MicroRNA-126: Dual Role in Angiogenesis Dependent Diseases

Page: [4883 - 4893] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Background: MicroRNA-126, a microRNA implicated in blood vessel integrity and angiogenesis is significantly up/down regulated in different physiological and pathological conditions related to angiogenesis such as cardiovascular formation and angiogenesis dependent diseases. MicroRNA-126 plays a critical role in angiogenesis via regulating the proliferation, differentiation, migration, and apoptosis of angiogenesis related cells such as endothelial cells.

Objective: The aim of this review is to investigate the molecular mechanisms and the effects of microRNA-126 on the process of angiogenesis in pathophysiological conditions.

Methods: To conduct this review, related articles published between 2001 and 2019 were collected from the PubMed, Web of Science, Google Scholar, Scopus and Scientific Information Database using search terms such as microRNA-126, angiogenesis, cardiovascular disorders, hypoxia, VEFG-A, endothelial cells, VEGF pathway, and gene silencing. Then, the qualified articles were reviewed.

Results: MicroRNA-126 regulates the response of endothelial cells to VEGF, through directly repressing multiple targets, including Sprouty-related EVH1 domain-containing protein 1 (SPRED1) and phosphoinositol-3 kinase regulatory subunit 2 (PIK3R2/p85-b). MicroRNA-126 -3p and microRNA-126 -5p have cell-type and strandspecific functions and also various targets in angiogenesis that lead to the regulation of angiogenesis via different pathways and consequently diverse responses.

Conclusion: MicroRNA-126 can bind to multiple targets and potentially be both positive and negative regulators of gene expression. Thus, microRNA-126 could cause the opposite biological effects depending on the context. As a result, understanding the different cellular pathways through which microRNA-126 regulates angiogenesis in various situations is a critical aspect in the development of novel and effective treatments for diseases with insufficient angiogenesis.

Keywords: microRNA-126, dual role, angiogenesis, VEGF pathway, endothelial cells, hypoxia.

[1]
Zhang J, Sun X-J, Chen J, et al. Increasing the miR-126 expression in the peripheral blood of patients with diabetic foot ulcers treated with maggot debridement therapy. J Diabetes Complications 2017; 31(1): 241-4.
[http://dx.doi.org/10.1016/j.jdiacomp.2016.07.026 ] [PMID: 27623390]
[2]
Kulshreshtha R, Ferracin M, Wojcik SE, et al. A microRNA signature of hypoxia. Mol Cell Biol 2007; 27(5): 1859-67.
[http://dx.doi.org/10.1128/MCB.01395-06 ] [PMID: 17194750]
[3]
Treiber T, Treiber N, Plessmann U, et al. A compendium of RNA-binding proteins that regulate microRNA biogenesis Molecular cell 2017; 66(2): 270-84. e13.
[4]
Friedman RC, Farh KK-H, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 2009; 19(1): 92-105.
[http://dx.doi.org/10.1101/gr.082701.108 ] [PMID: 18955434]
[5]
Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov 2017; 16(3): 203-22.
[http://dx.doi.org/10.1038/nrd.2016.246 ] [PMID: 28209991]
[6]
Piriyapongsa J, Mariño-Ramírez L, Jordan IK. Origin and evolution of human microRNAs from transposable elements. Genetics 2007; 176(2): 1323-37.
[http://dx.doi.org/10.1534/genetics.107.072553 ] [PMID: 17435244]
[7]
Urbich C, Kuehbacher A, Dimmeler S. Role of microRNAs in vascular diseases, inflammation, and angiogenesis. Cardiovasc Res 2008; 79(4): 581-8.
[http://dx.doi.org/10.1093/cvr/cvn156 ] [PMID: 18550634]
[8]
Calin GA, Ferracin M, Cimmino A, et al. A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 2005; 353(17): 1793-801.
[http://dx.doi.org/10.1056/NEJMoa050995 ] [PMID: 16251535]
[9]
Kim VN, Han J, Siomi MC. Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 2009; 10(2): 126-39.
[http://dx.doi.org/10.1038/nrm2632 ] [PMID: 19165215]
[10]
Lee Y, Kim M, Han J, et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J 2004; 23(20): 4051-60.
[http://dx.doi.org/10.1038/sj.emboj.7600385 ] [PMID: 15372072]
[11]
Ipsaro JJ, Joshua-Tor L. From guide to target: molecular insights into eukaryotic RNA-interference machinery. Nat Struct Mol Biol 2015; 22(1): 20-8.
