat pharmacokinetic study. Indian J. Pharm. Educ. Res., 2019, 53, S338-S346.
[101]
Manoharan, M.A. Development and validation by RP-HPLC method for the simultaneous quantification of Diclofenac and Rabeprazole, in capsule formulation. In: Indian J. Sci. Technol; , 2016; p. 9.
[102]
Sahoo, N.K.; Sahu, M.; Rao, P.S.; Ghosh, G. Solid phase extraction and quantification of diclofenac sodium in human plasma by liquid chromatography-tandem mass spectrometry. J. Anal. Chem., 2015, 70, 424-430.
[103]
Schmidt, S.; Hoffmann, H.; Garbe, L-A.; Schneider, R. Liquid chromatography-tandem mass spectrometry detection of diclofenac and related compounds in water samples. J. Chromatogr. A, 2018, 1538, 112-116.
[104]
Mabrouk, M.M.; Hammad, S.F.; Mansour, F.R.; El-Khateeb, B.Z. Simultaneous determination of diclofenac and esomeprazole by reversed phase liquid chromatography dual wavelength and derivative spectrophotometry. J. Anal. Chem., 2019, 74, 458-466.
[105]
Roscher, J.; Vogel, M.; Karst, U. Identification of ultraviolet transformation products of diclofenac by means of liquid chromatography and mass spectrometry. J. Chromatogr. A, 2016, 1457, 59-65.
[106]
Elzayat, E.M.; Ibrahim, M.F.; Abdel-Rahman, A.A.; Ahmed, S.M.; Alanazi, F.K.; Habib, W.A. A validated stability-indicating UPLC method for determination of diclofenac sodium in its pure form and matrix formulations. Arab. J. Chem., 2017, 10, S3245-S3254.
[107]
Nazario, C.E.; Lancas, F.M. Determination of diclofenac in bovine milk at low levels using ultra high performance liquid chromatography-tandem mass spectrometry. Food Anal. Methods, 2017, 10, 2490-2496.
[108]
Salama, F.M.; Attia, K.A.; Abouserie, A.A. El-Olemy, A Abolmagd E.; Application of HPLC-DAD and spectrophotometric continuous wavelet transform methods for simultaneous determination of amoxicillin and diclofenac in their pure and capsule dosage forms. Anal. Methods, 2018, 10, 2588-2594.
[109]
Alam, M.A.; Al-Jenoobi, F.I.; Al-Mohizea, A.M. High-throughput ultra-performance LC-MS-MS method for analysis of diclofenac sodium in rabbit plasma. J. Chromatogr. Sci., 2014, 53, 47-53.
[110]
Souza, M.A.C. de Oliveira, Pereira CE.; Nogueira, FHA Pianetti GA.; Development and validation of a stability indicating HPLC method to determine diltiazem hydrochloride in tablets and compounded capsules. Braz. J. Pharm. Sci., 2017, 53e00041
[111]
Chakravarthy, V.A.; Sailaja, B. Kumar.; Development and validation of a dissolution method for frovatriptan tablets by reversed phase UPLC. Int. J. Pharm. Pharm. Sci., 2015, 7, 125-130.
[112]
Loudiki, A.; Boumya, W.; Hammani, H.; Nasrellah, H.; El Bouabi, Y.; Zeroual, M.; Farahi, A.; Lahrich, S.; Hnini, K.; Achak, M. Ibuprofen analysis in blood samples by palladium particles-impregnated sodium montmorillonite electrodes: Validation using high performance liquid chromatography. Mater. Sci. Eng. C, 2016, 69, 616-624.
[113]
Medina, J.R.; Jung, H.; Hurtado, M.; Soria, O.; López-Muñoz, F. Simple and rapid determination of ibuprofen without caffeine interference by HPLC-UV detection: Application to pharmacokinetic studies in rats. Int. J. Res. Pharm. Sci., 2017, 8, 1-5.
[114]
Bharathi, D.Y.; Sumanth, K.; Bhaskara, R.V.; Mohan Gandhı, B.; Srınıvas, K. A new reversed-phase high-performance liquid chromatography method development and validation for the simultaneous estimation of ketorolac tromethamine and tramadol hydrochloride in pharmaceutical dosage forms. Asian J Pharm Clin Res,, 2017, 10, 186-190.
