Monoaminergic Receptors as Modulators of the Perivascular Sympathetic and Sensory CGRPergic Outflows

Page: [790 - 808] Pages: 19

  • * (Excluding Mailing and Handling)

Abstract

Blood pressure is a highly controlled cardiovascular parameter that normally guarantees an adequate blood supply to all body tissues. This parameter is mainly regulated by peripheral vascular resistance and is maintained by local mediators (i.e., autacoids), and by the nervous and endocrine systems. Regarding the nervous system, blood pressure can be modulated at the central level by regulating the autonomic output. However, at peripheral level, there exists a modulation by activation of prejunctional monoaminergic receptors in autonomic- or sensory-perivascular fibers. These modulatory mechanisms on resistance blood vessels exert an effect on the release of neuroactive substances from the autonomic or sensory fibers that modify blood pressure. Certainly, resistance blood vessels are innervated by perivascular: (i) autonomic sympathetic fibers (producing vasoconstriction mainly by noradrenaline release); and (ii) peptidergic sensory fibers [producing vasodilatation mainly by calcitonin gene-related peptide (CGRP) release]. In the last years, by using pithed rats, several monoaminergic mechanisms for controlling both the sympathetic and sensory perivascular outflows have been elucidated. Additionally, several studies have shown the functions of many monoaminergic auto-receptors and hetero-receptors expressed on perivascular fibers that modulate neurotransmitter release. On this basis, the present review: (i) summarizes the modulation of the peripheral vascular tone by adrenergic, serotoninergic, dopaminergic, and histaminergic receptors on perivascular autonomic (sympathetic) and sensory fibers, and (ii) highlights that these monoaminergic receptors are potential therapeutic targets for the development of novel medications to treat cardiovascular diseases (with some of them explored in clinical trials or already in clinical use).

Keywords: Blood pressure, CGRP, perivascular fibers, sensory outflow, sympathetic outflow.

Graphical Abstract

[1]
Joseph, P.; Leong, D.; McKee, M.; Anand, S.S.; Schwalm, J.D.; Teo, K.; Mente, A.; Yusuf, S. Reducing the global burden of cardiovascular disease, part 1: the epidemiology and risk factors. Circ. Res., 2017, 121(6), 677-694.
[http://dx.doi.org/10.1161/CIRCRESAHA.117.308903] [PMID: 28860318]
[2]
Westcott, E.B.; Segal, S.S. Perivascular innervation: a multiplicity of roles in vasomotor control and myoendothelial signaling. Microcirculation, 2013, 20(3), 217-238.
[http://dx.doi.org/10.1111/micc.12035] [PMID: 23289720]
[3]
Chopra, S.; Baby, C.; Jacob, J.J. Neuro-endocrine regulation of blood pressure. Indian J. Endocrinol. Metab.,, 2011, (15 Suppl 4(Suppl 4 ), , S281-S288.
[4]
Edvinsson, L.; Jansen Olesen, I.; Kingman, T.A.; McCulloch, J.; Uddman, R. Modification of vasoconstrictor responses in cerebral blood vessels by lesioning of the trigeminal nerve: possible involvement of CGRP. Cephalalgia, 1995, 15(5), 373-383.
[http://dx.doi.org/10.1046/j.1468-29821995.1505373.x] [PMID: 8536296]
[5]
Burnstock, G. Autonomic neuromuscular junctions: current developments and future directions. J. Anat., 1986, 146, 1-30.
[PMID: 3319994]
[6]
Burnstock, G.; Ralevic, V. New insights into the local regulation of blood flow by perivascular nerves and endothelium. Br. J. Plast. Surg., 1994, 47(8), 527-543.
[http://dx.doi.org/10.1016/0007-1226(94)90136-8] [PMID: 7697280]
[7]
Boehm, S.; Kubista, H. Fine tuning of sympathetic transmitter release via ionotropic and metabotropic presynaptic receptors. Pharmacol. Rev., 2002, 54(1), 43-99.
[http://dx.doi.org/10.1124/pr.54.1.43] [PMID: 11870260]
[8]
Mulvany, M.J.; Aalkjaer, C. Structure and function of small arteries. Physiol. Rev., 1990, 70(4), 921-961.
[http://dx.doi.org/10.1152/physrev.1990.70.4.921] [PMID: 2217559]
[9]
Taguchi, T.; Kawasaki, H.; Imamura, T.; Takasaki, K. Capsaicin-sensitive nonadrenergic and noncholinergic depressor response to spinal cord stimulation in the pithed rat. Brain Res., 1992, 572(1-2), 352-355.
[http://dx.doi.org/10.1016/0006-8993(92)90500-9] [PMID: 1351787]
[10]
Avilés-Rosas, V.H.; Rivera-Mancilla, E.; Marichal-Cancino, B.A.; Manrique-Maldonado, G.; Altamirano-Espinoza, A.H.; Maassen Van Den Brink, A.; Villalón, C.M. Olcegepant blocks neurogenic and non-neurogenic CGRPergic vasodepressor responses and facilitates noradrenergic vasopressor responses in pithed rats. Br. J. Pharmacol., 2017, 174(13), 2001-2014.
[http://dx.doi.org/10.1111/bph.13799] [PMID: 28369749]
[11]
MaassenVanDenBrink; A.; Meijer, J.; Villalón, C.M.; Ferrari, M.D. . Wiping Out CGRP: Potential cardiovascular risks. Trends Pharmacol. Sci., 2016, 37(9), 779-788.
[http://dx.doi.org/10.1016/j.tips.2016.06.002] [PMID: 27338837]
[12]
Kawasaki, H.; Nuki, C.; Saito, A.; Takasaki, K. Adrenergic modulation of calcitonin gene-related peptide (CGRP)-containing nerve-mediated vasodilation in the rat mesenteric resistance vessel. Brain Res., 1990, 506(2), 287-290.
[http://dx.doi.org/10.1016/0006-8993(90)91263-G] [PMID: 2154285]
[13]
Brain, S.D.; Cox, H.M. Neuropeptides and their receptors: innovative science providing novel therapeutic targets. Br. J. Pharmacol., 2006, 147(Suppl. 1), S202-S211.