[http://dx.doi.org/10.1038/nsmb.2931 ] [PMID: 25565029]
[12]
MacRae IJ, Ma E, Zhou M, Robinson CV, Doudna JA. In vitro reconstitution of the human RISC-loading complex. Proc Natl Acad Sci USA 2008; 105(2): 512-7.
[http://dx.doi.org/10.1073/pnas.0710869105 ] [PMID: 18178619]
[13]
Chendrimada TP, Gregory RI, Kumaraswamy E, et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 2005; 436(7051): 740-4.
[http://dx.doi.org/10.1038/nature03868 ] [PMID: 15973356]
[14]
Dueck A, Meister G. Assembly and function of small RNA - argonaute protein complexes. Biol Chem 2014; 395(6): 611-29.
[http://dx.doi.org/10.1515/hsz-2014-0116 ] [PMID: 24603840]
[15]
Jonas S, Izaurralde E. Towards a molecular understanding of microRNA-mediated gene silencing. Nat Rev Genet 2015; 16(7): 421-33.
[http://dx.doi.org/10.1038/nrg3965 ] [PMID: 26077373]
[16]
Norton K-A, Popel AS. Effects of endothelial cell proliferation and migration rates in a computational model of sprouting angiogenesis. Sci Rep 2016; 6: 36992.
[http://dx.doi.org/10.1038/srep36992 ] [PMID: 27841344]
[17]
Birbrair A, Zhang T, Wang Z-M, Messi ML, Mintz A, Delbono O. Pericytes at the intersection between tissue regeneration and pathology. Clin Sci (Lond) 2015; 128(2): 81-93.
[http://dx.doi.org/10.1042/CS20140278 ] [PMID: 25236972]
[18]
Suárez Y, Fernández-Hernando C, Pober JS, Sessa WC. Dicer dependent microRNAs regulate gene expression and functions in human endothelial cells. Circ Res 2007; 100(8): 1164-73.
[http://dx.doi.org/10.1161/01.RES.0000265065.26744.17 ] [PMID: 17379831]
[19]
Kuehbacher A, Urbich C, Zeiher AM, Dimmeler S. Role of Dicer and Drosha for endothelial microRNA expression and angiogenesis. Circ Res 2007; 101(1): 59-68.
[http://dx.doi.org/10.1161/CIRCRESAHA.107.153916 ] [PMID: 17540974]
[20]
Wang S, Olson EN. AngiomiRs--key regulators of angiogenesis. Curr Opin Genet Dev 2009; 19(3): 205-11.
[http://dx.doi.org/10.1016/j.gde.2009.04.002 ] [PMID: 19446450]
[21]
Jamaluddin MS, Weakley SM, Zhang L, et al. miRNAs: roles and clinical applications in vascular disease. Expert Rev Mol Diagn 2011; 11(1): 79-89.
[http://dx.doi.org/10.1586/erm.10.103 ] [PMID: 21171923]
[22]
Würdinger T, Tannous BA, Saydam O, et al. miR-296 regulates growth factor receptor overexpression in angiogenic endothelial cells. Cancer Cell 2008; 14(5): 382-93.
[http://dx.doi.org/10.1016/j.ccr.2008.10.005 ] [PMID: 18977327]
[23]
Fish JE, Santoro MM, Morton SU, et al. miR-126 regulates angiogenic signaling and vascular integrity. Dev Cell 2008; 15(2): 272-84.
[http://dx.doi.org/10.1016/j.devcel.2008.07.008 ] [PMID: 18694566]
[24]
Harris TA, Yamakuchi M, Ferlito M, Mendell JT, Lowenstein CJ. MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1. Proc Natl Acad Sci USA 2008; 105(5): 1516-21.
[http://dx.doi.org/10.1073/pnas.0707493105 ] [PMID: 18227515]
[25]
Dews M, Homayouni A, Yu D, et al. Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nat Genet 2006; 38(9): 1060-5.
[http://dx.doi.org/10.1038/ng1855 ] [PMID: 16878133]
[26]
Chen Y, Gorski DH. Regulation of angiogenesis through a microRNA (miR-130a) that down-regulates antiangiogenic homeobox genes GAX and HOXA5. Blood 2008; 111(3): 1217-26.
[http://dx.doi.org/10.1182/blood-2007-07-104133 ] [PMID: 17957028]
[27]
Pulkkinen K, Malm T, Turunen M, Koistinaho J, Ylä-Herttuala S. Hypoxia induces microRNA miR-210 in vitro and in vivo ephrin-A3 and neuronal pentraxin 1 are potentially regulated by miR-210. FEBS Lett 2008; 582(16): 2397-401.
