The Role of Glyoxalase in Glycation and Carbonyl Stress Induced Metabolic Disorders

Page: [846 - 859] Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

Glycation refers to the covalent binding of sugar molecules to macromolecules, such as DNA, proteins, and lipids in a non-enzymatic reaction, resulting in the formation of irreversibly bound products known as advanced glycation end products (AGEs). AGEs are synthesized in high amounts both in pathological conditions, such as diabetes and under physiological conditions resulting in aging. The body’s anti-glycation defense mechanisms play a critical role in removing glycated products. However, if this defense system fails, AGEs start accumulating, which results in pathological conditions. Studies have been shown that increased accumulation of AGEs acts as key mediators in multiple diseases, such as diabetes, obesity, arthritis, cancer, atherosclerosis, decreased skin elasticity, male erectile dysfunction, pulmonary fibrosis, aging, and Alzheimer’s disease. Furthermore, glycation of nucleotides, proteins, and phospholipids by α-oxoaldehyde metabolites, such as glyoxal (GO) and methylglyoxal (MGO), causes potential damage to the genome, proteome, and lipidome. Glyoxalase-1 (GLO-1) acts as a part of the anti-glycation defense system by carrying out detoxification of GO and MGO. It has been demonstrated that GLO-1 protects dicarbonyl modifications of the proteome and lipidome, thereby impeding the cell signaling and affecting age-related diseases. Its relationship with detoxification and anti-glycation defense is well established. Glycation of proteins by MGO and GO results in protein misfolding, thereby affecting their structure and function. These findings provide evidence for the rationale that the functional modulation of the GLO pathway could be used as a potential therapeutic target. In the present review, we summarized the newly emerged literature on the GLO pathway, including enzymes regulating the process. In addition, we described small bioactive molecules with the potential to modulate the GLO pathway, thereby providing a basis for the development of new treatment strategies against age-related complications.

Keywords: GLO, MGO, GO, advanced glycation end products (AGEs), metabolic pathway, carbonyl stress induced metabolic disorders.

Graphical Abstract

[1]
Akhter, F.; Khan, M.S.; Ahmad, S. Acquired immunogenicity of calf thymus DNA and LDL modified by D-ribose: a comparative study. Int. J. Biol. Macromol., 2015, 72, 1222-1227.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.10.034] [PMID: 25450543]
[2]
Singh, R.; Barden, A.; Mori, T.; Beilin, L. Advanced glycation end-products: a review. Diabetologia, 2001, 44(2), 129-146.
[http://dx.doi.org/10.1007/s001250051591] [PMID: 11270668]
[3]
Akhter, F.; Akhter, A.; Ahmad, S. Toxicity of Protein and DNAAGEs in Neurodegenerative Diseases (NDDs) with Decisive Approaches to Stop the Deadly Consequences. In: Kesari K. (eds) Perspectives in Environmental Toxicology. Environmental Science and Engineering. Springer, Cham, 2017.
[http://dx.doi.org/10.1007/978-3-319-46248-6]
[4]
Ahmad, S.; Akhter, F.; Shahab, U.; Rafi, Z.; Khan, M.S.; Nabi, R.; Khan, M.S.; Ahmad, K.; Ashraf, J.M. Moinuddin, Do all roads lead to the Rome? The glycation perspective! Semin. Cancer Biol., 2018, 49, 9-19.
[http://dx.doi.org/10.1016/j.semcancer.2017.10.012] [PMID: 29113952]
[5]
Phillips, S.A.; Thornalley, P.J. The formation of methylglyoxal from triose phosphates. Investigation using a specific assay for methylglyoxal. Eur. J. Biochem., 1993, 212(1), 101-105.
[http://dx.doi.org/10.1111/j.1432-1033.1993.tb17638.x] [PMID: 8444148]
[6]
Ahmed, N.; Thornalley, P.J.; Dawczynski, J.; Franke, S.; Strobel, J.; Stein, G.; Haik, G.M. Methylglyoxal-derived hydroimidazolone advanced glycation end-products of human lens proteins. Invest. Ophthalmol. Vis. Sci., 2003, 44(12), 5287-5292.
[http://dx.doi.org/10.1167/iovs.03-0573] [PMID: 14638728]
[7]
Vander Jagt, D. The GLO system. Glutathione: Chemical, Biochemical and Medical Aspects; Part, A.; Dolphin, D.; Poulson, R; Avramovic, O., Ed.; John Wiley & Sons: New York, 1989, pp. 597-641.
[8]
Dixon, D.P.; Cummin, L.; Cole, D.J.; Edwards, R. Glutathionemediated detoxification systems in plants. Curr. Opin. Plant Biol., 1998, 1(3), 258-266.
[http://dx.doi.org/10.1016/S1369-5266(98)80114-3]
[9]
Inoue, Y.; Kimura, A. MGO and regulation of its metabolism in microorganisms. Adv. Microb. Physiol., 1995, 37, 177-227.
[10]
Racker, E. Glutathione as a coenzyme in intermediary metabolism. Proceedings of the Symposium Held at Ridgefield Connecticut November, 1953, 165-183.
[http://dx.doi.org/10.1016/B978-1-4832-2900-3.50020-1]
[11]
Mannervik, B.; Glyoxalase, I. Kinetic mechanism and molecular properties.Glutathione; Floh’e, L.; Ben¨ohr, H.C.; Sies, H.; Waller, H.D; Wendel, A., Ed.; Georg Thieme Publishers: Stuttgart, 1974, pp. 78-90.
[12]
Shahab, U.; Tabrez, S.; Khan, M.S.; Akhter, F.; Khan, M.S.; Saeed, M.; Ahmad, K.; Srivastava, A.K.; Ahmad, S. Immunogenicity of DNA-advanced glycation end product fashioned through glyoxal and arginine in the presence of Fe3+: its potential role in prompt recognition of diabetes mellitus auto-antibodies. Chem. Biol. Interact., 2014, 219, 229-240.
[http://dx.doi.org/10.1016/j.cbi.2014.06.012] [PMID: 24968179]
[13]
Broude, N.E.; Budowsky, E.I. The reaction of glyoxal with nucleic acid components. 3. Kinetics of the reaction with monomers. Biochim. Biophys. Acta, 1971, 254(3), 380-388.
[http://dx.doi.org/10.1016/0005-2787(71)90868-9] [PMID: 5137601]
[14]
Takahashi, K. The reaction of phenylglyoxal with arginine residues in proteins. J. Biol. Chem., 1968, 243(23), 6171-6179.
[PMID: 5723461]
[15]
Chaplen, F.W.; Fahl, W.E.; Cameron, D.C. Evidence of high levels of methylglyoxal in cultured Chinese hamster ovary cells. Proc. Natl. Acad. Sci. USA, 1998, 95(10), 5533-5538.
[http://dx.doi.org/10.1073/pnas.95.10.5533] [PMID: 9576917]
[16]
Richard, J.P. Acid-base catalysis of the elimination and isomerization-reactions of triose phosphates. J. Am. Chem. Soc., 1984, 106, 4926-4936.
[http://dx.doi.org/10.1021/ja00329a050]
[17]
Taïbi, N.; Taïbi, A.; Ameraoui, R.; Abou-Mustapha, M.; Hadjadj, M.; Boutaiba, Z.M.; Kaced, A.; Djema, S.; Al-Balas, Q.A.; Al Jabal, G.A.; Aissi, M.; Harhoura, K.; Zenia, S.; Khammar, F. Development of analytical methods GC-MS vs LC-UV for the serum monitoring of an inflammatory glycotoxin (methylglyoxal): A new biomarker of bovine hepatobiliary distomatosis. Biochimie, 2020, 168, 169-184.
[http://dx.doi.org/10.1016/j.biochi.2019.11.002] [PMID: 31707099]
[18]
Richard, J.P. Kinetic parameters for the elimination reaction catalyzed by triosephosphate isomerase and an estimation of the reaction’s physiological significance. Biochemistry, 1991, 30(18), 4581-4585.
[http://dx.doi.org/10.1021/bi00232a031] [PMID: 2021650]
[19]
Richard, J.P. Mechanism for the formation of methylglyoxal from triosephosphates. Biochem. Soc. Trans., 1993, 21(2), 549-553.
[http://dx.doi.org/10.1042/bst0210549] [PMID: 8359530]
[20]
Sousa Silva, M.; Gomes, R.A.; Ferreira, A.E. Ponces, Freire. A.; Cordeiro, C. The glyoxalase pathway: the first hundred years... and beyond. Biochem. J., 2013, 453(1), 1-15.
[http://dx.doi.org/10.1042/BJ20121743] [PMID: 23763312 ]
[21]
Alber, T.; Banner, D.W.; Bloomer, A.C.; Petsko, G.A.; Phillips, D.; Rivers, P.S.; Wilson, I.A. On the three-dimensional structure and catalytic mechanism of triose phosphate isomerase. Philos. Trans. R. Soc. Lond. B Biol. Sci., 1981, 293(1063), 159-171.