[http://dx.doi.org/10.1038/sj.bjp.0706461] [PMID: 16402106]
[14]
Lundberg, J.M. Pharmacology of cotransmission in the autonomic nervous system: integrative aspects on amines, neuropeptides, adenosine triphosphate, amino acids and nitric oxide. Pharmacol. Rev., 1996, 48(1), 113-178.
[PMID: 8685245]
[15]
Kaufmann, H.; Norcliffe-Kaufmann, L.; Palma, J.A. Baroreflex Dysfunction. N. Engl. J. Med., 2020, 382(2), 163-178.
[http://dx.doi.org/10.1056/NEJMra1509723] [PMID: 31914243]
[16]
Head, G.A.; McCarty, R. Vagal and sympathetic components of the heart rate range and gain of the baroreceptor-heart rate reflex in conscious rats. J. Auton. Nerv. Syst., 1987, 21(2-3), 203-213.
[http://dx.doi.org/10.1016/0165-1838(87)90023-3] [PMID: 3450695]
[17]
Montalbano, M.J.; Loukas, M.; Oskouian, R.J.; Tubbs, R.S. Innervation of the blood vessels of the spinal cord: a comprehensive review. Neurosurg. Rev., 2018, 41(3), 733-735.
[http://dx.doi.org/10.1007/s10143-016-0788-6] [PMID: 27709410]
[18]
Taberner, L.; Bañón, A.; Alsina, B. Anatomical map of the cranial vasculature and sensory ganglia. J. Anat., 2018, 232(3), 431-439.
[http://dx.doi.org/10.1111/joa.12762] [PMID: 29235648]
[19]
Abu Bakar, H.; Robert Dunn, W.; Daly, C.; Ralevic, V. Sensory innervation of perivascular adipose tissue: a crucial role in artery vasodilatation and leptin release. Cardiovasc. Res., 2017, 113(8), 962-972.
[http://dx.doi.org/10.1093/cvr/cvx062] [PMID: 28371926]
[20]
Secomb, T.W. Theoretical models for regulation of blood flow. Microcirculation (New York, N.Y. : 1994),, 2008, 15(8), 765-775.
[21]
Boerman, E.M.; Sen, S.; Shaw, R.L.; Joshi, T.; Segal, S.S. Gene expression profiles of ion channels and receptors in mouse resistance arteries: Effects of cell type, vascular bed, and age. Microcirculation, 2018, 25(4), e12452.
[http://dx.doi.org/10.1111/micc.12452] [PMID: 29577514]
[22]
de Queiroz, D.B.; Sastre, E.; Caracuel, L.; Callejo, M.; Xavier, F.E.; Blanco-Rivero, J.; Balfagón, G. Alterations in perivascular innervation function in mesenteric arteries from offspring of diabetic rats. Br. J. Pharmacol., 2015, 172(19), 4699-4713.
[http://dx.doi.org/10.1111/bph.13244] [PMID: 26177571]
[23]
Sastre, E.; Caracuel, L.; Balfagón, G.; Blanco-Rivero, J. Aerobic exercise training increases nitrergic innervation function and decreases sympathetic innervation function in mesenteric artery from rats fed a high-fat diet. J. Hypertens., 2015, 33(9), 1819-1830.
[http://dx.doi.org/10.1097/HJH.0000000000000627] [PMID: 26103124]
[24]
McCabe-Sellers, B.J.; Staggs, C.G.; Bogle, M.L. Tyramine in foods and monoamine oxidase inhibitor drugs: A crossroad where medicine, nutrition, pharmacy, and food industry converge. J. Food Compos. Anal., 2006, 19, S58-S65.
[http://dx.doi.org/10.1016/j.jfca.2005.12.008]
[25]
Blackwell, B.; Mabbitt, L.A. Tyramine in cheese related to hypertensive crises after monoamine-oxidase inhibition. Lancet, 1965, 1(7392), 938-940.
[http://dx.doi.org/10.1016/S0140-6736(65)91257-2] [PMID: 14275713]
[26]
Wenker, I.C.; Abe, C.; Viar, K.E.; Stornetta, D.S.; Stornetta, R.L.; Guyenet, P.G. Blood pressure regulation by the rostral ventrolateral medulla in conscious rats: effects of hypoxia, hypercapnia, baroreceptor denervation, and anesthesia. J. Neurosci., 2017, 37(17), 4565-4583.
[http://dx.doi.org/10.1523/JNEUROSCI.3922-16.2017] [PMID: 28363984]
[27]
Zeng, W-Z.; Marshall, K.L.; Min, S.; Daou, I.; Chapleau, M.W.; Abboud, F.M.; Liberles, S.D.; Patapoutian, A. PIEZOs mediate neuronal sensing of blood pressure and the baroreceptor reflex. Science, 2018, 362(6413), 464-467.
[http://dx.doi.org/10.1126/science.aau6324] [PMID: 30361375]
[28]
Shipley, R.E.; Tilden, J.H. A pithed rat preparation suitable for assaying pressor substances. Proc. Soc. Exp. Biol. Med., 1947, 64(4), 453-455.
[http://dx.doi.org/10.3181/00379727-64-15828] [PMID: 20239456]
[29]
Lo, C.C.W.; Moosavi, S.M.; Bubb, K.J. The Regulation of Pulmonary Vascular Tone by Neuropeptides and the Implications for Pulmonary Hypertension. Front. Physiol., 2018, 9, 1167.
[http://dx.doi.org/10.3389/fphys.2018.01167] [PMID: 30190678]
[30]
Tjen-A-Looi, S.; Kraiczi, H.; Ekman, R.; Keith, I.M. Sensory CGRP depletion by capsaicin exacerbates hypoxia-induced pulmonary hypertension in rats. Regul. Pept., 1998, 74(1), 1-10.
[http://dx.doi.org/10.1016/S0167-0115(98)00007-X] [PMID: 9657352]
[31]
Gangula, P.R.; Zhao, H.; Supowit, S.C.; Wimalawansa, S.J.; Dipette, D.J.; Westlund, K.N.; Gagel, R.F.; Yallampalli, C. Increased blood pressure in alpha-calcitonin gene-related peptide/calcitonin gene knockout mice. Hypertension, 2000, 35(1 Pt 2), 470-475.