[http://dx.doi.org/10.22159/ajpcr.2017.v10i5.15976]
[115]
Derasari, J.; Patel, V. Development and validation of stability indicating LC-PDA method for simultaneous assessment of febuxostat and ketorolac tromethamine in tablet dosage form. Asian J. Chem., 2017, 29.
[116]
Kalariya, P.D.; Namdev, D.; Srinivas, R.; Gananadhamu, S. Application of experimental design and response surface technique for selecting the optimum RP-HPLC conditions for the determination of moxifloxacin HCl and ketorolac tromethamine in eye drops. J. Saudi Chem. Soc., 2017, 21, S373-S382.
[117]
Rao, B.K.; Ramu, G.; Kumari, I.J. RAMBABU, C; A novel stability indicating RP-HPLC method for the determination of ketorolac tromethamine in pharmaceutical formulations. Asian J. Pharm. Clin. Res, 2015, 8, 354-359.
[118]
Baranowska, I; Płonka, J Monitoring of biogenic amines and drugs of various therapeutic groups in urine samples with use of HPLC. Biomed. Chromatogr., 2016, 30, 652-657.
[http://dx.doi.org/10.1002/bmc.3614]
[119]
Xu, Q.; Tan, S.; Petrova, K. Development and validation of a hydrophilic interaction chromatography method coupled with a charged aerosol detector for quantitative analysis of nonchromophoric α-hydroxyamines, organic impurities of metoprolol. J. Pharm. Biomed., 2016, 118, 242-250.
[120]
Patil, A.; Sait, S.; Deshamukh, A.; Deshpande, G. An improved validated HPLC method for separation of metoprolol and hydrochlorothiazide impurities in metoprolol and hydrochlorothiazide tablets. Der. Pharm. Lett., 2015, 7, 183-190.
[121]
Jain, N.; Jain, D.K.; Jain, R.; Patel, P.; Patel, V.K.; Jain, S.K. Simultaneous estimation of metoprolol succinate and lacidipine in binary combination using high performance liquid chromatographic method. Jordan J. Pharm. Sci., 2016, 9, 193-202.
[http://dx.doi.org/10.12816/0033385]
[122]
Ragab, M.A.; Eman, I. High performance liquid chromatography with photo diode array for separation and analysis of naproxen and esomeprazole in presence of their chiral impurities: Enantiomeric purity determination in tablets. J. Chromatogr. A, 2017, 1497, 110-117.
[123]
Mabrouk, M.M.; Hammad, S.F.; Mansour, F.R.; El-Khateeb, B.Z. Simultaneous determination of naproxen and diphenhydramine by reversed phase liquid chromatography and derivative spectrophotometry. Der Pharma Chem., 2015, 7, 181-191.
[124]
Vijay, S.M.; Guptha, D.V.; Krishna, M.B.; Vasantharaju, S. Stability Indicating Assay Method Development and Validation of Naratriptan Hydrochloride By RP-HPLC. Res J Pharm Technol, 2016, 9, 1177.
[125]
Galan-Rodriguez, C; González-Álvarez, J; Valls-Remolí, M Method development and validation study for quantitative determination of nifedipine and related substances by ultra-high-performance liquid chromatography. Biomed. Chromatogr., 2015, 29, 233-239.
[http://dx.doi.org/10.1002/bmc.3265]
[126]
Logoyda, L; Korobko, D; Ivanusa, I; Serhii, K Development of the methodology of the chromatographic determination of nifedipine in medicines. In: Development; , 2017; p. 10.
[http://dx.doi.org/10.22159/ajpcr.2017.v10i3.15841]
[127]
Kallem, R.R.; Jillela, B.; Ravula, A.R.; Samala, R.; Andy, A.; Ramesh, M.; Rao, J.S. Highly sensitive LC-MS/MS-ESI method for determination of phenelzine in human plasma and its application to a human pharmacokinetic study. J. Chromatogr. B, 2016, 1022, 126-132.
[128]
Hamidi, S.; Amini, M.; Khoubnasabjafari, M.; Jouyban-Gharamaleki, V.; Sate, H.; Jouyban, A. LC-MS/MS Estimation of propranolol level in exhaled breath condensate. Pharm. Sci., 2017, 23, 264-270.