[http://dx.doi.org/10.1016/j.febslet.2008.05.048 ] [PMID: 18539147]
[28]
Lee DY, Deng Z, Wang C-H, Yang BB. MicroRNA-378 promotes cell survival, tumor growth, and angiogenesis by targeting SuFu and Fus-1 expression. Proc Natl Acad Sci USA 2007; 104(51): 20350-5.
[http://dx.doi.org/10.1073/pnas.0706901104 ] [PMID: 18077375]
[29]
Peng W, Liu YN, Zhu SQ, Li WQ, Guo FC. The correlation of circulating pro-angiogenic miRNAs’ expressions with disease risk, clinicopathological features, and survival profiles in gastric cancer. Cancer Med 2018; 7(8): 3773-91.
[http://dx.doi.org/10.1002/cam4.1618 ] [PMID: 30003708]
[30]
Yang D, Wang J, Xiao M, Zhou T, Shi X. Role of Mir-155 in controlling HIF-1α level and promoting endothelial cell maturation. Sci Rep 2016; 6: 35316.
[http://dx.doi.org/10.1038/srep35316 ] [PMID: 27731397]
[31]
Ghosh G, Subramanian IV, Adhikari N, et al. Hypoxia-induced microRNA-424 expression in human endothelial cells regulates HIF-α isoforms and promotes angiogenesis. J Clin Invest 2010; 120(11): 4141-54.
[http://dx.doi.org/10.1172/JCI42980 ] [PMID: 20972335]
[32]
Fiedler J, Jazbutyte V, Kirchmaier BC, et al. MicroRNA-24 regulates vascularity after myocardial infarction. Circulation 2011; 124(6): 720-30.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.111.039008 ] [PMID: 21788589]
[33]
Li Y, Song Y-H, Li F, Yang T, Lu YW, Geng Y-J. MicroRNA-221 regulates high glucose-induced endothelial dysfunction. Biochem Biophys Res Commun 2009; 381(1): 81-3.
[http://dx.doi.org/10.1016/j.bbrc.2009.02.013 ] [PMID: 19351599]
[34]
Sinha M, Ghatak S, Roy S, Sen CK. MicroRNA-200b as a switch for inducible adult angiogenesis. Antioxid Redox Signal 2015; 22(14): 1257-72.
[http://dx.doi.org/10.1089/ars.2014.6065 ] [PMID: 25761972]
[35]
Grundmann S, Hans FP, Kinniry S, et al. MicroRNA-100 regulates neovascularization by suppression of mammalian target of rapamycin in endothelial and vascular smooth muscle cells. Circulation 2011; 123(9): 999-1009.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.110.000323 ] [PMID: 21339483]
[36]
Guo C-J, Pan Q, Li D-G, Sun H, Liu B-W. miR-15b and miR-16 are implicated in activation of the rat hepatic stellate cell: An essential role for apoptosis. J Hepatol 2009; 50(4): 766-78.
[http://dx.doi.org/10.1016/j.jhep.2008.11.025 ] [PMID: 19232449]
[37]
Slevin M, Krupinski J, Gaffney J, et al. Hyaluronan-mediated angiogenesis in vascular disease: uncovering RHAMM and CD44 receptor signaling pathways. Matrix Biol 2007; 26(1): 58-68.
[http://dx.doi.org/10.1016/j.matbio.2006.08.261 ] [PMID: 17055233]
[38]
Wang XH, Qian RZ, Zhang W, Chen SF, Jin HM, Hu RM. MicroRNA-320 expression in myocardial microvascular endothelial cells and its relationship with insulin-like growth factor-1 in type 2 diabetic rats. Clin Exp Pharmacol Physiol 2009; 36(2): 181-8.
[http://dx.doi.org/10.1111/j.1440-1681.2008.05057.x ] [PMID: 18986336]
[39]
Wang S, Aurora AB, Johnson BA, et al. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell 2008; 15(2): 261-71.
[http://dx.doi.org/10.1016/j.devcel.2008.07.002 ] [PMID: 18694565]
[40]
Harris TA, Yamakuchi M, Kondo M, Oettgen P, Lowenstein CJ. Ets-1 and Ets-2 regulate the expression of microRNA-126 in endothelial cells. Arterioscler Thromb Vasc Biol 2010; 30(10): 1990-7.