[http://dx.doi.org/10.1161/01.HYP.35.1.470] [PMID: 10642343]
[32]
Villalón, C.M.; Albarrán-Juárez, J.A.; Lozano-Cuenca, J.; Pertz, H.H.; Görnemann, T.; Centurión, D. Pharmacological profile of the clonidine-induced inhibition of vasodepressor sensory outflow in pithed rats: correlation with alpha(2A/2C)-adrenoceptors. Br. J. Pharmacol., 2008, 154(1), 51-59.
[http://dx.doi.org/10.1038/bjp.2008.49] [PMID: 18297098]
[33]
Han, S.P.; Naes, L.; Westfall, T.C. Calcitonin gene-related peptide is the endogenous mediator of nonadrenergic-noncholinergic vasodilation in rat mesentery. J. Pharmacol. Exp. Ther., 1990, 255(2), 423-428.
[PMID: 2243334]
[34]
González-Hernández, A.; Marichal-Cancino, B.A. MaassenVanDenBrink, A.; Villalón, C.M. Side effects associated with current and prospective antimigraine pharmacotherapies. Expert Opin. Drug Metab. Toxicol., 2018, 14(1), 25-41.
[http://dx.doi.org/10.1080/17425255.2018.1416097] [PMID: 29226741]
[35]
Aicher, S.A.; Drake, C.T. Clonidine evokes vasodepressor responses via alpha2-adrenergic receptors in gigantocellular reticular formation. J. Pharmacol. Exp. Ther., 1999, 289(2), 688-694.
[PMID: 10215641]
[36]
Birch, D.J.; Turmaine, M.; Boulos, P.B.; Burnstock, G. Sympathetic innervation of human mesenteric artery and vein. J. Vasc. Res., 2008, 45(4), 323-332.
[http://dx.doi.org/10.1159/000119095] [PMID: 18311081]
[37]
Hussain, M.B.; Marshall, I. Alpha(1)-adrenoceptor subtypes mediating contractions of the rat mesenteric artery. Eur. J. Pharmacol., 2000, 395(1), 69-76.
[http://dx.doi.org/10.1016/S0014-2999(00)00220-X] [PMID: 10781676]
[38]
Zeller, J.; Poulsen, K.T.; Sutton, J.E.; Abdiche, Y.N.; Collier, S.; Chopra, R.; Garcia, C.A.; Pons, J.; Rosenthal, A.; Shelton, D.L. CGRP function-blocking antibodies inhibit neurogenic vasodilatation without affecting heart rate or arterial blood pressure in the rat. Br. J. Pharmacol., 2008, 155(7), 1093-1103.
[http://dx.doi.org/10.1038/bjp.2008.334] [PMID: 18776916]
[39]
Smillie, S.J.; Brain, S.D. Calcitonin gene-related peptide (CGRP) and its role in hypertension. Neuropeptides, 2011, 45(2), 93-104.
[http://dx.doi.org/10.1016/j.npep.2010.12.002] [PMID: 21269690]
[40]
Smillie, S.J.; King, R.; Kodji, X.; Outzen, E.; Pozsgai, G.; Fernandes, E.; Marshall, N.; de Winter, P.; Heads, R.J.; Dessapt-Baradez, C.; Gnudi, L.; Sams, A.; Shah, A.M.; Siow, R.C.; Brain, S.D. An ongoing role of α-calcitonin gene-related peptide as part of a protective network against hypertension, vascular hypertrophy, and oxidative stress. Hypertension, 2014, 63(5), 1056-1062.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.113.02517] [PMID: 24516108]
[41]
Lawson, S.N. Morphological and biochemical cell types of sensory neurons, 1st ed; Oxford University Press, Inc.: U.S.A., 1992, pp. 27-59.
[42]
Coppi, A.; Merali, S.; Eichinger, D. The enteric parasite Entamoeba uses an autocrine catecholamine system during differentiation into the infectious cyst stage. J. Biol. Chem., 2002, 277(10), 8083-8090.
[http://dx.doi.org/10.1074/jbc.M111895200] [PMID: 11779874]
[43]
Shatarat, A.; Dunn, W.R.; Ralevic, V. Raised tone reveals ATP as a sympathetic neurotransmitter in the porcine mesenteric arterial bed. Purinergic Signal., 2014, 10(4), 639-649.
[http://dx.doi.org/10.1007/s11302-014-9426-3] [PMID: 25231507]
[44]
Bruno, R.M.; Ghiadoni, L.; Seravalle, G.; Dell’oro, R.; Taddei, S.; Grassi, G. Sympathetic regulation of vascular function in health and disease. Front. Physiol., 2012, 3, 284-284.
[http://dx.doi.org/10.3389/fphys.2012.00284] [PMID: 22934037]
[45]
Westfall, T.C.M.H.; Westfall, D.P. Adrenergic agonists and antagonists.Goodman & Gilman’s: The Pharmacological Basis of Therapeutics; McGraw-Hill Global Education Holdings, LLC: New York, 2018.
[46]
de Groot, A.A.; Mathy, M.J.; van Zwieten, P.A.; Peters, S.L. Involvement of the beta3 adrenoceptor in nebivolol-induced vasorelaxation in the rat aorta. J. Cardiovasc. Pharmacol., 2003, 42(2), 232-236.
[http://dx.doi.org/10.1097/00005344-200308000-00012] [PMID: 12883327]
[47]
Escarcega González, C.E.; González Hernández, A.; Villalón, C.M.; Rodríguez, M.G.; Marichal Cancino, B.A. β-Adrenoceptor blockade for infantile hemangioma therapy: Do β3-adrenoceptors play a role? J. Vasc. Res., 2018, 55(3), 159-168.
[http://dx.doi.org/10.1159/000489956] [PMID: 29936502]
[48]
Bény, J.L.; Nguyen, M.N.; Marino, M.; Matsui, M. Muscarinic receptor knockout mice confirm involvement of M3 receptor in endothelium-dependent vasodilatation in mouse arteries. J. Cardiovasc. Pharmacol., 2008, 51(5), 505-512.