[129]
Al Shaker, H.A.; Qinna, N.A.; Al Hroub, H.; Al Omari, M. RP-HPLC-UV method for the quantification of propranolol in rat’s serum and krebs buffer using one-step protein precipitation. Acta Chromatogr., 2018, 30, 147-152.
[130]
Rao, S. Simultaneous analysis of propranolol HCl and hydrochlorothiazide by HPTLC. Der Pharm. Lett, 2016, 8, 226-232.
[131]
Priya, Y.; Chandana, M. Method development and validation for quantification of propranolol HCl in pharmaceutical dosage form by RP-UPLC. Int. J. Pharm. Tech. Res., 2015, 7, 197-203.
[132]
Gadewar, C.K.; Sahu, Y.; Chandewar, A.; Baghel, P.; Kushwaha, D. Stability indicating method development and validation of assay method for the estimation of rizatriptan benzoate in tablet. Arab. J. Chem., 2017, 10, S2067-S2072.
[133]
Lawande, A.B. Rapid separation and determination of rizatriptan N-oxide impurity in rizatriptan benzoate in a bulk drug substance by reverse phase liquid chromatography. Asian J. Pharm. Clin. Res., 2017, 10, 372-376.
[http://dx.doi.org/10.22159/ajpcr.2017.v10i2.15751]
[134]
Gerivani, Z.; Ghasemi, N.; Qomi, M.; Abdollahi, M.; Malekirad, A. Optimization of extraction and pre-concentration of rizatriptan in biological samples using solvent bar and chemometrics design. Curr. Pharm. Anal., 2018, 14, 450-460.
[135]
Debnath, M.; Kumar, S.A.; Anguluri, D.P.; Sri, G.P.; Ramya, J.; Sankar, D.G. An analytical method development and validation for simultaneous estimation of Sumatriptan and Naproxen in bulk samples as well as in tablet dosage forms by using RP-HPLC. Der Pharmacia Lett., 2015, 7(1), 23-34.
[136]
Brêtas, J.M.; César, I.C.; Brêtas, C.M.; de Souza Teixeira, L.; Bellorio, K.B.; Mundim, I.M.; Pianetti, G.A. Development and validation of an LC-ESI-MS/MS method for the simultaneous quantification of naproxen and sumatriptan in human plasma: application to a pharmacokinetic study. Anal. Bioanal. Chem., 2016, 408, 3981-3992.
[137]
Patel, P.N.; Karakam, V.S.; Samanthula, G.; Ragampeta, S. Quality-by-design-based ultra high performance liquid chromatography related substances method development by establishing the proficient design space for sumatriptan and naproxen combination. J. Sep. Sci., 2015, 38, 3354-3362.
[138]
Srinidhi, M; Basha, MM; Kumar, VR; Kumar, JR Stability indicating RP-HPLC method development and validation for the estimation of sumatriptan in bulk and pharmaceutical dosage form. J. Appl. Pharm. Sci., 2016, 6, 020-025.
[139]
Gallegos, A.; Peavy, T.; Dixon, R.; Isseroff, R.R. Development of a novel ion-pairing UPLC method with cation-exchange solid-phase extraction for determination of free timolol in human plasma. J. Chromatogr. B, 2018, 1096, 228-228.
[140]
Boiero, C.; Allemandi, D.; Longhi, M.; Llabot, J.M. RP-HPLC method development for the simultaneous determination of timolol maleate and human serum albumin in albumin nanoparticles. J. Pharm. Biomed., 2015, 111, 186-189.
[141]
Vijayabaskar, S.; Mahalingam, V. Analytical method development and validation for the analysis of verapamil hydrochloride and its related substances by using ultra perfomance liquid chromatography. J. Pharm. Biomed., 2017, 137, 189-195.
[142]
Jebali, S.; Belgacem, C.; Louhaichi, M.R.; Bahri, S. Latrous, El; Atarche, L.; Application of factorial and doehlert designs for the optimization of the simultaneous separation and determination of antimigraine drugs in pharmaceutical formulations by RP-HPLC-UV. Int. J. Anal. Chem., 2019, 2019, 25.