[http://dx.doi.org/10.1161/ATVBAHA.110.211706 ] [PMID: 20671229]
[41]
Goradel NH, Mohammadi N, Haghi-Aminjan H, Farhood B, Negahdari B, Sahebkar A. Regulation of tumor angiogenesis by microRNAs: State of the art. J Cell Physiol 2019; 234(2): 1099-110.
[http://dx.doi.org/10.1002/jcp.27051 ] [PMID: 30070704]
[42]
Zou J, Li W-Q, Li Q, et al. Two functional microRNA-126s repress a novel target gene p21-activated kinase 1 to regulate vascular integrity in zebrafish. Circ Res 2011; 108(2): 201-9.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.225045 ] [PMID: 21148433]
[43]
Sun Y, Bai Y, Zhang F, Wang Y, Guo Y, Guo L. miR-126 inhibits non-small cell lung cancer cells proliferation by targeting EGFL7. Biochem Biophys Res Commun 2010; 391(3): 1483-9.
[http://dx.doi.org/10.1016/j.bbrc.2009.12.098 ] [PMID: 20034472]
[44]
Koh MY, Powis G. Passing the baton: the HIF switch. Trends Biochem Sci 2012; 37(9): 364-72.
[http://dx.doi.org/10.1016/j.tibs.2012.06.004 ] [PMID: 22818162]
[45]
Sen CK, Roy S, Eds. OxymiRs in cutaneous development, wound repair and regeneration Seminars in cell & developmental biology. Elsevier 2012.
[46]
van Solingen C, Seghers L, Bijkerk R, et al. Antagomir-mediated silencing of endothelial cell specific microRNA-126 impairs ischemia-induced angiogenesis. J Cell Mol Med 2009; 13(8A): 1577-85.
[http://dx.doi.org/10.1111/j.1582-4934.2008.00613.x ] [PMID: 19120690]
[47]
Luo Q, Guo D, Liu G, Chen G, Hang M, Jin M. Exosomes from MiR-126-overexpressing adscs are therapeutic in relieving acute myocardial ischaemic injury. Cell Physiol Biochem 2017; 44(6): 2105-16.
[http://dx.doi.org/10.1159/000485949 ] [PMID: 29241208]
[48]
Ye P, Liu J, He F, Xu W, Yao K. Hypoxia-induced deregulation of miR-126 and its regulative effect on VEGF and MMP-9 expression. Int J Med Sci 2013; 11(1): 17-23.
[http://dx.doi.org/10.7150/ijms.7329 ] [PMID: 24396282]
[49]
Zhou J, Li Y-S, Nguyen P, et al. Regulation of vascular smooth muscle cell turnover by endothelial cell-secreted microRNA-126: role of shear stress. Circ Res 2013; 113(1): 40-51.
[http://dx.doi.org/10.1161/CIRCRESAHA.113.280883 ] [PMID: 23603512]
[50]
Li Y, Tian L, Sun D, Yin D. Curcumin ameliorates atherosclerosis through upregulation of miR-126. J Cell Physiol 2019; 234(11): 21049-59.
[http://dx.doi.org/10.1002/jcp.28708 ] [PMID: 31016760]
[51]
Zhou Q, Anderson C, Hanus J, et al. Strand and cell type-specific function of microRNA-126 in angiogenesis. Mol Ther 2016; 24(10): 1823-35.
[http://dx.doi.org/10.1038/mt.2016.108 ] [PMID: 27203443]
[52]
Schober A, Nazari-Jahantigh M, Wei Y, et al. MicroRNA-126-5p promotes endothelial proliferation and limits atherosclerosis by suppressing Dlk1. Nat Med 2014; 20(4): 368-76.
[http://dx.doi.org/10.1038/nm.3487 ] [PMID: 24584117]
[53]
Kuhnert F, Mancuso MR, Hampton J, et al. Attribution of vascular phenotypes of the murine Egfl7 locus to the microRNA miR-126. Development 2008; 135(24): 3989-93.
[http://dx.doi.org/10.1242/dev.029736 ] [PMID: 18987025]
[54]
Nie Z-C, Weng W-H, Shang Y-S, et al. MicroRNA-126 is down-regulated in human esophageal squamous cell carcinoma and inhibits the proliferation and migration in EC109 cell via PI3K/AKT signaling pathway. Int J Clin Exp Pathol 2015; 8(5): 4745-54.