[http://dx.doi.org/10.1097/FJC.0b013e31816d5f2f] [PMID: 18460983]
[49]
Gericke, A.; Sniatecki, J.J.; Mayer, V.G.A.; Goloborodko, E.; Patzak, A.; Wess, J.; Pfeiffer, N. Role of M1, M3, and M5 muscarinic acetylcholine receptors in cholinergic dilation of small arteries studied with gene-targeted mice. Am. J. Physiol. Heart Circ. Physiol., 2011, 300(5), H1602-H1608.
[http://dx.doi.org/10.1152/ajpheart.00982.2010] [PMID: 21335473]
[50]
Alves-Lopes, R.; Neves, K.B.; Touyz, R.M. Muscarinic receptor type-3 in hypertension and cholinergic-adrenergic crosstalk: genetic insights and potential for new antihypertensive targets. Can. J. Cardiol., 2019, 35(5), 555-557.
[http://dx.doi.org/10.1016/j.cjca.2019.02.003] [PMID: 30954389]
[51]
Tank, A.W.; Lee Wong, D. Peripheral and central effects of circulating catecholamines. Compr. Physiol., 2015, 5(1), 1-15.
[PMID: 25589262]
[52]
Martin, H.; Gazelius, B.; Norman, M. Impaired acetylcholine-induced vascular relaxation in low birth weight infants: implications for adult hypertension? Pediatr. Res., 2000, 47(4 Pt 1), 457-462.
[http://dx.doi.org/10.1203/00006450-200004000-00008] [PMID: 10759151]
[53]
Ng, J.; Papandreou, A.; Heales, S.J.; Kurian, M.A. Monoamine neurotransmitter disorders--clinical advances and future perspectives. Nat. Rev. Neurol., 2015, 11(10), 567-584.
[http://dx.doi.org/10.1038/nrneurol.2015.172] [PMID: 26392380]
[54]
Villalón, C.M.; Centurión, D. Cardiovascular responses produced by 5-hydroxytriptamine: a pharmacological update on the receptors/mechanisms involved and therapeutic implications. Naunyn Schmiedebergs Arch. Pharmacol., 2007, 376(1-2), 45-63.
[http://dx.doi.org/10.1007/s00210-007-0179-1] [PMID: 17703282]
[55]
Van Nueten, J.M.; Janssens, W.J.; Vanhoutte, P.M. Serotonin and vascular reactivity. Pharmacol. Res. Commun., 1985, 17(7), 585-608.
[http://dx.doi.org/10.1016/0031-6989(85)90067-0] [PMID: 2931729]
[56]
Kovács, A.; Hársing, L.G., Jr; Szénási, G. Vasoconstrictor 5-HT receptors in the smooth muscle of the rat middle cerebral artery. Eur. J. Pharmacol., 2012, 689(1-3), 160-164.
[http://dx.doi.org/10.1016/j.ejphar.2012.05.031] [PMID: 22659115]
[57]
Houston, D.S.; Vanhoutte, P.M. Serotonin and the vascular system. Role in health and disease, and implications for therapy. Drugs, 1986, 31(2), 149-163.
[http://dx.doi.org/10.2165/00003495-198631020-00004] [PMID: 3512233]
[58]
Curro, F.A.; Greenberg, S.; Verbeuren, T.J.; Vanhoutte, P.M. Interaction between alpha adrenergic and serotonergic activation of canine saphenous veins. J. Pharmacol. Exp. Ther., 1978, 207(3), 936-949.
[PMID: 215746]
[59]
Edvinsson, L.; Hardebo, J.E.; Owman, C. Pharmacological analysis of 5-hydroxytryptamine receptors in isolated intracranial and extracranial vessels of cat and man. Circ. Res., 1978, 42(1), 143-151.
[http://dx.doi.org/10.1161/01.RES.42.1.143] [PMID: 618595]
[60]
Cohen, R.A.; Shepherd, J.T.; Vanhoutte, P.M. 5-Hydroxytryptamine can mediate endothelium-dependent relaxation of coronary arteries. Am. J. Physiol., 1983, 245(6), H1077-H1080.
[PMID: 6660308]
[61]
Cocks, T.M.; Angus, J.A. Endothelium-dependent relaxation of coronary arteries by noradrenaline and serotonin. Nature, 1983, 305(5935), 627-630.
[http://dx.doi.org/10.1038/305627a0] [PMID: 6621711]
[62]
Imaizumi, Y.; Baba, M.; Imaizumi, Y.; Watanabe, M. Involvement of endothelium in the relaxation of isolated chick jugular vein by 5-hydroxytryptamine. Eur. J. Pharmacol., 1984, 97(3-4), 335-336.
[http://dx.doi.org/10.1016/0014-2999(84)90472-2] [PMID: 6705830]
[63]
McDonald, R.H., Jr; Goldberg, L.I.; McNay, J.L.; Tuttle, E.P., Jr Effect of dopamine in man: augmentation of sodium excretion, glomerular filtration rate, and renal plasma flow. J. Clin. Invest., 1964, 43, 1116-1124.
[http://dx.doi.org/10.1172/JCI104996] [PMID: 14171789]
[64]
McNay, J.L.; McDonald, R.H., Jr; Goldberg, L.I. Direct renal vasodilatation produced by dopamine in the dog. Circ. Res., 1965, 16, 510-517.
[http://dx.doi.org/10.1161/01.RES.16.6.510] [PMID: 14299503]
[65]
Goldberg, L.I.; Toda, N. Dopamine induced relaxation of isolated canine renal, mesenteric, and femoral arteries contracted with prostaglandin F2-alpha. Circ. Res., 1975, 36(6)(Suppl. 1), 97-102.
[http://dx.doi.org/10.1161/01.RES.36.6.97] [PMID: 236842]
[66]
Toda, N.; Goldberg, L.I. Effects of dopamine on isolated canine coronary arteries. Cardiovasc. Res., 1975, 9(3), 384-389.