[143]
Patel, B.; Suhagia, B.; Jangid, A.G.; Mistri, H.N.; Desai, N. Systematic evaluation of matrix effect and cross-talk-free method for simultaneous determination of zolmitriptan and N-desmethyl zolmitriptan in human plasma: a sensitive LC-MS/MS method validation and its application to a clinical pharmacokinetic study. Biomed. Chromatogr., 2016, 30, 447-458.
[144]
Souri, E.; Nasab, S.A.M.; Amanlou, M.; Tehrani, M.B. Development and validation of a rapid derivative spectrophotometric 79 method for simultaneous determination of acetaminophen, ibuprofen and caffeine. J. Anal. Chem., 2015, 70, 333-338.
[http://dx.doi.org/10.1134/S1061934815030041]
[145]
Ali, F.; Nandi, U.; Verma, R.; Rathod, R.; Sahu, P.L.; Kumar, R.; Singh, A. UV-visible first order derivative spectrophotometric method development and validation for simultaneous estimation of amitriptyline hydrochloride and chlordiazepoxide in tablet dosage form. Asian J. Chem., 2016, 28, 2632-2634.
[http://dx.doi.org/10.14233/ajchem.2016.20032]
[146]
Sayanna, V.T. Venkata Ramana Reddy CH. Determination of cyproheptadine hydrochloride in pure and pharmaceutical forms: A spectrophotometric study. Orient. J. Chem., 2015, 31, 1779-1786.
[http://dx.doi.org/10.13005/ojc/310360]
[147]
Fallah, F.; Shishehbore, M.R.; Sheibani, A. Quantification of Diclofenac at trace levels in pharmaceutical and urine samples using kinetic spectrophotometric method. Orient. J. Chem., 2016, 32, 727-733.
[http://dx.doi.org/10.13005/ojc/320181]
[148]
Niraimathi, V.; Suresh, A.J.; Ramaprabha, R.; Simple, U.V. Spectrophotometric methods for the estimation of isoniazid in bulk and pharmaceutical dosage form. Indo Am. J. Pharm., 2013, 3, 195-201.
[149]
Türk, S.C.; Şatana, E.; Basan, H.; Göğer, N.G. Determination of ibuprofen and paraben in pharmaceutical formulations using flowinjection and derivative spectrophotometry. J. Anal. Chem., 2015, 70, 50-54.
[http://dx.doi.org/10.1134/S1061934815010141]
[150]
Zaazaa, H.E.; Elzanfaly, E.S.; Soudi, A.T.; Salem, M.Y. Application of the ratio difference spectrophotometry to the determination of ibuprofen and famotidine in their combined dosage form: comparison with previously published spectrophotometric methods. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 143, 251-255.
[http://dx.doi.org/10.1016/j.saa.2015.02.050] [PMID: 25733252]
[151]
Annapurna, M.M.; Sevyatha, V.S.V.; Sushmitha, M. Simultaneous determination of ketorolac tromethamine and fluorometholone in eye drops by spectrophotometry. Res. J. Pharm. Technol., 2017, 10, 1179-1183.
[http://dx.doi.org/10.5958/0974-360X.2017.00225.6]
[152]
Akanksha, A.R.; Anton, S.A. Development of analytical method and validation for nadolol in pure and pharmaceutical formulations using UV-spectrophotometry and spectrofluorimetry using hydrochloric acid. J. Glob. Pharma Technol., 2019, 51, 2962-2968.
[153]
Hernández, C.N.; Martín-Yerga, D.; González-García, M.B.; Hernández-Santos, D.; Fanjul-Bolado, P. Evaluation of electrochemical, UV/VIS and Raman spectroelectrochemical detection of Naratriptan with screen-printed electrodes. Talanta, 2018, 178, 85-88.
[http://dx.doi.org/10.1016/j.talanta.2017.09.004] [PMID: 29136905]
[154]
Gupta, A.; Kumar, J.; Narang, J.K.; Verma, S.; Singh, H.; Haque, A. Development and validation of a stability indicating UV-spectrophotometric assay method for the determination of naratriptan hydrochloride. Pertanika J. Sci. Technol., 2019, 27, 933-941.
[155]
Akode, RM; Wagiealla Shantier, S; Ahmed Gadkariem, E Awadalla Mohamed, M Simultaneous determination and stability studies on diminazene diaceturate and phenazone using developed derivative spectrophotometric method. Int. J. Anal. Chem., 2017, 2017
[http://dx.doi.org/10.1155/2017/4269587]
[156]
Prashanth, K.N.; Basavaiah, K. Sensitive and selective methods for the determination of rizatriptan benzoate in pharmaceuticals using N-bromosuccinimide and two dyes. J. Saudi Chem. Soc., 2015, 19, 233-242.