[PMID: 26191164]
[55]
Xi T, Jin F, Zhu Y, et al. MicroRNA-126-3p attenuates blood-brain barrier disruption, cerebral edema and neuronal injury following intracerebral hemorrhage by regulating PIK3R2 and Akt. Biochem Biophys Res Commun 2017; 494(1-2): 144-51.
[http://dx.doi.org/10.1016/j.bbrc.2017.10.064 ] [PMID: 29042193]
[56]
Ye L, Peng Y, Mo J, Yao Y. MiR-126 enhances VEGF expression in induced pluripotent stem cell-derived retinal neural stem cells by targeting spred-1. Int J Clin Exp Pathol 2018; 11(2): 1023-30.
[PMID: 31938197]
[57]
Villain G, Poissonnier L, Noueihed B, et al. miR-126-5p promotes retinal endothelial cell survival through SetD5 regulation in neurons. Development 2018; 145(1): dev156232.
[http://dx.doi.org/10.1242/dev.156232 ] [PMID: 29180574]
[58]
Cai X, McGinnis JF. Diabetic retinopathy: animal models, therapies, and perspectives. J Dia Res 2016; 2016: 3789217.
[59]
Xiong F, Du X, Hu J, Li T, Du S, Wu Q. Altered retinal microRNA expression profiles in early diabetic retinopathy: an in silico analysis. Curr Eye Res 2014; 39(7): 720-9.
[http://dx.doi.org/10.3109/02713683.2013.872280 ] [PMID: 24502381]
[60]
Yang W-Z, Yang J, Xue L-P, Xiao L-B, Li Y. MiR-126 overexpression inhibits high glucose-induced migration and tube formation of rhesus macaque choroid-retinal endothelial cells by obstructing VEGFA and PIK3R2. J Diabetes Complications 2017; 31(4): 653-63.
[http://dx.doi.org/10.1016/j.jdiacomp.2016.12.004 ] [PMID: 28131600]
[61]
Nicoli S, Standley C, Walker P, Hurlstone A, Fogarty KE, Lawson ND. MicroRNA-mediated integration of haemodynamics and Vegf signalling during angiogenesis. Nature 2010; 464(7292): 1196-200.
[http://dx.doi.org/10.1038/nature08889 ] [PMID: 20364122]
[62]
Mocharla P, Briand S, Giannotti G, et al. AngiomiR-126 expression and secretion from circulating CD34(+) and CD14(+) PBMCs: role for proangiogenic effects and alterations in type 2 diabetics. Blood 2013; 121(1): 226-36.
[http://dx.doi.org/10.1182/blood-2012-01-407106 ] [PMID: 23144172]
[63]
Wang X, Lian Y, Wen X, et al. Expression of miR-126 and its potential function in coronary artery disease. Afr Health Sci 2017; 17(2): 474-80.
[http://dx.doi.org/10.4314/ahs.v17i2.22 ] [PMID: 29062343]
[64]
Zhu N, Zhang D, Xie H, et al. Endothelial-specific intron-derived miR-126 is down-regulated in human breast cancer and targets both VEGFA and PIK3R2. Mol Cell Biochem 2011; 351(1-2): 157-64.
[http://dx.doi.org/10.1007/s11010-011-0723-7 ] [PMID: 21249429]
[65]
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin 2015; 65(1): 5-29.
[http://dx.doi.org/10.3322/caac.21254 ] [PMID: 25559415]
[66]
Lu YY, Sweredoski MJ, Huss D, Lansford R, Hess S, Tirrell DA. Prometastatic GPCR CD97 is a direct target of tumor suppressor microRNA-126. ACS Chem Biol 2014; 9(2): 334-8.
[http://dx.doi.org/10.1021/cb400704n ] [PMID: 24274104]
[67]
Png KJ, Halberg N, Yoshida M, Tavazoie SF. A microRNA regulon that mediates endothelial recruitment and metastasis by cancer cells. Nature 2011; 481(7380): 190-4.
[http://dx.doi.org/10.1038/nature10661 ] [PMID: 22170610]
[68]
Wagstaff L, Kelwick R, Decock J, Edwards DR. The roles of ADAMTS metalloproteinases in tumorigenesis and metastasis. Front Biosci 2011; 16(1861): 72.
[http://dx.doi.org/10.2741/3827]
[69]
Wang C-Z, Yuan P, Li Y. MiR-126 regulated breast cancer cell invasion by targeting ADAM9. Int J Clin Exp Pathol 2015; 8(6): 6547-53.