[PMID: 6115415]
[22]
Banner, D.W.; Bloomer, A.C.; Petsko, G.A.; Phillips, D.C.; Pogson, C.I.; Wilson, I.A.; Corran, P.H.; Furth, A.J.; Milman, J.D.; Offord, R.E.; Priddle, J.D.; Waley, S.G. Structure of chicken muscle triose phosphate isomerase determined crystallographically at 2.5 angstrom resolution using amino acid sequence data. Nature, 1975, 255(5510), 609-614.
[http://dx.doi.org/10.1038/255609a0] [PMID: 1134550]
[23]
Pompliano, D.L.; Peyman, A.; Knowles, J.R. Stabilization of a reaction intermediate as a catalytic device: definition of the functional role of the flexible loop in triosephosphate isomerase. Biochemistry, 1990, 29(13), 3186-3194.
[http://dx.doi.org/10.1021/bi00465a005] [PMID: 2185832]
[24]
Lyles, G.A.; Chalmers, J. The metabolism of aminoacetone to methylglyoxal by semicarbazide-sensitive amine oxidase in human umbilical artery. Biochem. Pharmacol., 1992, 43(7), 1409-1414.
[http://dx.doi.org/10.1016/0006-2952(92)90196-P] [PMID: 1567465]
[25]
Aleksandrovskii, Y.A. Antithrombin III, C1 inhibitor, methylglyoxal, and polymorphonuclear leukocytes in the development of vascular complications in diabetes mellitus. Thromb. Res., 1992, 67(2), 179-189.
[http://dx.doi.org/10.1016/0049-3848(92)90137-Y] [PMID: 1440521]
[26]
Turk, Z.; Nemet, I.; Varga-Defteardarović, L.; Car, N. Elevated level of methylglyoxal during diabetic ketoacidosis and its recovery phase. Diabetes Metab., 2006, 32(2), 176-180.
[http://dx.doi.org/10.1016/S1262-3636(07)70266-5] [PMID: 16735968]
[27]
Thornalley, P.J.; Langborg, A.; Minhas, H.S. Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose. Biochem. J., 1999, 344(Pt 1), 109-116.
[http://dx.doi.org/10.1042/bj3440109] [PMID: 10548540]
[28]
Esterbauer, H.; Cheeseman, K.H.; Dianzani, M.U.; Poli, G.; Slater, T.F. Separation and characterization of the aldehydic products of lipid peroxidation stimulated by ADP-Fe2+ in rat liver microsomes. Biochem. J., 1982, 208(1), 129-140.
[http://dx.doi.org/10.1042/bj2080129] [PMID: 7159389]
[29]
Cooper, R.A.; Anderson, A. The formation and catabolism of methylglyoxal during glycolysis in Escherichia coli. FEBS Lett., 1970, 11(4), 273-276.
[http://dx.doi.org/10.1016/0014-5793(70)80546-4] [PMID: 11945504]
[30]
Hopper, D.J.; Cooper, R.A. The regulation of Escherichia coli methylglyoxal synthase; a new control site in glycolysis? FEBS Lett., 1971, 13(4), 213-216.
[http://dx.doi.org/10.1016/0014-5793(71)80538-0] [PMID: 11945670]
[31]
Hopper, D.J.; Cooper, R.A. The purification and properties of Escherichia coli methylglyoxal synthase. Biochem. J., 1972, 128(2), 321-329.
[http://dx.doi.org/10.1042/bj1280321] [PMID: 4563643]
[32]
Cooper, R.A. Metabolism of methylglyoxal in microorganisms. Annu. Rev. Microbiol., 1984, 38, 49-68.
[http://dx.doi.org/10.1146/annurev.mi.38.100184.000405] [PMID: 6093685]
[33]
Kermack, W.O.; Lambie, C.G.; Slater, R.H. Studies in carbohydrate metabolism: Action of hydroxymethylglyoxal upon normal and hypoglycaemic animals. Biochem. J., 1929, 23(3), 410-415.
[PMID: 16744224]
[34]
Scaife, J.F. Mitotic inhibition induced in human kidney cells by methylglyoxal and kethoxal. Experientia, 1969, 25(2), 178-179.
[http://dx.doi.org/10.1007/BF01899109] [PMID: 5786099]
[35]
Szent-Györgyi, A.; Együd, L.G.; McLaughlin, J.A. Keto-aldehydes and cell division. Science, 1967, 155(3762), 539-541.
[http://dx.doi.org/10.1126/science.155.3762.539] [PMID: 5333756]
[36]
Thornalley, P.J. Glyoxalase I--structure, function and a critical role in the enzymatic defence against glycation. Biochem. Soc. Trans., 2003, 31(Pt 6), 1343-1348.
[http://dx.doi.org/10.1042/bst0311343] [PMID: 14641060]
[37]
Selicharová, I.; Smutná, K.; Sanda, M.; Ubik, K.; Matousková, E.; Bursíková, E.; Brozová, M.; Vydra, J.; Jirácek, J. 2-DE analysis of a new human cell line EM-G3 derived from breast cancer progenitor cells and comparison with normal mammary epithelial cells. Proteomics, 2007, 7(9), 1549-1559.
[http://dx.doi.org/10.1002/pmic.200600907] [PMID: 17366476]
[38]
Dobler, D.; Ahmed, N.; Song, L.; Eboigbodin, K.E.; Thornalley, P.J. Increased dicarbonyl metabolism in endothelial cells in hyperglycemia induces anoikis and impairs angiogenesis by RGD and GFOGER motif modification. Diabetes, 2006, 55(7), 1961-1969.
[http://dx.doi.org/10.2337/db05-1634] [PMID: 16804064]
[39]
Beisswenger, P.J.; Howell, S.K.; Touchette, A.D.; Lal, S.; Szwergold, B.S. Metformin reduces systemic methylglyoxal levels in type 2 diabetes. Diabetes, 1999, 48(1), 198-202.
[http://dx.doi.org/10.2337/diabetes.48.1.198] [PMID: 9892243]
[40]
Strzinek, R.A.; Scholes, V.E.; Norton, S.J. The purification and characterization of liver glyoxalase I from normal mice and from mice bearing a lymphosarcoma. Cancer Res., 1972, 32(11), 2359-2364.
[PMID: 4678085]
[41]
Thornalley, P.J. The glyoxalase system: new developments towards functional characterization of a metabolic pathway fundamental to biological life. Biochem. J., 1990, 269(1), 1-11.
[http://dx.doi.org/10.1042/bj2690001] [PMID: 2198020]
[42]
Aronsson, A.C.; Marmstål, E.; Mannervik, B. Glyoxalase I, a zinc metalloenzyme of mammals and yeast. Biochem. Biophys. Res. Commun., 1978, 81(4), 1235-1240.
[http://dx.doi.org/10.1016/0006-291X(78)91268-8] [PMID: 352355]
[43]
Cameron, A.D.; Olin, B.; Ridderström, M.; Mannervik, B.; Jones, T.A. Crystal structure of human glyoxalase I--evidence for gene duplication and 3D domain swapping. EMBO J., 1997, 16(12), 3386-3395.
[http://dx.doi.org/10.1093/emboj/16.12.3386] [PMID: 9218781]
[44]
Deswal, R.; Sopory, S.K. Purification and partial characterization of glyoxalase I from a higher plant Brassica juncea. FEBS Lett., 1991, 282(2), 277-280.
[http://dx.doi.org/10.1016/0014-5793(91)80494-N] [PMID: 2037046]
[45]
Espartero, J.; Sánchez-Aguayo, I.; Pardo, J.M. Molecular characterization of glyoxalase-I from a higher plant; upregulation by stress. Plant Mol. Biol., 1995, 29(6), 1223-1233.
[http://dx.doi.org/10.1007/BF00020464] [PMID: 8616220]
[46]
Marmstål, E.; Aronsson, A.C.; Mannervik, B. Comparison of glyoxalase I purified from yeast (Saccharomyces cerevisiae) with the enzyme from mammalian sources. Biochem. J., 1979, 183(1), 23-30.
[http://dx.doi.org/10.1042/bj1830023] [PMID: 393249]
[47]
Gomes, R.A.; Sousa Silva, M.; Vicente Miranda, H.; Ferreira, A.E.; Cordeiro, C.A.; Freire, A.P. Protein glycation in Saccharomyces cerevisiae. Argpyrimidine formation and methylglyoxal catabolism. FEBS J., 2005, 272(17), 4521-4531.
[http://dx.doi.org/10.1111/j.1742-4658.2005.04872.x] [PMID: 16128820]
[48]
Martins, A.M.; Mendes, P.; Cordeiro, C.; Freire, A.P. In situ kinetic analysis of glyoxalase I and glyoxalase II in Saccharomyces cerevisiae. Eur. J. Biochem., 2001, 268(14), 3930-3936.
[http://dx.doi.org/10.1046/j.1432-1327.2001.02304.x] [PMID: 11453985]
[49]
He, M.M.; Clugston, S.L.; Honek, J.F.; Matthews, B.W. Determination of the structure of Escherichia coli glyoxalase I suggests a structural basis for differential metal activation. Biochemistry, 2000, 39(30), 8719-8727.