[http://dx.doi.org/10.1093/cvr/9.3.384] [PMID: 1175184]
[67]
Toda, N. Nicotine-induced relaxation in isolated canine cerebral arteries. J. Pharmacol. Exp. Ther., 1975, 193(2), 376-384.
[PMID: 1142095]
[68]
Toda, N. Influence of dopamine and noradrenaline on isolated cerebral arteries of the dog. Br. J. Pharmacol., 1976, 58(1), 121-126.
[http://dx.doi.org/10.1111/j.1476-5381.1976.tb07700.x] [PMID: 974370]
[69]
Robie, N.W.; Goldberg, L.I. Comparative systemic and regional hemodynamic effects of dopamine and dobutamine. Am. Heart J., 1975, 90(3), 340-345.
[http://dx.doi.org/10.1016/0002-8703(75)90323-3] [PMID: 240265]
[70]
Brodde, O.E.; Schemuth, W. Specific antagonism by metoclopramide of dopamine-induced relaxation on isolated rabbit mesenteric arteries contracted with prostaglandin F2alpha. Life Sci., 1979, 25(1), 23-30.
[http://dx.doi.org/10.1016/0024-3205(79)90485-5] [PMID: 481118]
[71]
Edvinsson, L.; Hardebo, J.E.; McCulloch, J.; Owman, C. Effects of dopaminergic agonists and antagonists on isolated cerebral blood vessels. Acta Physiol. Scand., 1978, 104(3), 349-359.
[http://dx.doi.org/10.1111/j.1748-1716.1978.tb06286.x] [PMID: 716985]
[72]
Allwood, M.J.; Cobbold, A.F.; Ginsburg, J. Peripheral vascular effects of noradrenaline, isopropylnoradrenaline and dopamine. Br. Med. Bull., 1963, 19, 132-136.
[http://dx.doi.org/10.1093/oxfordjournals.bmb.a070031] [PMID: 14012200]
[73]
Langer, S.Z.; Hicks, P.E. Alpha-adrenoreceptor subtypes in blood vessels: physiology and pharmacology. J. Cardiovasc. Pharmacol., 1984, 6(Suppl. 4), S547-S558.
[http://dx.doi.org/10.1097/00005344-198406004-00001] [PMID: 6210422]
[74]
Krstić, M.K.; Stepanović, R.; Ilić, K.; Krstić, S.K. Endothelium-independent contractile and relaxant responses to histamine in the rabbit aorta and common carotid, mesenteric, renal, and femoral arteries. Gen. Pharmacol., 1996, 27(3), 529-533.
[http://dx.doi.org/10.1016/0306-3623(95)02016-0] [PMID: 8723539]
[75]
Jin, H.; Koyama, T.; Hatanaka, Y.; Akiyama, S.; Takayama, F.; Kawasaki, H. Histamine-induced vasodilation and vasoconstriction in the mesenteric resistance artery of the rat. Eur. J. Pharmacol., 2006, 529(1-3), 136-144.
[http://dx.doi.org/10.1016/j.ejphar.2005.10.060] [PMID: 16337938]
[76]
Fox, J.L.; von der Weid, P.Y. Effects of histamine on the contractile and electrical activity in isolated lymphatic vessels of the guinea-pig mesentery. Br. J. Pharmacol., 2002, 136(8), 1210-1218.
[http://dx.doi.org/10.1038/sj.bjp.0704820] [PMID: 12163355]
[77]
Nizamutdinova, I.T.; Maejima, D.; Nagai, T.; Bridenbaugh, E.; Thangaswamy, S.; Chatterjee, V.; Meininger, C.J.; Gashev, A.A. Involvement of histamine in endothelium-dependent relaxation of mesenteric lymphatic vessels. Microcirculation, 2014, 21(7), 640-648.
[http://dx.doi.org/10.1111/micc.12143] [PMID: 24750494]
[78]
Yousif, M.H.; Oriowo, M.A.; Cherian, A.; Adeagbo, A.S. Histamine-induced vasodilatation in the perfused mesenteric arterial bed of diabetic rats. Vascul. Pharmacol., 2002, 39(6), 287-292.
[http://dx.doi.org/10.1016/S1537-1891(03)00004-1] [PMID: 14567066]
[79]
Ashina, K.; Tsubosaka, Y.; Nakamura, T.; Omori, K.; Kobayashi, K.; Hori, M.; Ozaki, H.; Murata, T. Histamine induces vascular hyperpermeability by increasing blood flow and endothelial barrier disruption in vivo. PLoS One, 2015, 10(7), e0132367
[http://dx.doi.org/10.1371/journal.pone.0132367] [PMID: 26158531]
[80]
Obuchowicz, R.; Pawlik, M.W.; Brzozowski, T.; Konturek, S.J.; Pawlik, W.W. Involvement of central and peripheral histamine H(3) receptors in the control of the vascular tone and oxygen uptake in the mesenteric circulation of the rat. J. Physiol. Pharmacol., 2004, 55(1 Pt 2), 255-267.
[PMID: 15082882]
[81]
Sun, P.; Jin, X.; Koyama, T.; Li, S.; Kitamura, Y.; Kawasaki, H.R- (-)-alpha-methylhistamine, a histamine H3 receptor agonist, induces endothelium-dependent vasodilation in rat mesenteric resistance arteries. Biol. Pharm. Bull., 2010, 33(1), 58-63.
[http://dx.doi.org/10.1248/bpb.33.58] [PMID: 20045936]
[82]
Burnstock, G. Noradrenaline and ATP: cotransmitters and neuromodulators. J. Physiol. Pharmacol., 1995, 46(4), 365-384.
[PMID: 8770783]
[83]
Marichal-Cancino, B.A.; Manrique-Maldonado, G.; Altamirano-Espinoza, A.H.; Ruiz-Salinas, I.; González-Hernández, A.; Maassenvandenbrink, A.; Villalón, C.M. Analysis of anandamide- and lysophosphatidylinositol-induced inhibition of the vasopressor responses produced by sympathetic stimulation or noradrenaline in pithed rats. Eur. J. Pharmacol., 2013, 721(1-3), 168-177.