[PMID: 26261534]
[70]
Argiris A, Karamouzis MV, Raben D, Ferris RL. Head and neck cancer. Lancet 2008; 371(9625): 1695-709.
[http://dx.doi.org/10.1016/S0140-6736(08)60728-X ] [PMID: 18486742]
[71]
Sasahira T, Kurihara M, Bhawal UK, et al. Downregulation of miR-126 induces angiogenesis and lymphangiogenesis by activation of VEGF-A in oral cancer. Br J Cancer 2012; 107(4): 700-6.
[http://dx.doi.org/10.1038/bjc.2012.330 ] [PMID: 22836510]
[72]
Dela Cruz CS, Tanoue LT, Matthay RA. Lung cancer: epidemiology, etiology, and prevention. Clin Chest Med 2011; 32(4): 605-44.
[http://dx.doi.org/10.1016/j.ccm.2011.09.001 ] [PMID: 22054876]
[73]
Liu B, Peng X-C, Zheng X-L, Wang J, Qin Y-W. MiR-126 restoration down-regulate VEGF and inhibit the growth of lung cancer cell lines in vitro and in vivo. Lung Cancer 2009; 66(2): 169-75.
[http://dx.doi.org/10.1016/j.lungcan.2009.01.010 ] [PMID: 19223090]
[74]
Liu R, Zhang YS, Zhang S, et al. MiR-126-3p suppresses the growth, migration and invasion of NSCLC via targeting CCR1. Eur Rev Med Pharmacol Sci 2019; 23(2): 679-89.
[PMID: 30720175]
[75]
Nguyen DX, Bos PD, Massagué J. Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer 2009; 9(4): 274-84.
[http://dx.doi.org/10.1038/nrc2622 ] [PMID: 19308067]
[76]
Salajegheh A, Vosgha H, Rahman MA, Amin M, Smith RA, Lam AK-Y. Interactive role of miR-126 on VEGF-A and progression of papillary and undifferentiated thyroid carcinoma. Hum Pathol 2016; 51: 75-85.
[http://dx.doi.org/10.1016/j.humpath.2015.12.018 ] [PMID: 27067785]
[77]
Liu R, Gu J, Jiang P, et al. DNMT1-microRNA126 epigenetic circuit contributes to esophageal squamous cell carcinoma growth via ADAM9-EGFR-AKT signaling. Clin Cancer Res 2015; 21(4): 854-63.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-1740 ] [PMID: 25512445]
[78]
Liu S-G, Qin X-G, Zhao B-S, et al. Differential expression of miRNAs in esophageal cancer tissue. Oncol Lett 2013; 5(5): 1639-42.
[http://dx.doi.org/10.3892/ol.2013.1251 ] [PMID: 23761828]
[79]
Kong R, Ma Y, Feng J, et al. The crucial role of miR-126 on suppressing progression of esophageal cancer by targeting VEGF-A. Cell Mol Biol Lett 2016; 21(1): 3.
[http://dx.doi.org/10.1186/s11658-016-0004-2 ] [PMID: 28536606]
[80]
Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 2015; 136(5): E359-86.
[http://dx.doi.org/10.1002/ijc.29210 ] [PMID: 25220842]
[81]
Banerjee N, Kim H, Talcott S, Mertens-Talcott S. Pomegranate polyphenolics suppressed azoxymethane-induced colorectal aberrant crypt foci and inflammation: possible role of miR-126/VCAM-1 and miR-126/PI3K/AKT/mTOR. Carcinogenesis 2013; 34(12): 2814-22.
[http://dx.doi.org/10.1093/carcin/bgt295 ] [PMID: 23996930]
[82]
Li Z, Li N, Wu M, Li X, Luo Z, Wang X. Expression of miR-126 suppresses migration and invasion of colon cancer cells by targeting CXCR4. Mol Cell Biochem 2013; 381(1-2): 233-42.
[http://dx.doi.org/10.1007/s11010-013-1707-6 ] [PMID: 23744532]
[83]
Zhang Y, Wang X, Xu B, et al. Epigenetic silencing of miR-126 contributes to tumor invasion and angiogenesis in colorectal cancer. Oncol Rep 2013; 30(4): 1976-84.
[http://dx.doi.org/10.3892/or.2013.2633 ] [PMID: 23900443]
[84]
Fernández M, Semela D, Bruix J, Colle I, Pinzani M, Bosch J. Angiogenesis in liver disease. J Hepatol 2009; 50(3): 604-20.