[http://dx.doi.org/10.1021/bi000856g] [PMID: 10913283]
[50]
Sukdeo, N.; Clugston, S.L.; Daub, E.; Honek, J.F. Distinct classes of glyoxalase I: metal specificity of the Yersinia pestis, Pseudomonas aeruginosa and Neisseria meningitidis enzymes. Biochem. J., 2004, 384(Pt 1), 111-117.
[http://dx.doi.org/10.1042/BJ20041006] [PMID: 15270717]
[51]
MacLean, M.J.; Ness, L.S.; Ferguson, G.P.; Booth, I.R. The role of glyoxalase I in the detoxification of methylglyoxal and in the activation of the KefB K+ efflux system in Escherichia coli. Mol. Microbiol., 1998, 27(3), 563-571.
[http://dx.doi.org/10.1046/j.1365-2958.1998.00701.x] [PMID: 9489668]
[52]
Akoachere, M.; Iozef, R.; Rahlfs, S.; Deponte, M.; Mannervik, B.; Creighton, D.J.; Schirmer, H.; Becker, K. Characterization of the glyoxalases of the malarial parasite Plasmodium falciparum and comparison with their human counterparts. Biol. Chem., 2005, 386(1), 41-52.
[http://dx.doi.org/10.1515/BC.2005.006] [PMID: 15843146]
[53]
Ariza, A.; Vickers, T.J.; Greig, N.; Armour, K.A.; Dixon, M.J.; Eggleston, I.M.; Fairlamb, A.H.; Bond, C.S. Specificity of the trypanothione-dependent Leishmania major glyoxalase I: structure and biochemical comparison with the human enzyme. Mol. Microbiol., 2006, 59(4), 1239-1248.
[http://dx.doi.org/10.1111/j.1365-2958.2006.05022.x] [PMID: 16430697]
[54]
Greig, N.; Wyllie, S.; Vickers, T.J.; Fairlamb, A.H. Trypanothione-dependent glyoxalase I in Trypanosoma cruzi. Biochem. J., 2006, 400(2), 217-223.
[http://dx.doi.org/10.1042/BJ20060882] [PMID: 16958620]
[55]
Iozef, R.; Rahlfs, S.; Chang, T.; Schirmer, H.; Becker, K. Glyoxalase I of the malarial parasite Plasmodium falciparum: evidence for subunit fusion. FEBS Lett., 2003, 554(3), 284-288.
[http://dx.doi.org/10.1016/S0014-5793(03)01146-3] [PMID: 14623080]
[56]
Sousa Silva, M.; Ferreira, A.E.; Tomás, A.M.; Cordeiro, C.; Ponces Freire, A. Quantitative assessment of the glyoxalase pathway in Leishmania infantum as a therapeutic target by modelling and computer simulation. FEBS J., 2005, 272(10), 2388-2398.
[http://dx.doi.org/10.1111/j.1742-4658.2005.04632.x] [PMID: 15885089]
[57]
Barata, L.; Sousa Silva, M.; Schuldt, L.; da Costa, G.; Tomás, A.M.; Ferreira, A.E.; Weiss, M.S.; Ponces Freire, A.; Cordeiro, C. Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of glyoxalase I from Leishmania infantum. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun., 2010, 66(Pt 5), 571-574.
[http://dx.doi.org/10.1107/S1744309110010754] [PMID: 20445262]
[58]
Vander Jagt, D.L.; Daub, E.; Krohn, J.A.; Han, L.P. Effects of pH and thiols on the kinetics of yeast glyoxalase I. An evaluation of the random pathway mechanism. Biochemistry, 1975, 14(16), 3669-3675.
[http://dx.doi.org/10.1021/bi00687a024] [PMID: 240387]
[59]
Vander Jagt, D.L.; Han, L.P.; Lehman, C.H. Kinetic evaluation of substrate specificity in the glyoxalase-I-catalyzed disproportionation of -ketoaldehydes. Biochemistry, 1972, 11(20), 3735-3740.
[http://dx.doi.org/10.1021/bi00770a011] [PMID: 5072200]
[60]
Clugston, S.L.; Yajima, R.; Honek, J.F. Investigation of metal binding and activation of Escherichia coli glyoxalase I: kinetic, thermodynamic and mutagenesis studies. Biochem. J., 2004, 377(Pt 2), 309-316.
[http://dx.doi.org/10.1042/bj20030271] [PMID: 14556652]
[61]
Birkenmeier, G.; Stegemann, C.; Hoffmann, R.; Günther, R.; Huse, K.; Birkemeyer, C. Posttranslational modification of human glyoxalase 1 indicates redox-dependent regulation. PLoS One, 2010, 5(4)e10399
[http://dx.doi.org/10.1371/journal.pone.0010399] [PMID: 20454679]
[62]
Deponte, M.; Sturm, N.; Mittler, S.; Harner, M.; Mack, H.; Becker, K. Allosteric coupling of two different functional active sites in monomeric Plasmodium falciparum glyoxalase I. J. Biol. Chem., 2007, 282(39), 28419-28430.
[http://dx.doi.org/10.1074/jbc.M703271200] [PMID: 17664277]
[63]
Mannervik, B.; Górna-Hall, B.; Bártfai, T. The steady-state kinetics of glyoxalase I from porcine erythrocytes. Evidence for a random-pathway mechanism involving one- and two-substrate branches. Eur. J. Biochem., 1973, 37(2), 270-281.
[http://dx.doi.org/10.1111/j.1432-1033.1973.tb02985.x] [PMID: 4795688]
[64]
Mannervik, B.; Bartfai, T.; Górna-Hall, B. Random pathway mechanism involving parallel one- and two- substrate branches for glyoxalase I from yeast. J. Biol. Chem., 1974, 249(3), 901-903.
[PMID: 4590692]
[65]
Mannervik, B.; Ridderström, M. Catalytic and molecular properties of glyoxalase I. Biochem. Soc. Trans., 1993, 21(2), 515-517.
[http://dx.doi.org/10.1042/bst0210515] [PMID: 8359522]
[66]
Bártfai, T.; Ekwall, K.; Mannervik, B. Discrimination between steady-state kinetic models of the Mechanism of action of yeast glyoxalase I. Biochemistry, 1973, 12(3), 387-391.
[http://dx.doi.org/10.1021/bi00727a004] [PMID: 4566930]
[67]
Vickers, T.J.; Greig, N.; Fairlamb, A.H. A trypanothione-dependent glyoxalase I with a prokaryotic ancestry in Leishmania major. Proc. Natl. Acad. Sci. USA, 2004, 101(36), 13186-13191.
[http://dx.doi.org/10.1073/pnas.0402918101] [PMID: 15329410]
[68]
Allen, R.E.; Lo, T.W.; Thornalley, P.J. A simplified method for the purification of human red blood cell glyoxalase. I. Characteristics, immunoblotting, and inhibitor studies. J. Protein Chem., 1993, 12(2), 111-119.
[http://dx.doi.org/10.1007/BF01026032] [PMID: 8489699]
[69]
Lages, N.F.; Cordeiro, C.; Sousa Silva, M.; Ponces Freire, A.; Ferreira, A.E. Optimization of time-course experiments for kinetic model discrimination. PLoS One, 2012, 7(3)e32749
[http://dx.doi.org/10.1371/journal.pone.0032749] [PMID: 22403703]
[70]
Urscher, M.; Alisch, R.; Deponte, M. The glyoxalase system of malaria parasites--implications for cell biology and general glyoxalase research. Semin. Cell Dev. Biol., 2011, 22(3), 262-270.
[http://dx.doi.org/10.1016/j.semcdb.2011.02.003] [PMID: 21310259]
[71]
Ridderström, M.; Cameron, A.D.; Jones, T.A.; Mannervik, B. Involvement of an active-site Zn2+ ligand in the catalytic mechanism of human glyoxalase I. J. Biol. Chem., 1998, 273(34), 21623-21628.
[http://dx.doi.org/10.1074/jbc.273.34.21623] [PMID: 9705294]
[72]
Cameron, A.D.; Ridderström, M.; Olin, B.; Kavarana, M.J.; Creighton, D.J.; Mannervik, B. Reaction mechanism of glyoxalase I explored by an X-ray crystallographic analysis of the human enzyme in complex with a transition state analogue. Biochemistry, 1999, 38(41), 13480-13490.
[http://dx.doi.org/10.1021/bi990696c] [PMID: 10521255]
[73]
Saint-Jean, A.P.; Phillips, K.R.; Creighton, D.J.; Stone, M.J. Active monomeric and dimeric forms of Pseudomonas putida glyoxalase I: evidence for 3D domain swapping. Biochemistry, 1998, 37(29), 10345-10353.
[http://dx.doi.org/10.1021/bi980868q] [PMID: 9671502]
[74]
de Hemptinne, V.; Rondas, D.; Toepoel, M.; Vancompernolle, K. Phosphorylation on Thr-106 and NO-modification of glyoxalase I suppress the TNF-induced transcriptional activity of NF-kappaB. Mol. Cell. Biochem., 2009, 325(1-2), 169-178.