[http://dx.doi.org/10.1016/j.jscs.2012.02.003]
[157]
Bahram, M.; Mohamadzadeh, N. Multivariate curve resolution-alternative least squares for simultaneous kinetic- spectrophotometric determination of furosemide and Rizatriptan in real samples based on their degradation study. Analytical and Bioanalytical Chemistry Research, 2019, 6, 441-448.
[158]
Nnadi, C.O.; Obonga, W.O.; Ogbonna, J.D.N.; Ugwu, L.O. Development of vanadometric system for spectrophotometric determination of timolol in pure and dosage forms. Trop. J. Pharm. Res., 2015, 14, 2223-2229.
[http://dx.doi.org/10.4314/tjpr.v14i12.11]
[159]
Parameswara Rao, K. Determination of Darunavir in pharmaceutical dosage form. Der Pharmacia Lettre, 2016, 8, 64-69.
[160]
Wu, Y.; Wu, Y.; Lv, X.; Lei, W.; Ding, Y.; Chen, C.; Lv, J.; Feng, S.; Chen, S-M.; Hao, Q. A sensitive sensing platform for acetaminophen based on palladium and multi-walled carbon nanotube composites and electrochemical detection mechanism. Mater. Chem. Phys., 2020, 239, 121977-.
[http://dx.doi.org/10.1016/j.matchemphys.2019.121977]
[161]
Iranmanesh, T.; Foroughi, M.M.; Jahani, S.; Shahidi Zandi, M.; Hassani Nadiki, H. Green and facile microwave solvent-free synthesis of CeO2 nanoparticle-decorated CNTs as a quadruplet electrochemical platform for ultrasensitive and simultaneous detection of ascorbic acid, dopamine, uric acid and acetaminophen. Talanta, 2020, 207, 120318.
[http://dx.doi.org/10.1016/j.talanta.2019.120318] [PMID: 31594597]
[162]
Su, C.; Li, Z.; Zhang, D.; Wang, Z.; Zhou, X.; Liao, L.; Xiao, X. A highly sensitive sensor based on a computer-designed magnetic molecularly imprinted membrane for the determination of acetaminophen. Biosens. Bioelectron. , 2020, 148, 111819.
[http://dx.doi.org/10.1016/j.bios.2019.111819] [PMID: 31678825]
[163]
Wang, L.; Meng, T.; Fan, Y.; Chen, C.; Guo, Z.; Wang, H.; Zhang, Y. Electrochemical study of acetaminophen oxidation by gold nanoparticles supported on a leaf-like zeolitic imidazolate framework. J. Colloid Interface Sci., 2018, 5247, 1-7.
[http://dx.doi.org/10.1016/j.jcis.2018.04.009] [PMID: 29627667]
[164]
Li, F.; Li, R.; Feng, Y.; Gong, T.; Zhang, M.; Wang, L.; Meng, T.; Jia, H.; Wang, H.; Zhang, Y. Facile synthesis of Au-embedded porous carbon from metal-organic frameworks and for sensitive detection of acetaminophen in pharmaceutical products. Mater. Sci. Eng. C, 2019, 95, 78-85.
[http://dx.doi.org/10.1016/j.msec.2018.10.074] [PMID: 30573273]
[165]
Ghica, M.E.; Ferreira, G.M.; Brett, C.M.A. Poly(thionine)-carbon nanotube modified carbon film electrodes and application to the simultaneous determination of acetaminophen and dipyrone. J. Solid State Electrochem., 2015, 19, 2869-2881.
[http://dx.doi.org/10.1007/s10008-015-2926-4]
[166]
Lee, S.H.; Lee, J.H.; Tran, V.K.; Ko, E.; Park, C.H.; Chung, W.S.; Seong, G.H. Determination of acetaminophen using functional paper-based electrochemical devices. Sens. Actuators B Chem./, 2016, 232, 514-522.