[http://dx.doi.org/10.1016/j.jhep.2008.12.011 ] [PMID: 19157625]
[85]
Du C, Lv Z, Cao L, et al. MiR-126-3p suppresses tumor metastasis and angiogenesis of hepatocellular carcinoma by targeting LRP6 and PIK3R2. J Transl Med 2014; 12(1): 259.
[http://dx.doi.org/10.1186/s12967-014-0259-1 ] [PMID: 25240815]
[86]
Tung EK-K, Wong BY-C, Yau T-O, Ng IO-L. Upregulation of the Wnt co-receptor LRP6 promotes hepatocarcinogenesis and enhances cell invasion. PLoS One 2012; 7(5)e36565
[http://dx.doi.org/10.1371/journal.pone.0036565 ] [PMID: 22570728]
[87]
Dahmani R, Just P-A, Perret C. The Wnt/β-catenin pathway as a therapeutic target in human hepatocellular carcinoma. Clin Res Hepatol Gastroenterol 2011; 35(11): 709-13.
[http://dx.doi.org/10.1016/j.clinre.2011.05.010 ] [PMID: 21778132]
[88]
Villanueva A, Llovet JM. Targeted therapies for hepatocellular carcinoma. Gastroenterology 2011; 140(5): 1410-26.
[http://dx.doi.org/10.1053/j.gastro.2011.03.006 ] [PMID: 21406195]
[89]
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin 2016; 66(1): 7-30.
[http://dx.doi.org/10.3322/caac.21332 ] [PMID: 26742998]
[90]
Zhang GM, Luo L, Ding XM, et al. MicroRNA-126 inhibits tumor cell invasion and metastasis by downregulating ROCK1 in renal cell carcinoma. Mol Med Rep 2016; 13(6): 5029-2036.
[http://dx.doi.org/10.3892/mmr.2016.5160 ] [PMID: 27108693]
[91]
Carlsson J, Christiansen J, Davidsson S, Giunchi F, Fiorentino M, Sundqvist P. The potential role of miR-126, miR-21 and miR-10b as prognostic biomarkers in renal cell carcinoma. Oncol Lett 2019; 17(5): 4566-74.
[http://dx.doi.org/10.3892/ol.2019.10142 ] [PMID: 30988818]
[92]
Goyama S, Mulloy JC. Molecular pathogenesis of core binding factor leukemia: current knowledge and future prospects. Int J Hematol 2011; 94(2): 126-33.
[http://dx.doi.org/10.1007/s12185-011-0858-z ] [PMID: 21537931]
[93]
Li Z, Chen P, Su R, et al. Overexpression and knockout of miR-126 both promote leukemogenesis. Blood 2015; 126(17): 2005-15.
[http://dx.doi.org/10.1182/blood-2015-04-639062 ] [PMID: 26361793]
[94]
Kitano M, Rahbari R, Patterson EE, et al. Expression profiling of difficult-to-diagnose thyroid histologic subtypes shows distinct expression profiles and identify candidate diagnostic microRNAs. Ann Surg Oncol 2011; 18(12): 3443-52.
[http://dx.doi.org/10.1245/s10434-011-1766-4 ] [PMID: 21553140]
[95]
Huang TH, Chu TY. Repression of miR-126 and upregulation of adrenomedullin in the stromal endothelium by cancer-stromal cross talks confers angiogenesis of cervical cancer. Oncogene 2014; 33(28): 3636-47.
[http://dx.doi.org/10.1038/onc.2013.335 ] [PMID: 24037526]
[96]
Feng S-D, Mao Z, Liu C, et al. Simultaneous overexpression of miR-126 and miR-34a induces a superior antitumor efficacy in pancreatic adenocarcinoma. OncoTargets Ther 2017; 10: 5591-604.
[http://dx.doi.org/10.2147/OTT.S149632 ] [PMID: 29200874]
[97]
Chen H, Li L, Wang S, et al. Reduced miR-126 expression facilitates angiogenesis of gastric cancer through its regulation on VEGF-A. Oncotarget 2014; 5(23): 11873-85.
[http://dx.doi.org/10.18632/oncotarget.2662 ] [PMID: 25428912]
[98]
Liu LY, Wang W, Zhao LY, et al. Mir-126 inhibits growth of SGC-7901 cells by synergistically targeting the oncogenes PI3KR2 and Crk, and the tumor suppressor PLK2. Int J Oncol 2014; 45(3): 1257-65.
[http://dx.doi.org/10.3892/ijo.2014.2516 ] [PMID: 24969300]
[99]
Iorio MV, Croce CM. Causes and consequences of microRNA dysregulation. Cancer J 2012; 18(3): 215-22.