[http://dx.doi.org/10.1007/s11010-009-0031-7] [PMID: 19199007]
[75]
Cameron, A.D.; Ridderström, M.; Olin, B.; Mannervik, B. Crystal structure of human glyoxalase II and its complex with a glutathione thiolester substrate analogue. Structure, 1999, 7(9), 1067-1078.
[http://dx.doi.org/10.1016/S0969-2126(99)80174-9] [PMID: 10508780]
[76]
Ridderström, M.; Saccucci, F.; Hellman, U.; Bergman, T.; Principato, G.; Mannervik, B. Molecular cloning, heterologous expression, and characterization of human glyoxalase II. J. Biol. Chem., 1996, 271(1), 319-323.
[http://dx.doi.org/10.1074/jbc.271.1.319] [PMID: 8550579]
[77]
Limphong, P.; Adams, N.E.; Rouhier, M.F.; McKinney, R.M.; Naylor, M.; Bennett, B.; Makaroff, C.A.; Crowder, M.W. Converting GLX2-1 into an active glyoxalase II. Biochemistry, 2010, 49(37), 8228-8236.
[http://dx.doi.org/10.1021/bi1010865] [PMID: 20715794]
[78]
Zang, T.M.; Hollman, D.A.; Crawford, P.A.; Crowder, M.W.; Makaroff, C.A. Arabidopsis glyoxalase II contains a zinc/iron binuclear metal center that is essential for substrate binding and catalysis. J. Biol. Chem., 2001, 276(7), 4788-4795.
[http://dx.doi.org/10.1074/jbc.M005090200] [PMID: 11085979]
[79]
Inoue, Y.; Maeta, K.; Nomura, W. Glyoxalase system in yeasts: structure, function, and physiology. Semin. Cell Dev. Biol., 2011, 22(3), 278-284.
[http://dx.doi.org/10.1016/j.semcdb.2011.02.002] [PMID: 21310260]
[80]
O’Young, J.; Sukdeo, N.; Honek, J.F. Escherichia coli glyoxalase II is a binuclear zinc-dependent metalloenzyme. Arch. Biochem. Biophys., 2007, 459(1), 20-26.
[http://dx.doi.org/10.1016/j.abb.2006.11.024] [PMID: 17196158]
[81]
Valentine, W.N.; Paglia, D.E.; Neerhout, R.C.; Konrad, P.N. Erythrocyte glyoxalase II deficiency with coincidental hereditary elliptocytosis. Blood, 1970, 36(6), 797-808.
[http://dx.doi.org/10.1182/blood.V36.6.797.797] [PMID: 5485124]
[82]
Thornalley, P.J. The glyoxalase system in health and disease. Mol. Aspects Med., 1993, 14(4), 287-371.
[http://dx.doi.org/10.1016/0098-2997(93)90002-U] [PMID: 8277832]
[83]
Vander Jagt, D.L. Glyoxalase II: molecular characteristics, kinetics and mechanism. Biochem. Soc. Trans., 1993, 21(2), 522-527.
[http://dx.doi.org/10.1042/bst0210522] [PMID: 8359524]
[84]
Park, H.S.; Nam, S.H.; Lee, J.K.; Yoon, C.N.; Mannervik, B.; Benkovic, S.J.; Kim, H.S. Design and evolution of new catalytic activity with an existing protein scaffold. Science, 2006, 311(5760), 535-538.
[http://dx.doi.org/10.1126/science.1118953] [PMID: 16439663]
[85]
Benov, L.; Sequeira, F.; Beema, A.F. Role of rpoS in the regulation of glyoxalase III in Escherichia coli. Acta Biochim. Pol., 2004, 51(3), 857-860.
[http://dx.doi.org/10.18388/abp.2004_3570] [PMID: 15448747]
[86]
Okado-Matsumoto, A.; Fridovich, I. The role of α,β -dicarbonyl compounds in the toxicity of short chain sugars. J. Biol. Chem., 2000, 275(45), 34853-34857.
[http://dx.doi.org/10.1074/jbc.M005536200] [PMID: 10931845]
[87]
Lee, J.Y.; Song, J.; Kwon, K.; Jang, S.; Kim, C.; Baek, K.; Kim, J.; Park, C. Human DJ-1 and its homologs are novel glyoxalases. Hum. Mol. Genet., 2012, 21(14), 3215-3225.
[http://dx.doi.org/10.1093/hmg/dds155] [PMID: 22523093]
[88]
Tao, X.; Tong, L. Crystal structure of human DJ-1, a protein associated with early onset Parkinson’s disease. J. Biol. Chem., 2003, 278(33), 31372-31379.
[http://dx.doi.org/10.1074/jbc.M304221200] [PMID: 12761214]
[89]
Maillard, L.C. The action of amino acids on sugar: the formation of melanoidin by a methodic route. Cr. Hebd. Acad. Sci., 1912, 154, 66-68.
[90]
Ahmad, S.; Khan, M.S.; Akhter, F.; Khan, M.S.; Khan, A.; Ashraf, J.M.; Pandey, R.P.; Shahab, U. Glycoxidation of biological macromolecules: a critical approach to halt the menace of glycation. Glycobiology, 2014, 24(11), 979-990.
[http://dx.doi.org/10.1093/glycob/cwu057] [PMID: 24946787]
[91]
Kuhn, R.; Weygand, F. Amadori-rearrangement. Ber. Dtsch. Chem. Ges., 1937, 70, 769-772.
[http://dx.doi.org/10.1002/cber.19370700433]
[92]
Bookchin, R.M.; Gallop, P.M. Structure of hemoglobin AIc: nature of the N-terminal beta chain blocking group. Biochem. Biophys. Res. Commun., 1968, 32(1), 86-93.
[http://dx.doi.org/10.1016/0006-291X(68)90430-0] [PMID: 4874776]
[93]
Ahmad, S.; Akhter, F. Moinuddin; Shahab, U.; Khan, M.S. Studies on glycation of human low density lipoprotein: a functional insight into physico-chemical analysis. Int. J. Biol. Macromol., 2013, 62, 167-171.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.08.037] [PMID: 24012841]
[94]
Akhter, F.; Salman Khan, M.; Shahab, U. Moinuddin; Ahmad, S. Bio-physical characterization of ribose induced glycation: a mechanistic study on DNA perturbations. Int. J. Biol. Macromol., 2013, 58, 206-210.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.03.036] [PMID: 23524157]
[95]
Akhter, F.; Khan, M.S.; Singh, S.; Ahmad, S. An immunohistochemical analysis to validate the rationale behind the enhanced immunogenicity of D-ribosylated low density lipo-protein. PLoS One, 2014, 9(11)e113144
[http://dx.doi.org/10.1371/journal.pone.0113144] [PMID: 25393017]
[96]
Cerami, A. Aging of proteins and nucleic acids: what is the role of glucose. Trends Biochem. Sci., 1986, 11, 311-314.
[http://dx.doi.org/10.1016/0968-0004(86)90281-1]
[97]
Bucala, R.; Cerami, A. Advanced glycosylation: chemistry, biology, and implications for diabetes and aging. Adv. Pharmacol., 1992, 23, 1-34.
[http://dx.doi.org/10.1016/S1054-3589(08)60961-8] [PMID: 1540533]
[98]
Vistoli, G.; De Maddis, D.; Cipak, A.; Zarkovic, N.; Carini, M.
Aldini, G. Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): an overview of their mechanisms of formation. Free Radic. Res., 2013, 47(1), 3-27.
[99]
Ahmed, N.; Dobler, D.; Dean, M.; Thornalley, P.J. Peptide mapping identifies hotspot site of modification in human serum albumin by methylglyoxal involved in ligand binding and esterase activity. J. Biol. Chem., 2005, 280(7), 5724-5732.
[http://dx.doi.org/10.1074/jbc.M410973200] [PMID: 15557329]
[100]
Ahmed, N.; Babaei-Jadidi, R.; Howell, S.K.; Beisswenger, P.J.; Thornalley, P.J. Degradation products of proteins damaged by glycation, oxidation and nitration in clinical type 1 diabetes. Diabetologia, 2005, 48(8), 1590-1603.
[http://dx.doi.org/10.1007/s00125-005-1810-7] [PMID: 15988580]
[101]
Thornalley, P.J.; Waris, S.; Fleming, T.; Santarius, T.; Larkin, S.J.; Winklhofer-Roob, B.M.; Stratton, M.R.; Rabbani, N. Imidazopurinones are markers of physiological genomic damage linked to DNA instability and glyoxalase 1-associated tumour multidrug resistance. Nucleic Acids Res., 2010, 38(16), 5432-5442.
[http://dx.doi.org/10.1093/nar/gkq306] [PMID: 20435681]
[102]
Papoulis, A.; al-Abed, Y.; Bucala, R. Identification of N2-(1-carboxyethyl)guanine (CEG) as a guanine advanced glycosylation end product. Biochemistry, 1995, 34(2), 648-655.