[http://dx.doi.org/10.1016/j.ejphar.2013.09.039] [PMID: 24076186]
[84]
Zhou, Z.; Matsumoto, T.; Jankowski, V.; Pernow, J.; Mustafa, S.J.; Duncker, D.J.; Merkus, D. Uridine adenosine tetraphosphate and purinergic signaling in cardiovascular system: An update. Pharmacol. Res., 2019, 141, 32-45.
[http://dx.doi.org/10.1016/j.phrs.2018.12.009] [PMID: 30553823]
[85]
Salzer, I.; Gafar, H.; Gindl, V.; Mahlknecht, P.; Drobny, H.; Boehm, S. Excitation of rat sympathetic neurons via M1 muscarinic receptors independently of Kv7 channels. Pflugers Arch., 2014, 466(12), 2289-2303.
[http://dx.doi.org/10.1007/s00424-014-1487-1] [PMID: 24668449]
[86]
Marichal-Cancino, B.A.; González-Hernández, A. MaassenVanDenBrink, A.; Ramírez-San Juan, E.; Villalón, C.M. Potential mechanisms involved in palmitoylethanolamide-induced vasodepressor effects in rats. J. Vasc. Res., 2020, 1-12.
[http://dx.doi.org/10.1159/000506158] [PMID: 32248195]
[87]
Baumgarten, H.G. Biogenic monoamines in the cyclostome and lower vertebrate brain. Prog. Histochem. Cytochem., 1972, 4(1), 1-90.
[http://dx.doi.org/10.1016/S0079-6336(72)80008-1] [PMID: 4354409]
[88]
Sloley, B.D.; Juorio, A.V. Monoamine neurotransmitters in invertebrates and vertebrates: an examination of the diverse enzymatic pathways utilized to synthesize and inactivate biogenic amines. Int. Rev. Neurobiol., 1995, 38, 253-303.
[http://dx.doi.org/10.1016/S0074-7742(08)60528-0] [PMID: 8537202]
[89]
González-Hernández, A.; Marichal-Cancino, B.A.; Lozano-Cuenca, J. MaassenVanDenBrink, A.; Villalón, C.M. Functional characterization of the prejunctional receptors mediating the inhibition by ergotamine of the rat perivascular sensory peptidergic drive. ACS Chem. Neurosci., 2019, 10(7), 3173-3182.
[http://dx.doi.org/10.1021/acschemneuro.8b00611] [PMID: 30695640]
[90]
Ciccarelli, M.; Sorriento, D.; Coscioni, E.; Iaccarino, G.; Santulli, G. Chapter 11 - Adrenergic Receptors. Endocrinology of the Heart in Health and Disease; ; Schisler, J.C.; Lang, C.H.; Willis, M.S., Eds.; . Academic Press, , 2017, pp. 285 -315..
[91]
Villamil-Hernández, M.T.; Alcántara-Vázquez, O.; Sánchez-López, A.; Manrique-Maldonado, G.; Villalón, C.M.; Centurión, D. Pharmacological identification of the α2-adrenoceptor subtypes mediating the vasopressor responses to B-HT 933 in pithed rats. Eur. J. Pharmacol., 2012, 691(1-3), 118-124.
[http://dx.doi.org/10.1016/j.ejphar.2012.06.011] [PMID: 22713550]
[92]
Altamirano-Espinoza, A.H.; Manrique-Maldonado, G.; Marichal-Cancino, B.A.; Villalón, C.M. Specific role of α2A - and α2B -, but not α2C -, adrenoceptor subtypes in the inhibition of the vasopressor sympathetic out-flow in diabetic pithed rats. Basic Clin. Pharmacol. Toxicol., 2015, 117(1), 31-38.
[http://dx.doi.org/10.1111/bcpt.12354] [PMID: 25407049]
[93]
Bardsley, E.N.; Davis, H.; Buckler, K.J.; Paterson, D.J. Neurotransmitter switching coupled to β-adrenergic signaling in sympathetic neurons in prehypertensive states. Hypertension, 2018, 71(6), 1226-1238.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.118.10844] [PMID: 29686017]
[94]
Chisholm, K.M.; Chang, K.W.; Truong, M.T.; Kwok, S.; West, R.B.; Heerema-McKenney, A.E. β-Adrenergic receptor expression in vascular tumors. Mod. Pathol., 2012, 25(11), 1446-1451.
[http://dx.doi.org/10.1038/modpathol.2012.108] [PMID: 22743651]
[95]
García-Pedraza, J.A.; García-Domingo, M.; Gómez-Roso, M.; Rodríguez-Barbero, A.; Martín, M.L.; Morán, A. 5-HT modulates the rat mesenteric vasopressor outflow by 5-HT1D sympatholytic receptors. Clin. Exp. Pharmacol. Physiol., 2017, 44(12), 1224-1231.
[http://dx.doi.org/10.1111/1440-1681.12841] [PMID: 28771848]
[96]
García-Pedraza, J.A.; García-Domingo, M.; Gómez-Roso, M.; Ruiz-Remolina, L.; Rodríguez-Barbero, A.; Martín, M.L.; Morán, A. Hypertension exhibits 5-HT4 receptor as a modulator of sympathetic neurotransmission in the rat mesenteric vasculature. Hypertens. Res., 2019, 42(5), 618-627.
[http://dx.doi.org/10.1038/s41440-019-0217-7] [PMID: 30696976]
[97]
García-Pedraza, J.A.; García, M.; Martín, M.L.; Gómez-Escudero, J.; Rodríguez-Barbero, A.; Román, L.S.; Morán, A. Peripheral 5-HT1D and 5-HT7 serotonergic receptors modulate sympathetic neurotransmission in chronic sarpogrelate treated rats. Eur. J. Pharmacol., 2013, 714(1-3), 65-73.
[http://dx.doi.org/10.1016/j.ejphar.2013.05.045] [PMID: 23769743]
[98]
Cuesta, C.; García-Pedraza, J.Á.; García, M.; Villalón, C.M.; Morán, A. Role of 5-HT7 receptors in the inhibition of the vasodepressor sensory CGRPergic outflow in pithed rats. Vascul. Pharmacol., 2014, 63(1), 4-12.