[http://dx.doi.org/10.1097/PPO.0b013e318250c001 ] [PMID: 22647357]
[100]
Wang B, Hsu SH, Wang X, et al. Reciprocal regulation of microRNA-122 and c-Myc in hepatocellular cancer: role of E2F1 and transcription factor dimerization partner 2. Hepatology 2014; 59(2): 555-66.
[http://dx.doi.org/10.1002/hep.26712 ] [PMID: 24038073]
[101]
Hata A, Kashima R. Dysregulation of microRNA biogenesis machinery in cancer. Crit Rev Biochem Mol Biol 2016; 51(3): 121-34.
[http://dx.doi.org/10.3109/10409238.2015.1117054 ] [PMID: 26628006]
[102]
Wei Y, Nazari-Jahantigh M, Neth P, Weber C, Schober A. MicroRNA-126, -145, and -155: a therapeutic triad in atherosclerosis? Arterioscler Thromb Vasc Biol 2013; 33(3): 449-54.
[http://dx.doi.org/10.1161/ATVBAHA.112.300279 ] [PMID: 23324496]
[103]
Fichtlscherer S, De Rosa S, Fox H, et al. Circulating microRNAs in patients with coronary artery disease. Circ Res 2010; 107(5): 677-84.
[http://dx.doi.org/10.1161/CIRCRESAHA.109.215566 ] [PMID: 20595655]
[104]
Alique M, Bodega G, Giannarelli C, Carracedo J, Ramírez R. MicroRNA-126 regulates Hypoxia-Inducible Factor-1α which inhibited migration, proliferation, and angiogenesis in replicative endothelial senescence. Sci Rep 2019; 9(1): 7381.
[http://dx.doi.org/10.1038/s41598-019-43689-3 ] [PMID: 31089163]
[105]
Kong YW, Ferland-McCollough D, Jackson TJ, Bushell M. microRNAs in cancer management. Lancet Oncol 2012; 13(6): e249-58.
[http://dx.doi.org/10.1016/S1470-2045(12)70073-6 ] [PMID: 22652233]
[106]
Kalariya N, Brassil K, Calin G. MicroRNAs: Clinical trials and potential applications. Clin J Oncol Nurs 2017; 21(5): 554-9.
[http://dx.doi.org/10.1188/17.CJON.554-559 ] [PMID: 28945717]
[107]
Bijkerk R, van Solingen C, de Boer HC, et al. Hematopoietic microRNA-126 protects against renal ischemia/reperfusion injury by promoting vascular integrity. J Am Soc Nephrol 2014; 25(8): 1710-22.
[http://dx.doi.org/10.1681/ASN.2013060640 ] [PMID: 24610930]
[108]
Hua JY, He YZ, Xu Y, Jiang XH, Ye W, Pan ZM. Emodin prevents intima thickness via Wnt4/Dvl-1/β-catenin signaling pathway mediated by miR-126 in balloon-injured carotid artery rats. Exp Mol Med 2015; 47(6): e170.
[http://dx.doi.org/10.1038/emm.2015.36 ] [PMID: 26113441]
[109]
Chistiakov DA, Orekhov AN, Bobryshev YV. The role of miR-126 in embryonic angiogenesis, adult vascular homeostasis, and vascular repair and its alterations in atherosclerotic disease. J Mol Cell Cardiol 2016; 97: 47-55.
[http://dx.doi.org/10.1016/j.yjmcc.2016.05.007 ] [PMID: 27180261]
[110]
Barwari T, Joshi A, Mayr M. MicroRNAs in cardiovascular disease. J Am Coll Cardiol 2016; 68(23): 2577-84.
[http://dx.doi.org/10.1016/j.jacc.2016.09.945 ] [PMID: 27931616]
[111]
Endo-Takahashi Y, Negishi Y, Nakamura A, et al. Systemic delivery of miR-126 by miRNA-loaded Bubble liposomes for the treatment of hindlimb ischemia. Sci Rep 2014; 4: 3883.
[http://dx.doi.org/10.1038/srep03883 ] [PMID: 24457599]
[112]
Zhang Y, Yang P, Sun T, et al. miR-126 and miR-126* repress recruitment of mesenchymal stem cells and inflammatory monocytes to inhibit breast cancer metastasis. Nat Cell Biol 2013; 15(3): 284-94.
[http://dx.doi.org/10.1038/ncb2690 ] [PMID: 23396050]