[http://dx.doi.org/10.1021/bi00002a032] [PMID: 7819260]
[103]
Thornalley, P.J. Protecting the genome: defence against nucleotide glycation and emerging role of glyoxalase I overexpression in multidrug resistance in cancer chemotherapy. Biochem. Soc. Trans., 2003, 31(Pt 6), 1372-1377.
[http://dx.doi.org/10.1042/bst0311372] [PMID: 14641066]
[104]
Rahman, A. Shahabuddin, Hadi, S.M. Formation of strand breaks and interstrand cross-links in DNA by methylglyoxal. J. Biochem. Toxicol., 1990, 5, 161-166.
[105]
Migliore, L.; Barale, R.; Bosco, E.; Giorgelli, F.; Minunni, M.; Scarpato, R.; Loprieno, N. Genotoxicity of methylglyoxal: cytogenetic damage in human lymphocytes in vitro and in intestinal cells of mice. Carcinogenesis, 1990, 11(9), 1503-1507.
[http://dx.doi.org/10.1093/carcin/11.9.1503] [PMID: 2205407]
[106]
Bucala, R.; Makita, Z.; Koschinsky, T.; Cerami, A.; Vlassara, H. Lipid advanced glycosylation: pathway for lipid oxidation in vivo. Proc. Natl. Acad. Sci. USA, 1993, 90(14), 6434-6438.
[http://dx.doi.org/10.1073/pnas.90.14.6434] [PMID: 8341651]
[107]
Requena, J.R.; Ahmed, M.U.; Fountain, C.W.; Degenhardt, T.P.; Reddy, S.; Perez, C.; Lyons, T.J.; Jenkins, A.J.; Baynes, J.W.; Thorpe, S.R. Carboxymethylethanolamine, a biomarker of phospholipid modification during the maillard reaction in vivo. J. Biol. Chem., 1997, 272(28), 17473-17479.
[http://dx.doi.org/10.1074/jbc.272.28.17473] [PMID: 9211892]
[108]
Al-Abed, Y.; Liebich, H.; Voelter, W.; Bucala, R. Hydroxyalkenal formation induced by advanced glycosylation of low density lipoprotein. J. Biol. Chem., 1996, 271(6), 2892-2896.
[http://dx.doi.org/10.1074/jbc.271.6.2892] [PMID: 8621676]
[109]
Nakagawa, K.; Oak, J.H.; Miyazawa, T. Angiogenic potency of Amadori-glycated phosphatidylethanolamine. Ann. N. Y. Acad. Sci., 2005, 1043, 413-416.
[http://dx.doi.org/10.1196/annals.1333.048] [PMID: 16037263]
[110]
Brown, B.E.; Dean, R.T.; Davies, M.J. Glycation of low-density lipoproteins by methylglyoxal and glycolaldehyde gives rise to the in vitro formation of lipid-laden cells. Diabetologia, 2005, 48(2), 361-369.
[http://dx.doi.org/10.1007/s00125-004-1648-4] [PMID: 15660260]
[111]
Dyer, D.G.; Dunn, J.A.; Thorpe, S.R.; Bailie, K.E.; Lyons, T.J.; McCance, D.R.; Baynes, J.W. Accumulation of Maillard reaction products in skin collagen in diabetes and aging. J. Clin. Invest., 1993, 91(6), 2463-2469.
[http://dx.doi.org/10.1172/JCI116481] [PMID: 8514858]
[112]
Sell, D.R.; Kleinman, N.R.; Monnier, V.M. Longitudinal determination of skin collagen glycation and glycoxidation rates predicts early death in C57BL/6NNIA mice. FASEB J., 2000, 14(1), 145-156.
[http://dx.doi.org/10.1096/fasebj.14.1.145] [PMID: 10627289]
[113]
Ahmed, N.; Argirov, O.K.; Minhas, H.S.; Cordeiro, C.A.; Thornalley, P.J. Assay of advanced glycation endproducts (AGEs): surveying AGEs by chromatographic assay with derivatization by 6-aminoquinolyl-N-hydroxysuccinimidyl-carbamate and application to Nepsilon-carboxymethyl-lysine- and Nepsilon-(1-carboxyethyl)lysine-modified albumin. Biochem. J., 2002, 364(Pt 1), 1-14.
[http://dx.doi.org/10.1042/bj3640001] [PMID: 11988070]
[114]
Wang, W.C.; Lee, J.A.; Chou, C.K. Evolving Evidence of Methylglyoxal and Dicarbonyl Stress Related Diseases from Diabetic to Non-Diabetic Models. Pharm. Anal. Acta, 2016, 7, 4.
[115]
Gallet, X.; Charloteaux, B.; Thomas, A.; Brasseur, R. A fast method to predict protein interaction sites from sequences. J. Mol. Biol., 2000, 302(4), 917-926.
[http://dx.doi.org/10.1006/jmbi.2000.4092] [PMID: 10993732]
[116]
Rabbani, N.; Thornalley, P.J. Methylglyoxal, glyoxalase 1 and the dicarbonyl proteome. Amino Acids, 2012, 42(4), 1133-1142.
[http://dx.doi.org/10.1007/s00726-010-0783-0] [PMID: 20963454]
[117]
Bucala, R.; Makita, Z.; Vega, G.; Grundy, S.; Koschinsky, T.; Cerami, A.; Vlassara, H. Modification of low density lipoprotein by advanced glycation end products contributes to the dyslipidemia of diabetes and renal insufficiency. Proc. Natl. Acad. Sci. USA, 1994, 91(20), 9441-9445.
[http://dx.doi.org/10.1073/pnas.91.20.9441] [PMID: 7937786]
[118]
Bucala, R.; Mitchell, R.; Arnold, K.; Innerarity, T.; Vlassara, H.; Cerami, A. Identification of the major site of apolipoprotein B modification by advanced glycosylation end products blocking uptake by the low density lipoprotein receptor. J. Biol. Chem., 1995, 270(18), 10828-10832.
[http://dx.doi.org/10.1074/jbc.270.18.10828] [PMID: 7738020]
[119]
Li, Y.; Khan, M.S.; Akhter, F.; Husain, F.M.; Ahmad, S.; Chen, L. The non-enzymatic glycation of LDL proteins results in biochemical alterations - A correlation study of Apo B100-AGE with obesity and rheumatoid arthritis. Int. J. Biol. Macromol., 2019, 122, 195-200.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.09.107] [PMID: 30312697]
[120]
Rabbani, N.; Chittari, M.V.; Bodmer, C.W.; Zehnder, D.; Ceriello, A.; Thornalley, P.J. Increased glycation and oxidative damage to apolipoprotein B100 of LDL cholesterol in patients with type 2 diabetes and effect of metformin. Diabetes, 2010, 59(4), 1038-1045.
[http://dx.doi.org/10.2337/db09-1455] [PMID: 20068133]
[121]
Giardino, I.; Edelstein, D.; Brownlee, M. Nonenzymatic glycosylation in vitro and in bovine endothelial cells alters basic fibroblast growth factor activity. A model for intracellular glycosylation in diabetes. J. Clin. Invest., 1994, 94(1), 110-117.
[http://dx.doi.org/10.1172/JCI117296] [PMID: 8040253]
[122]
Pedchenko, V.K.; Chetyrkin, S.V.; Chuang, P.; Ham, A.J.; Saleem, M.A.; Mathieson, P.W.; Hudson, B.G.; Voziyan, P.A. Mechanism of perturbation of integrin-mediated cell-matrix interactions by reactive carbonyl compounds and its implication for pathogenesis of diabetic nephropathy. Diabetes, 2005, 54(10), 2952-2960.
[http://dx.doi.org/10.2337/diabetes.54.10.2952] [PMID: 16186398]
[123]
Smith, M.A.; Taneda, S.; Richey, P.L.; Miyata, S.; Yan, S.D.; Stern, D.; Sayre, L.M.; Monnier, V.M.; Perry, G. Advanced Maillard reaction end products are associated with Alzheimer disease pathology. Proc. Natl. Acad. Sci. USA, 1994, 91(12), 5710-5714.
[http://dx.doi.org/10.1073/pnas.91.12.5710]
[124]
Finch, C.E.; Cohen, D.M. Aging, metabolism, and Alzheimer disease: review and hypotheses. Exp. Neurol., 1997, 143(1), 82-102.
[http://dx.doi.org/10.1006/exnr.1996.6339] [PMID: 9000448]
[125]
Markesbery, W.R. Oxidative stress hypothesis in Alzheimer’s disease. Free Radic. Biol. Med., 1997, 23(1), 134-147.
[http://dx.doi.org/10.1016/S0891-5849(96)00629-6] [PMID: 9165306]
[126]
Castellani, R.J.; Smith, M.A.; Monnier, V.M.; Richey, P.L.; Gambetti, P.; Perry, G. Advanced glycation end products and oxidative stress markers immunolocalize to Lewy bodies in Parkinson disease and diffuse Lewy body disease. Lab. Invest., 1996, 74, 814-814.