[http://dx.doi.org/10.1016/j.snb.2016.03.169]
[167]
Anuar, N.S.; Basirun, W.J.; Ladan, M.; Shalauddin, M.; Mehmood, M.S. Fabrication of platinum nitrogen-doped graphene nanocomposite modified electrode for the electrochemical detection of acetaminophen. Sens. Actuators B Chem., 2018, 266, 375-383.
[http://dx.doi.org/10.1016/j.snb.2018.03.138]
[168]
Hu, W.; Zhang, Z.; Li, L.; Ding, Y.; An, J. Preparation of electrospun SnO2 carbon nanofiber composite for ultra-sensitive detection of APAP and p-Hydroxyacetophenone. Sens. Actuators B Chem., 2019.299127003
[http://dx.doi.org/10.1016/j.snb.2019.127003]
[169]
Mutharani, B.; Ranganathan, P.; Chen, S-M.; Karuppiah, C. Simultaneous voltammetric determination of acetaminophen, naproxen, and theophylline using an in-situ polymerized poly(acrylic acid) nanogel covalently grafted onto a carbon black/La2O3 composite; Microchimica Acta, 2019, p. 186.
[170]
Rokhsefid, N.; Shishehbore, M.R. Synthesis and characterization of an Au nanoparticles/graphene nanosheet nanocomposite and its application for the simultaneous determination of tramadol and acetaminophen. Anal. Methods, 2019, 11(40), 5150-5159.
[http://dx.doi.org/10.1039/C9AY01497G]
[171]
Zad, Z.R.; Davarani, S.S.H.; Taheri, A.R.; Bide, Y. Highly selective determination of amitriptyline using NafionAuNPs@branched polyethyleneimine-derived carbon hollow spheres in pharmaceutical drugs and biological fluids. Biosens. Bioelectron., 2016, 86, 616-622.
[http://dx.doi.org/10.1016/j.bios.2016.07.028] [PMID: 27471151]
[172]
Ghadimi, H. M.A.; Tehrani, R; Basirun, WJ; Ab Aziz NJ, ; Mohamed, N; Ab Ghani, S. Electrochemical determination of aspirin and caffeine at MWCNTs-poly-4-vinylpyridine composite modified electrode. J. Taiwan Inst Chemical Engineers, 2016, 65, 101-109.
[http://dx.doi.org/10.1016/j.jtice.2016.05.043]
[173]
Yiğit, A.; Yardım, Y.; Çelebi, M.; Levent, A.; Şentürk, Z. Graphene/Nafion composite film modified glassy carbon electrode for simultaneous determination of paracetamol, aspirin and caffeine in pharmaceutical formulations. Talanta, 2016, 158, 21-29.
[http://dx.doi.org/10.1016/j.talanta.2016.05.046] [PMID: 27343573]
[174]
Yiğit, A.; Yardim, Y.; Şentürk, Z. Voltammetric sensor based on boron-doped diamond electrode for simultaneous determination of paracetamol, caffeine, and aspirin in pharmaceutical formulations. IEEE Sens. J., 2016, 16, 1674-1680.
[http://dx.doi.org/10.1109/JSEN.2015.2503436]
[175]
Amiri, M.; Amali, E.; Nematollahzadeh, A. Poly-dopamine thin film for voltammetric sensing of atenolol. Sens. Actuators B Chem., 2015, 216, 551-557.
[http://dx.doi.org/10.1016/j.snb.2015.04.082]
[176]
Scremin, J.; Sartori, E.R. Simultaneous determination of nifedipine and atenolol in combined dosage forms using a boron-doped diamond electrode with differential pulse voltammetry. Can. J. Chem., 2018, 96, 1-7.
[http://dx.doi.org/10.1139/cjc-2017-0302]
[177]
Yilmaz, B.; Kaban, S.; Akcay, B.K.; Ciltas, U. Differential pulse voltammetric determination of diclofenac in pharmaceutical preparations and human serum. Braz. J. Pharm. Sci., 2015, 51, 285-294.
[http://dx.doi.org/10.1590/S1984-82502015000200005]
[178]
Yilmaz, B.; Ciltas, U. Determination of diclofenac in pharmaceutical preparations by voltammetry and gas chromatography methods. J. Pharm. Anal., 2015, 5(3), 153-160.