[http://dx.doi.org/10.1016/j.vph.2014.06.009] [PMID: 25179247]
[99]
Bopp, C.; Auger, C.; Diemunsch, P.; Schini-Kerth, V. The effect of urapidil, an alpha-1 adrenoceptor antagonist and a 5-HT1A agonist, on the vascular tone of the porcine coronary and pulmonary arteries, the rat aorta and the human pulmonary artery. Eur. J. Pharmacol., 2016, 779, 53-58.
[http://dx.doi.org/10.1016/j.ejphar.2016.03.012] [PMID: 26957055]
[100]
Villalón, C.M.; Centurión, D.; Rabelo, G.; de Vries, P.; Saxena, P.R.; Sánchez-López, A. The 5-HT1-like receptors mediating inhibition of sympathetic vasopressor outflow in the pithed rat: operational correlation with the 5-HT1A, 5-HT1B and 5-HT1D subtypes. Br. J. Pharmacol., 1998, 124(5), 1001-1011.
[http://dx.doi.org/10.1038/sj.bjp.0701907] [PMID: 9692787]
[101]
García-Pedraza, J.A.; García, M.; Martín, M.L.; Morán, A. 5-HT1D receptor inhibits renal sympathetic neurotransmission by nitric oxide pathway in anesthetized rats. Vascul. Pharmacol., 2015, 72, 172-180.
[http://dx.doi.org/10.1016/j.vph.2015.05.003] [PMID: 26003124]
[102]
Altamirano-Espinoza, A.H.; González-Hernández, A.; Manrique-Maldonado, G.; Marichal-Cancino, B.A.; Ruiz-Salinas, I.; Villalón, C.M. The role of dopamine D2, but not D3 or D4, receptor subtypes, in quinpirole-induced inhibition of the cardioaccelerator sympathetic outflow in pithed rats. Br. J. Pharmacol., 2013, 170(5), 1102-1111.
[http://dx.doi.org/10.1111/bph.12358] [PMID: 24032529]
[103]
Manrique-Maldonado, G.; González-Hernández, A.; Marichal-Cancino, B.A.; Villamil-Hernández, M.T.; del Mercado, O.A.; Centurión, D.; Villalón, C.M. The dopamine receptors mediating inhibition of the sympathetic vasopressor outflow in pithed rats: pharmacological correlation with the D(2) -like type. Basic Clin. Pharmacol. Toxicol., 2011, 109(6), 506-512.
[http://dx.doi.org/10.1111/j.1742-7843.2011.00762.x] [PMID: 21740529]
[104]
Ruiz-Salinas, I.; González-Hernández, A.; Manrique-Maldonado, G.; Marichal-Cancino, B.A.; Altamirano-Espinoza, A.H.; Villalón, C.M. Predominant role of the dopamine D3 receptor subtype for mediating the quinpirole-induced inhibition of the vasopressor sympathetic outflow in pithed rats. Naunyn Schmiedebergs Arch. Pharmacol., 2013, 386(5), 393-403.
[http://dx.doi.org/10.1007/s00210-013-0841-8] [PMID: 23420100]
[105]
Parks, G.S.; Olivas, N.D.; Ikrar, T.; Sanathara, N.M.; Wang, L.; Wang, Z.; Civelli, O.; Xu, X. Histamine inhibits the melanin-concentrating hormone system: implications for sleep and arousal. J. Physiol., 2014, 592(10), 2183-2196.
[http://dx.doi.org/10.1113/jphysiol.2013.268771] [PMID: 24639485]
[106]
Nieto-Alamilla, G.; Márquez-Gómez, R.; García-Gálvez, A.M.; Morales-Figueroa, G.E.; Arias-Montaño, J.A. The Histamine H3 receptor: structure, pharmacology, and function. Mol. Pharmacol., 2016, 90(5), 649-673.
[http://dx.doi.org/10.1124/mol.116.104752] [PMID: 27563055]
[107]
Quagliotto, E.; Neckel, H.; Riveiro, D.F.; Casali, K.R.; Mostarda, C.; Irigoyen, M.C.; Dall’ago, P.; Rasia-Filho, A.A. Histamine in the posterodorsal medial amygdala modulates cardiovascular reflex responses in awake rats. Neuroscience, 2008, 157(4), 709-719.
[http://dx.doi.org/10.1016/j.neuroscience.2008.09.053] [PMID: 18955117]
[108]
de Almeida, D.O.; Ferreira, H.S.; Pereira, L.B.; Fregoneze, J.B. Hypertensive response to stress: the role of histaminergic H1 and H2 receptors in the medial amygdala. Physiol. Behav., 2015, 144, 95-102.
[http://dx.doi.org/10.1016/j.physbeh.2015.03.009] [PMID: 25748254]
[109]
Mazenot, C.; Ribuot, C.; Durand, A.; Joulin, Y.; Demenge, P.; Godin-Ribuot, D. In vivo demonstration of H3-histaminergic inhibition of cardiac sympathetic stimulation by R-alpha-methyl-histamine and its prodrug BP 2.94 in the dog. Br. J. Pharmacol., 1999, 126(1), 264-268.
[http://dx.doi.org/10.1038/sj.bjp.0702257] [PMID: 10051144]
[110]
Coruzzi, G.; Gambarelli, E.; Bertaccini, G.; Timmerman, H. Cardiovascular effects of selective agonists and antagonists of histamine H3 receptors in the anaesthetized rat. Naunyn Schmiedebergs Arch. Pharmacol., 1995, 351(6), 569-575.
[http://dx.doi.org/10.1007/BF00170155] [PMID: 7675114]
[111]
Islam, M.Z.; Watanabe, Y.; Nguyen, H.T.; Yamazaki-Himeno, E.; Obi, T.; Shiraishi, M.; Miyamoto, A. Vasomotor effects of acetylcholine, bradykinin, noradrenaline, 5-hydroxytryptamine, histamine and angiotensin II on the mouse basilar artery. J. Vet. Med. Sci., 2014, 76(10), 1339-1345.