[127]
Shaikh, S.; Nicholson, L.F.B. Advanced glycation end products induce in vitro cross-linking of α-synuclein and accelerate the process of intracellular inclusion body formation. J. Neurosci. Res., 2008, 86(9), 2071-2082.
[http://dx.doi.org/10.1002/jnr.21644] [PMID: 18335520]
[128]
Miyata, T.; Oda, O.; Inagi, R.; Iida, Y.; Araki, N.; Yamada, N.; Horiuchi, S.; Taniguchi, N.; Maeda, K.; Kinoshita, T. β 2-Microglobulin modified with advanced glycation end products is a major component of hemodialysis-associated amyloidosis. J. Clin. Invest., 1993, 92(3), 1243-1252.
[http://dx.doi.org/10.1172/JCI116696] [PMID: 8376584]
[129]
Orosz, F.; Oláh, J.; Ovádi, J. Triosephosphate isomerase deficiency: facts and doubts. IUBMB Life, 2006, 58(12), 703-715.
[http://dx.doi.org/10.1080/15216540601115960] [PMID: 17424909]
[130]
Ahmed, N.; Battah, S.; Karachalias, N.; Babaei-Jadidi, R.; Horányi, M.; Baróti, K.; Hollan, S.; Thornalley, P.J. Increased formation of methylglyoxal and protein glycation, oxidation and nitrosation in triosephosphate isomerase deficiency. Biochim. Biophys. Acta, 2003, 1639(2), 121-132.
[http://dx.doi.org/10.1016/j.bbadis.2003.08.002] [PMID: 14559119]
[131]
Gnerer, J.P.; Kreber, R.A.; Ganetzky, B. wasted away, a Drosophila mutation in triosephosphate isomerase, causes paralysis, neurodegeneration, and early death. Proc. Natl. Acad. Sci. USA, 2006, 103(41), 14987-14993.
[http://dx.doi.org/10.1073/pnas.0606887103] [PMID: 17008404]
[132]
Yan, S.D.; Chen, X.; Schmidt, A.M.; Brett, J.; Godman, G.; Zou, Y.S.; Scott, C.W.; Caputo, C.; Frappier, T.; Smith, M.A. Glycated tau protein in Alzheimer disease: a mechanism for induction of oxidant stress. Proc. Natl. Acad. Sci. USA, 1994, 91(16), 7787-7791.
[http://dx.doi.org/10.1073/pnas.91.16.7787] [PMID: 8052661]
[133]
Vitek, M.P.; Bhattacharya, K.; Glendening, J.M.; Stopa, E.; Vlassara, H.; Bucala, R.; Manogue, K.; Cerami, A. Advanced glycation end products contribute to amyloidosis in Alzheimer disease. Proc. Natl. Acad. Sci. USA, 1994, 91(11), 4766-4770.
[http://dx.doi.org/10.1073/pnas.91.11.4766] [PMID: 8197133]
[134]
Smith, M.A.; Taneda, S.; Richey, P.L.; Miyata, S.; Yan, S.D.; Stern, D.; Sayre, L.M.; Monnier, V.M.; Perry, G. Advanced Maillard reaction end products are associated with Alzheimer disease pathology. Proc. Natl. Acad. Sci. USA, 1994, 91(12), 5710-5714.
[http://dx.doi.org/10.1073/pnas.91.12.5710] [PMID: 8202552]
[135]
Schmidt, A.M.; Vianna, M.; Gerlach, M.; Brett, J.; Ryan, J.; Kao, J.; Esposito, C.; Hegarty, H.; Hurley, W.; Clauss, M. Isolation and characterization of two binding proteins for advanced glycosylation end products from bovine lung which are present on the endothelial cell surface. J. Biol. Chem., 1992, 267(21), 14987-14997.
[PMID: 1321822]
[136]
Thornalley, P.J. Modification of the glyoxalase system in human red blood cells by glucose in vitro. Biochem. J., 1988, 254(3), 751-755.
[http://dx.doi.org/10.1042/bj2540751] [PMID: 3196289]
[137]
Schalkwijk, C.G.; van Bezu, J.; van der Schors, R.C.; Uchida, K.; Stehouwer, C.D.; van Hinsbergh, V.W. Heat-shock protein 27 is a major methylglyoxal-modified protein in endothelial cells. FEBS Lett., 2006, 580(6), 1565-1570.
[http://dx.doi.org/10.1016/j.febslet.2006.01.086] [PMID: 16487519]
[138]
Shinohara, M.; Thornalley, P.J.; Giardino, I.; Beisswenger, P.; Thorpe, S.R.; Onorato, J.; Brownlee, M. Overexpression of glyoxalase-I in bovine endothelial cells inhibits intracellular advanced glycation endproduct formation and prevents hyperglycemia-induced increases in macromolecular endocytosis. J. Clin. Invest., 1998, 101(5), 1142-1147.
[http://dx.doi.org/10.1172/JCI119885] [PMID: 9486985]
[139]
Schalkwijk, C.G.; Stehouwer, C.D.A. Methylglyoxal, a Highly Reactive Dicarbonyl Compound, in Diabetes, Its Vascular Complications, and Other Age-Related Diseases. Physiol. Rev., 2020, 100(1), 407-461.
[PMID: 31539311]
[140]
Li, Y.; Khan, M.S.; Akhter, F.; Husain, F.M.; Ahmad, S.; Chen, L. The non-enzymatic glycation of LDL proteins results in biochemical alterations-a correlation study of Apo B100-AGE with obesity and rheumatoid arthritis. Int. J. Biol. Macromol., 2018, 1(122), 195-200.
[141]
Srikanth, V.; Westcott, B.; Forbes, J.; Phan, T.G.; Beare, R.; Venn, A.; Pearson, S.; Greenaway, T.; Parameswaran, V.; Münch, G. Methylglyoxal, cognitive function and cerebral atrophy in older people. J. Gerontol. A Biol. Sci. Med. Sci., 2013, 68(1), 68-73.
[http://dx.doi.org/10.1093/gerona/gls100] [PMID: 22496536]
[142]
Stratmann, B.; Engelbrecht, B.; Espelage, B.C.; Klusmeier, N.; Tiemann, J.; Gawlowski, T.; Mattern, Y.; Eisenacher, M.; Meyer, H.E.; Rabbani, N.; Thornalley, P.J.; Tschoepe, D.; Poschmann, G.; Stühler, K. Glyoxalase 1-knockdown in human aortic endothelial cells - effect on the proteome and endothelial function estimates. Sci. Rep., 2016, 6, 37737.
[http://dx.doi.org/10.1038/srep37737] [PMID: 27898103]
[143]
Baynes, J.W.; Thorpe, S.R. Glycoxidation and lipoxidation in atherogenesis. Free Radic. Biol. Med., 2000, 28(12), 1708-1716.
[http://dx.doi.org/10.1016/S0891-5849(00)00228-8] [PMID: 10946212]
[144]
Westwood, M.E.; Thornalley, P.J. Molecular characteristics of methylglyoxal-modified bovine and human serum albumins. Comparison with glucose-derived advanced glycation endproduct-modified serum albumins. J. Protein Chem., 1995, 14(5), 359-372.
[http://dx.doi.org/10.1007/BF01886793] [PMID: 8590604]
[145]
Phillips, S.A.; Mirrlees, D.; Thornalley, P.J. Modification of the glyoxalase system in streptozotocin-induced diabetic rats. Effect of the aldose reductase inhibitor Statil. Biochem. Pharmacol., 1993, 46(5), 805-811.
[http://dx.doi.org/10.1016/0006-2952(93)90488-I] [PMID: 8373434]
[146]
Wei, M.; Ong, L.; Smith, M.T.; Ross, F.B.; Schmid, K.; Hoey, A.J.; Burstow, D.; Brown, L. The streptozotocin-diabetic rat as a model of the chronic complications of human diabetes. Heart Lung Circ., 2003, 12(1), 44-50.
[http://dx.doi.org/10.1046/j.1444-2892.2003.00160.x] [PMID: 16352106]
[147]
Srinivasan, K.; Viswanad, B.; Asrat, L.; Kaul, C.L.; Ramarao, P. Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: a model for type 2 diabetes and pharmacological screening. Pharmacol. Res., 2005, 52(4), 313-320.
[http://dx.doi.org/10.1016/j.phrs.2005.05.004] [PMID: 15979893]
[148]
Jia, X.; Chang, T.; Wilson, T.W.; Wu, L. Methylglyoxal mediates adipocyte proliferation by increasing phosphorylation of Akt1. PLoS One, 2012, 7(5)e36610
[http://dx.doi.org/10.1371/journal.pone.0036610] [PMID: 22606274]
[149]
Rodrigues, L.; Matafome, P.; Crisóstomo, J.; Santos-Silva, D.; Sena, C.; Pereira, P.; Seiça, R. Advanced glycation end products and diabetic nephropathy: a comparative study using diabetic and normal rats with methylglyoxal-induced glycation. J. Physiol. Biochem., 2014, 70(1), 173-184.