[http://dx.doi.org/10.1016/j.jpha.2014.10.005] [PMID: 29403927]
[179]
Eteya, M.M.; Rounaghi, G.H.; Deiminiat, B. Fabrication of a new electrochemical sensor based on Au-Pt bimetallic nanoparticles decorated multi-walled carbon nanotubes for determination of diclofenac. Microchem. J., 2019, 144, 254-260.
[http://dx.doi.org/10.1016/j.microc.2018.09.009]
[180]
Salamanca-Neto, C.A.R.; Felsner, M.L.; Galli, A.; Sartori, E.R. Inhouse validation of a totally aqueous voltammetric method for determination of diltiazem hydrochloride. J. Electroanal. Chem., 2019, 837, 159-166.
[http://dx.doi.org/10.1016/j.jelechem.2019.02.026]
[181]
Kaya, S.I.; Demirkan, B.; Bakirhan, N.K.; Kuyuldar, E.; Kurbanoglu, S.; Ozkan, S.A.; Sen, F. Highly sensitive carbon-based nanohybrid sensor platform for determination of 5-hydroxytryptamine receptor agonist (Eletriptan). J. Pharm. Biomed. Anal., 2019, 174, 206-213.
[http://dx.doi.org/10.1016/j.jpba.2019.05.070] [PMID: 31176930]
[182]
Apetrei, I.M.; Bejinaru, A.A.; Boev, M.; Apetrei, C.; Buzia, O.D. Determination of ibuprofen based on screen-printed electrodes modified with carbon nanofibers. Farmacia, 2017, 65, 790-795.
[183]
Suresh, E.; Sundaram, K.; Kavitha, B.; Senthil Kumar, N. Square wave voltammetry sensing of ibuprofen on glassy carbon electrode. Int. J. Pharm. Tech. Res., 2016, 9, 182-188.
[184]
Mekassa, B.; Tessema, M.; Chandravanshi, B.S.; Tefera, M. Square wave voltammetric determination of ibuprofen at poly(LAspartic Acid) modified glassy carbon electrode. IEEE Sens. J., 2018, 18, 37-44.
[http://dx.doi.org/10.1109/JSEN.2017.2769137]
[185]
Suresh, E.; Sundaram, K.; Kavitha, B.; Senthil Kumar, N. Electroanalysis of ibuprofen on conducting polyaniline nanofiber coated glassy carbon surface. Int. J. Curr. Pharm. Res., 2016, 8, 44-48.
[http://dx.doi.org/10.22159/ijcpr.2016v8i4.15276]
[186]
Švorc, Ľ.; Strežová, I.; Kianičková, K.; Stanković, D.M.; Otřísal, P.; Samphao, A. An advanced approach for electrochemical sensing of ibuprofen in pharmaceuticals and human urine samples using a bare boron-doped diamond electrode. J. Electroanal. Chem., 2018, 822, 144-152.
[http://dx.doi.org/10.1016/j.jelechem.2018.05.026]
[187]
Rivera-Hernández, S.I.; Álvarez-Romero, G.A.; Corona-Avendaño, S.; Páez-Hernández, M.E.; Galán-Vidal, C.A.; Romero-Romo, M. Voltammetric determination of ibuprofen using a carbon paste-multiwalled carbon nanotube composite electrode. Instrum. Sci. Technol., 2016, 44, 483-494.
[http://dx.doi.org/10.1080/10739149.2016.1173061]
[188]
Salamanca-Neto, C.A.R.; Eisele, A.P.P.; Resta, V.G.; Scremin, J.; Sartori, E.R. Differential pulse voltammetric method for the individual and simultaneous determination of antihypertensive drug metoprolol and its association with hydrochlorothiazide in pharmaceutical dosage forms. Sens. Actuators B Chem., 2016, 230, 630-638.
[http://dx.doi.org/10.1016/j.snb.2016.02.071]
[189]
Silva, M.; Morante-Zarcero, S.; Pérez-Quintanilla, D.; Sierra, I. Simultaneous determination of pindolol, acebutolol and metoprolol in waters by differential-pulse voltammetry using an efficient sensor based on carbon paste electrode modified with amino-functionalized mesostructured silica. Sens. Actuators B Chem., 2019, 283, 434-442.