[http://dx.doi.org/10.1007/s13105-013-0291-2] [PMID: 24078283]
[150]
Crisóstomo, J.; Matafome, P.; Santos-Silva, D.; Rodrigues, L.; Sena, C.M.; Pereira, P.; Seiça, R. Methylglyoxal chronic administration promotes diabetes-like cardiac ischaemia disease in Wistar normal rats. Nutr. Metab. Cardiovasc. Dis., 2013, 23(12), 1223-1230.
[http://dx.doi.org/10.1016/j.numecd.2013.01.005] [PMID: 23642929]
[151]
Barati, M.T.; Merchant, M.L.; Kain, A.B.; Jevans, A.W.; McLeish, K.R.; Klein, J.B. Proteomic analysis defines altered cellular redox pathways and advanced glycation end-product metabolism in glomeruli of db/db diabetic mice. Am. J. Physiol. Renal Physiol., 2007, 293(4), F1157-F1165.
[http://dx.doi.org/10.1152/ajprenal.00411.2006] [PMID: 17609286]
[152]
Atkins, T.W.; Thornally, P.J. Erythrocyte glyoxalase activity in genetically obese (ob/ob) and streptozotocin diabetic mice. Diabetes Res., 1989, 11(3), 125-129.
[PMID: 2627763]
[153]
Kim, D.H.; Joo, J.I.; Choi, J.W.; Yun, J.W. Differential expression of skeletal muscle proteins in high-fat diet-fed rats in response to capsaicin feeding. Proteomics, 2010, 10(15), 2870-2881.
[http://dx.doi.org/10.1002/pmic.200900815] [PMID: 20517883]
[154]
Akhter, F.; Khan, M.S.; Alatar, A.A.; Faisal, M.; Ahmad, S. Antigenic role of the adaptive immune response to d-ribose glycated LDL in diabetes, atherosclerosis and diabetes atherosclerotic patients. Life Sci., 2016, 151, 139-146.
[http://dx.doi.org/10.1016/j.lfs.2016.02.013] [PMID: 26874030]
[155]
Akhter, F.; Salman Khan, M.; Faisal, M.; Alatar, A.A.; Ahmad, S. Detection of circulating auto-antibodies against ribosylated-LDL in diabetes patients. J. Clin. Lab. Anal., 2017, 31(2)e22039 c
[http://dx.doi.org/10.1002/jcla.22039] [PMID: 27561427]
[156]
Sena, C.M.; Matafome, P.; Crisóstomo, J.; Rodrigues, L.; Fernandes, R.; Pereira, P.; Seiça, R.M. Methylglyoxal promotes oxidative stress and endothelial dysfunction. Pharmacol. Res., 2012, 65(5), 497-506.
[http://dx.doi.org/10.1016/j.phrs.2012.03.004] [PMID: 22425979]
[157]
van Eupen, M.G.; Schram, M.T.; Colhoun, H.M.; Hanssen, N.M.; Niessen, H.W.; Tarnow, L.; Parving, H.H.; Rossing, P.; Stehouwer, C.D.; Schalkwijk, C.G. The methylglyoxal-derived AGE tetrahydropyrimidine is increased in plasma of individuals with type 1 diabetes mellitus and in atherosclerotic lesions and is associated with sVCAM-1. Diabetologia, 2013, 56(8), 1845-1855.
[http://dx.doi.org/10.1007/s00125-013-2919-8] [PMID: 23620061]
[158]
Hanssen, N.M.; Wouters, K.; Huijberts, M.S.; Gijbels, M.J.; Sluimer, J.C.; Scheijen, J.L.; Heeneman, S.; Biessen, E.A.; Daemen, M.J.; Brownlee, M.; de Kleijn, D.P.; Stehouwer, C.D.; Pasterkamp, G.; Schalkwijk, C.G. Higher levels of advanced glycation endproducts in human carotid atherosclerotic plaques are associated with a rupture-prone phenotype. Eur. Heart J., 2014, 35(17), 1137-1146.
[http://dx.doi.org/10.1093/eurheartj/eht402] [PMID: 24126878]
[159]
Rudd, J.H.; Warburton, E.A.; Fryer, T.D.; Jones, H.A.; Clark, J.C.; Antoun, N.; Johnström, P.; Davenport, A.P.; Kirkpatrick, P.J.; Arch, B.N.; Pickard, J.D.; Weissberg, P.L. Imaging atherosclerotic plaque inflammation with [18F]-fluorodeoxyglucose positron emission tomography. Circulation, 2002, 105(23), 2708-2711.
[http://dx.doi.org/10.1161/01.CIR.0000020548.60110.76] [PMID: 12057982]
[160]
Deichen, J.T.; Prante, O.; Gack, M.; Schmiedehausen, K.; Kuwert, T. Uptake of [18F]fluorodeoxyglucose in human monocyte-macrophages in vitro. Eur. J. Nucl. Med. Mol. Imaging, 2003, 30(2), 267-273.
[http://dx.doi.org/10.1007/s00259-002-1018-8] [PMID: 12552345]
[161]
Rabbani, N.; Godfrey, L.; Xue, M.; Shaheen, F.; Geoffrion, M.; Milne, R.; Thornalley, P.J. Glycation of LDL by methylglyoxal increases arterial atherogenicity: a possible contributor to increased risk of cardiovascular disease in diabetes. Diabetes, 2011, 60(7), 1973-1980.
[http://dx.doi.org/10.2337/db11-0085] [PMID: 21617182]
[162]
Yan, S.F.; Akhter, F.; Sosunov, A.A.; Yan, S.D. Identification and characterization of Amyloid-β accumulation in synaptic mitochondria. Methods Mol. Biol., 2018, 1779(406), 415-433.
[http://dx.doi.org/10.1007/978-1-4939-7816-8_25]
[163]
Chen, F.; Wollmer, M.A.; Hoerndli, F.; Münch, G.; Kuhla, B.; Rogaev, E.I.; Tsolaki, M.; Papassotiropoulos, A.; Götz, J. Role for glyoxalase I in Alzheimer’s disease. Proc. Natl. Acad. Sci. USA, 2004, 101(20), 7687-7692.
[http://dx.doi.org/10.1073/pnas.0402338101] [PMID: 15128939]
[164]
Akhter, F.; Chen, D.; Yan, S.F.; Yan, S.S. Mitochondrial perturbation in Alzheimer’s disease and diabetes. Prog. Mol. Biol. Transl. Sci., 2017, 146, 341-361.
[http://dx.doi.org/10.1016/bs.pmbts.2016.12.019] [PMID: 28253990]
[165]
Cardoso, S.; Carvalho, C.; Marinho, R.; Simões, A.; Sena, C.M.; Matafome, P.; Santos, M.S.; Seiça, R.M.; Moreira, P.I. Effects of methylglyoxal and pyridoxamine in rat brain mitochondria bioenergetics and oxidative status. J. Bioenerg. Biomembr., 2014, 46(5), 347-355.
[http://dx.doi.org/10.1007/s10863-014-9551-2] [PMID: 24831520]
[166]
Agostinho, P.; Cunha, R.A.; Oliveira, C. Neuroinflammation, oxidative stress and the pathogenesis of Alzheimer’s disease. Curr. Pharm. Des., 2010, 16(25), 2766-2778.
[http://dx.doi.org/10.2174/138161210793176572] [PMID: 20698820]
[167]
Lloret, A.; Badía, M.C.; Mora, N.J.; Pallardó, F.V.; Alonso, M.D.; Viña, J. Vitamin E paradox in Alzheimer’s disease: it does not prevent loss of cognition and may even be detrimental. J. Alzheimers Dis., 2009, 17(1), 143-149.
[http://dx.doi.org/10.3233/JAD-2009-1033] [PMID: 19494439]
[168]
Kuhla, B.; Boeck, K.; Schmidt, A.; Ogunlade, V.; Arendt, T.; Münch, G.; Lüth, H.J. Age- and stage-dependent glyoxalase I expression and its activity in normal and Alzheimer’s disease brains. Neurobiol. Aging, 2007, 28(1), 29-41.
[http://dx.doi.org/10.1016/j.neurobiolaging.2005.11.007] [PMID: 16427160]
[169]
Auburger, G.; Kurz, A. The role of glyoxalases for sugar stress and aging, with relevance for dyskinesia, anxiety, dementia and Parkinson’s disease. Aging (Albany NY), 2011, 3(1), 5-9.
[http://dx.doi.org/10.18632/aging.100258] [PMID: 21248374]
[170]
Kurz, A.; Rabbani, N.; Walter, M.; Bonin, M.; Thornalley, P.; Auburger, G.; Gispert, S. Alpha-synuclein deficiency leads to increased glyoxalase I expression and glycation stress. Cell. Mol. Life Sci., 2011, 68(4), 721-733.
[http://dx.doi.org/10.1007/s00018-010-0483-7] [PMID: 20711648]
[171]
Hipkiss, A.R. Aging risk factors and Parkinson’s disease: contrasting roles of common dietary constituents. Neurobiol. Aging, 2014, 35(6), 1469-1472.
[http://dx.doi.org/10.1016/j.neurobiolaging.2013.11.032] [PMID: 24388766]
[172]
Thornalley, P.J. The enzymatic defence against glycation in health, disease and therapeutics: a symposium to examine the concept. Biochem. Soc. Trans., 2003, 31(Pt 6), 1341-1342.
[http://dx.doi.org/10.1042/bst0311341] [PMID: 14641059]
[173]
Maessen, D.E.; Stehouwer, C.D.; Schalkwijk, C.G. The role of methylglyoxal and the glyoxalase system in diabetes and other age-related diseases. Clin. Sci. (Lond.), 2015, 128(12), 839-861.
[http://dx.doi.org/10.1042/CS20140683] [PMID: 25818485]
[174]
Brouwers, O.; Niessen, P.M.G.; Miyata, T.; Teerlink, T.; Janssen, B.J.; De Mey, J.G.R.; Stehouwer, C.D.A.; Schalkwijk, C.G. Overexpression of glyoxalase-I improves vascular function in a rat model of diabetes. Diabetologia, 2010, 53, 989-1000.
[http://dx.doi.org/10.1007/s00125-010-1677-0] [PMID: 20186387]
[175]
Kumagai, T.; Nangaku, M.; Kojima, I.; Nagai, R.; Ingelfinger, J.R.; Miyata, T.; Fujita, T.; Inagi, R. Glyoxalase I overexpression ameliorates renal ischemia-reperfusion injury in rats. Am. J. Physiol. Renal Physiol., 2009, 296(4), F912-F921.
[http://dx.doi.org/10.1152/ajprenal.90575.2008] [PMID: 19211689]
[176]
Morcos, M.; Du, X.; Pfisterer, F.; Hutter, H.; Sayed, A.A.R.; Thornalley, P.; Ahmed, N.; Baynes, J.; Thorpe, S.; Kukudov, G.; Schlotterer, A.; Bozorgmehr, F.; El Baki, R.A.; Stern, D.; Moehrlen, F.; Ibrahim, Y.; Oikonomou, D.; Hamann, A.; Becker, C.; Zeier, M.; Schwenger, V.; Miftari, N.; Humpert, P.; Hammes, H.P.; Buechler, M.; Bierhaus, A.; Brownlee, M.; Nawroth, P.P. Glyoxalase-1 prevents mitochondrial protein modification and enhances lifespan in Caenorhabditis elegans. Aging Cell, 2008, 7(2), 260-269.
[http://dx.doi.org/10.1111/j.1474-9726.2008.00371.x] [PMID: 18221415]
[177]
Goldberg, E.B.; Colowick, S.P. The role of glycolysis in the growth of tumor cells. 3. Lactic dehydrogenase as the site of action of oxamate on the growth of cultured cells. J. Biol. Chem., 1965, 240, 2786-2790.
[PMID: 14342295]
[178]
Argilés, J.M.; López-Soriano, F.J. Why do cancer cells have such a high glycolytic rate? Med. Hypotheses, 1990, 32(2), 151-155.
[http://dx.doi.org/10.1016/0306-9877(90)90039-H] [PMID: 2142979]
[179]
Ayoub, F.; Zaman, M.; Thornalley, P.; Masters, J. Glyoxalase activities in human tumour cell lines in vitro. Anticancer Res., 1993, 13(1), 151-155.
[PMID: 8476206]
[180]
Wang, Y.; Kuramitsu, Y.; Ueno, T.; Suzuki, N.; Yoshino, S.; Iizuka, N.; Akada, J.; Kitagawa, T.; Oka, M.; Nakamura, K.; Glyoxalase, I. GLO1) is up-regulated in pancreatic cancerous tissues compared with related non-cancerous tissues. Anticancer Res., 2012, 32(8), 3219-3222.
[PMID: 22843895]
[181]
Rulli, A.; Carli, L.; Romani, R.; Baroni, T.; Giovannini, E.; Rosi, G.; Talesa, V. Expression of glyoxalase I and II in normal and breast cancer tissues. Breast Cancer Res. Treat., 2001, 66(1), 67-72.
[http://dx.doi.org/10.1023/A:1010632919129] [PMID: 11368412]
[182]
Santarius, T.; Bignell, G.R.; Greenman, C.D.; Widaa, S.; Chen, L.; Mahoney, C.L.; Butler, A.; Edkins, S.; Waris, S.; Thornalley, P.J.; Futreal, P.A.; Stratton, M.R. GLO1-A novel amplified gene in human cancer. Genes Chromosomes Cancer, 2010, 49(8), 711-725.
[http://dx.doi.org/10.1002/gcc.20784] [PMID: 20544845]
[183]
Lo, T.W.C.; Thornalley, P.J. Inhibition of proliferation of human leukaemia 60 cells by diethyl esters of glyoxalase inhibitors in vitro. Biochem. Pharmacol., 1992, 44(12), 2357-2363.
[http://dx.doi.org/10.1016/0006-2952(92)90680-H] [PMID: 1472100]
[184]
Thornalley, P.J.; Edwards, L.G.; Kang, Y.; Wyatt, C.; Davies, N.; Ladan, M.J.; Double, J. Antitumour activity of S-p-bromobenzylglutathione cyclopentyl diester in vitro and in vivo. Inhibition of glyoxalase I and induction of apoptosis. Biochem. Pharmacol., 1996, 51(10), 1365-1372.
[http://dx.doi.org/10.1016/0006-2952(96)00059-7] [PMID: 8787553]
[185]
Vince, R.; Wadd, W.B. Glyoxalase inhibitors as potential anticancer agents. Biochem. Biophys. Res. Commun., 1969, 35(5), 593-598.
[http://dx.doi.org/10.1016/0006-291X(69)90445-8] [PMID: 5794079]
[186]
Mearini, E.; Romani, R.; Mearini, L.; Antognelli, C.; Zucchi, A.; Baroni, T.; Porena, M.; Talesa, V.N. Differing expression of enzymes of the glyoxalase system in superficial and invasive bladder carcinomas. Eur. J. Cancer, 2002, 38(14), 1946-1950.
[http://dx.doi.org/10.1016/S0959-8049(02)00236-8] [PMID: 12204678]
[187]
Fairlamb, A.H.; Blackburn, P.; Ulrich, P.; Chait, B.T.; Cerami, A. Trypanothione: a novel bis(glutathionyl)spermidine cofactor for glutathione reductase in trypanosomatids. Science, 1985, 227(4693), 1485-1487.
[http://dx.doi.org/10.1126/science.3883489] [PMID: 3883489]
[188]
Chelstowska, A.; Liu, Z.; Jia, Y.; Amberg, D.; Butow, R.A. Signalling between mitochondria and the nucleus regulates the expression of a new D-lactate dehydrogenase activity in yeast. Yeast, 1999, 15(13), 1377-1391.
[http://dx.doi.org/10.1002/(SICI)1097-0061(19990930)15:13<1377: AID-YEA473>3.0.CO;2-0] [PMID: 10509019]
[189]
Pallotta, M.L. Mitochondrial involvement to methylglyoxal detoxification: D-Lactate/Malate antiporter in Saccharomyces cerevisiae. Antonie van Leeuwenhoek, 2012, 102(1), 163-175.
[http://dx.doi.org/10.1007/s10482-012-9724-0] [PMID: 22460278]
[190]
Rae, C.; Board, P.G.; Kuchel, P.W. Glyoxalase 2 deficiency in the erythrocytes of a horse: 1H NMR studies of enzyme kinetics and transport of S-lactoylglutathione. Arch. Biochem. Biophys., 1991, 291(2), 291-299.
[http://dx.doi.org/10.1016/0003-9861(91)90137-8] [PMID: 1952942]
[191]
Morrison, H.G.; McArthur, A.G.; Gillin, F.D.; Aley, S.B.; Adam, R.D.; Olsen, G.J.; Best, A.A.; Cande, W.Z.; Chen, F.; Cipriano, M.J.; Davids, B.J.; Dawson, S.C.; Elmendorf, H.G.; Hehl, A.B.; Holder, M.E.; Huse, S.M.; Kim, U.U.; Lasek-Nesselquist, E.; Manning, G.; Nigam, A.; Nixon, J.E.; Palm, D.; Passamaneck, N.E.; Prabhu, A.; Reich, C.I.; Reiner, D.S.; Samuelson, J.; Svard, S.G.; Sogin, M.L. Genomic minimalism in the early diverging intestinal parasite Giardia lamblia. Science, 2007, 317(5846), 1921-1926.
[http://dx.doi.org/10.1126/science.1143837] [PMID: 17901334]
[192]
Greig, N.; Wyllie, S.; Patterson, S.; Fairlamb, A.H. A comparative study of methylglyoxal metabolism in trypanosomatids. FEBS J., 2009, 276(2), 376-386.
[http://dx.doi.org/10.1111/j.1742-4658.2008.06788.x] [PMID: 19076214]