[http://dx.doi.org/10.1016/j.snb.2018.12.058]
[190]
Aguilar-Lira, G.Y.; Álvarez-Romero, G.A.; Rojas-Hernández, A.; Páez-Hernández, M.E.; Rodríguez-Ávila, J.A.; Romero-Romo, M.A. New insights on Naproxen quantification using voltammetry and graphite electrodes: development of an optimized and competitive methodology. ECS Trans., 2015, 64, 79-89.
[191]
Sarhangzadeh, K. Application of multi wall carbon nanotubegraphene hybrid for voltammetric determination of naproxen. J. Indian Chem. Soc., 2015, 12, 2133-2140.
[http://dx.doi.org/10.1007/s13738-015-0690-0]
[192]
Fonseca, W.T.; Santos, R.F.; Alves, J.N.; Ribeiro, S.D.; Takeuchi, R.M.; Santos, A.L.; Assunção, R.M.N.; Filho, G.R.; Muñoz, R.A.A. Square-wave voltammetry as analytical tool for real-time study of controlled naproxen releasing from cellulose derivative materials. Electroanalysis, 2015, 27, 1847-1854.
[http://dx.doi.org/10.1002/elan.201500011]
[193]
Afzali, M.; Jahromi, Z.; Nekooie, R. Sensitive voltammetric method for the determination of naproxen at the surface of carbon nanofiber/gold/polyaniline nanocomposite modified carbon ionic liquid electrode. Microchem. J., 2019, 145, 373-379.
[http://dx.doi.org/10.1016/j.microc.2018.10.046]
[194]
Beitollahi, H.; Yoonesfar, R. Fabrication of a novel electrochemical nanosensor for voltammetric determination of naproxen. Anal. Bioanal. Electrochem., 2016, 8, 29-37.
[195]
Tarahomi, S.; Rounaghi, G.H.; Daneshvar, L. A novel disposable sensor based on gold digital versatile disc chip modified with graphene oxide decorated with Ag nanoparticles/B-cyclodextrin for voltammetric measurement of naproxen. Sens. Actuators B Chem., 2019, 286, 445-450.
[http://dx.doi.org/10.1016/j.snb.2019.01.131]
[196]
Mokhtari, B.; Nematollahi, D.; Salehzadeh, H. Electrochemical simultaneous determination of nifedipine and its main metabolitedehydronifedipine using MWCNT modified glassy carbon electrode./ J. Mol. Liq., 2018, 264, 543-549.
[http://dx.doi.org/10.1016/j.molliq.2018.05.082]
[197]
Raj, M.; Gupta, P.; Goyal, R.N. Poly-melamine film modified sensor for the sensitive and selective determination of propranolol, a β-blocker in biological fluids. J. Electrochem. Soc., 2016, 163, H388-H394.
[http://dx.doi.org/10.1149/2.0411606jes]
[198]
Santos, A.M.; Wong, A.; Fatibello-Filho, O. Simultaneous determination of salbutamol and propranolol in biological fluid samples using an electrochemical sensor based on functionalized-graphene, ionic liquid and silver nanoparticles. J. Electroanal. Chem., 2018, 824, 1-8.
[http://dx.doi.org/10.1016/j.jelechem.2018.07.018]
[199]
Kun, Z.; Hongtao, C.; Yue, Y.; Zhihong, B.; Fangzheng, L.; Sanming, L. Platinum nanoparticle-doped multiwalled carbon-nanotube-modified glassy carbon electrode as a sensor for simultaneous determination of atenolol and propranolol in neutral solution. Ionics, 2015, 21, 1129-1140.
[http://dx.doi.org/10.1007/s11581-014-1266-1]
[200]
Alizadeh, T.; Ganjali, M.R.; Rafiei, F.; Akhoundian, M. Synthesis of nano-sized timolol-imprinted polymer via ultrasonication assisted suspension polymerization in silicon oil and its use for the fabrication of timolol voltammetric sensor. Mater. Sci. Eng. C, 2017, 77, 300-307.
[http://dx.doi.org/10.1016/j.msec.2017.03.168] [PMID: 28532033]
[201]
Chamjangali, M.A.; Goudarzi, N.; Bagherian, G.; Reskety, A.A. Development of a new electrochemical sensor for verapamil based on multi-walled carbon nanotube immobilized on glassy carbon electrode. Measurement, 2015, 71, 23-30.
[http://dx.doi.org/10.1016/j.measurement.2015.04.012]