[http://dx.doi.org/10.1292/jvms.14-0223] [PMID: 24942113]
[112]
Pinacho-García, M.; Marichal-Cancino, B.A.; Villalón, C.M. Further evidence for the role of histamine H3, but not H1, H2 or H4, receptors in immepip-induced inhibition of the rat cardioaccelerator sympathetic outflow. Eur. J. Pharmacol., 2016, 773, 85-92.
[http://dx.doi.org/10.1016/j.ejphar.2016.01.014] [PMID: 26826593]
[113]
Matsuda, N.; Jesmin, S.; Takahashi, Y.; Hatta, E.; Kobayashi, M.; Matsuyama, K.; Kawakami, N.; Sakuma, I.; Gando, S.; Fukui, H.; Hattori, Y.; Levi, R. Histamine H1 and H2 receptor gene and protein levels are differentially expressed in the hearts of rodents and humans. J. Pharmacol. Exp. Ther., 2004, 309(2), 786-795.
[http://dx.doi.org/10.1124/jpet.103.063065] [PMID: 14752062]
[114]
Zhang, J.; Cai, W-K.; Zhang, Z.; Wang, P.; Lin, X-Q.; Feng, J.; Fu, S-C.; He, G-H. Cardioprotective effect of histamine H2 antagonists in congestive heart failure: A systematic review and meta-analysis. Medicine (Baltimore), 2018, 97(15), e0409-e0409.
[http://dx.doi.org/10.1097/MD.0000000000010409] [PMID: 29642208]
[115]
Arulmani, U.; Schuijt, M.P.; Heiligers, J.P.; Willems, E.W.; Villalón, C.M.; Saxena, P.R. Effects of the calcitonin gene-related peptide (CGRP) receptor antagonist BIBN4096BS on alpha-CGRP-induced regional haemodynamic changes in anaesthetised rats. Basic Clin. Pharmacol. Toxicol., 2004, 94(6), 291-297.
[http://dx.doi.org/10.1111/j.1742-7843.2004.pto940606.x] [PMID: 15228501]
[116]
Deng, P-Y.; Li, Y-J. Calcitonin gene-related peptide and hypertension. Peptides, 2005, 26(9), 1676-1685.
[http://dx.doi.org/10.1016/j.peptides.2005.02.002] [PMID: 16112410]
[117]
González-Hernández, A.; Marichal-Cancino, B.A.; Lozano-Cuenca, J.; López-Canales, J.S.; Muñoz-Islas, E.; Ramírez-Rosas, M.B.; Villalón, C.M. Heteroreceptors modulating CGRP Release at neurovascular junction: potential therapeutic implications on some vascular-related diseases. BioMed Res. Int., 2016, 2016, 2056786.
[http://dx.doi.org/10.1155/2016/2056786] [PMID: 28116293]
[118]
Wimalawansa, S.J. Blood pressure and cardiovascular tone: role of CGRP family of peptides. ScientificWorldJournal, 2001, 1, 32-32.
[http://dx.doi.org/10.1100/tsw.2001.446]
[119]
Bell, D.; McDermott, B.J. Calcitonin gene-related peptide in the cardiovascular system: characterization of receptor populations and their (patho)physiological significance. Pharmacol. Rev., 1996, 48(2), 253-288.
[PMID: 8804106]
[120]
Rosenfeld, M.G.; Mermod, J.J.; Amara, S.G.; Swanson, L.W.; Sawchenko, P.E.; Rivier, J.; Vale, W.W.; Evans, R.M. Production of a novel neuropeptide encoded by the calcitonin gene via tissue-specific RNA processing. Nature, 1983, 304(5922), 129-135.
[http://dx.doi.org/10.1038/304129a0] [PMID: 6346105]
[121]
Morris, H.R.; Panico, M.; Etienne, T.; Tippins, J.; Girgis, S.I.; MacIntyre, I. Isolation and characterization of human calcitonin gene-related peptide. Nature, 1984, 308(5961), 746-748.
[http://dx.doi.org/10.1038/308746a0] [PMID: 6609312]
[122]
Poyner, D.; Marshall, I. CGRP receptors: beyond the CGRP(1)-CGRP(2) subdivision? Trends Pharmacol. Sci., 2001, 22(5), 223.
[http://dx.doi.org/10.1016/S0165-6147(00)91555-4] [PMID: 11426419]
[123]
Mulderry, P.K.; Ghatei, M.A.; Bishop, A.E.; Allen, Y.S.; Polak, J.M.; Bloom, S.R. Distribution and chromatographic characterisation of CGRP-like immunoreactivity in the brain and gut of the rat. Regul. Pept., 1985, 12(2), 133-143.
[http://dx.doi.org/10.1016/0167-0115(85)90194-6] [PMID: 3877953]
[124]
Kawasaki, H.; Takasaki, K.; Saito, A.; Goto, K. Calcitonin gene-related peptide acts as a novel vasodilator neurotransmitter in mesenteric resistance vessels of the rat. Nature, 1988, 335(6186), 164-167.
[http://dx.doi.org/10.1038/335164a0] [PMID: 2901042]
[125]
Moore, E.L.; Salvatore, C.A. Targeting a family B GPCR/RAMP receptor complex: CGRP receptor antagonists and migraine. Br. J. Pharmacol., 2012, 166(1), 66-78.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01633.x] [PMID: 21871019]
[126]
Hay, D.L.; Poyner, D.R.; Quirion, R. International Union of Pharmacology. International Union of Pharmacology. LXIX. Status of the calcitonin gene-related peptide subtype 2 receptor. Pharmacol. Rev., 2008, 60(2), 143-145.
[http://dx.doi.org/10.1124/pr.108.00372] [PMID: 18552275]
[127]
Walker, C.S.; Eftekhari, S.; Bower, R.L.; Wilderman, A.; Insel, P.A.; Edvinsson, L.; Waldvogel, H.J.; Jamaluddin, M.A.; Russo, A.F.; Hay, D.L. A second trigeminal CGRP receptor: function and expression of the AMY1 receptor. Ann. Clin. Transl. Neurol., 2015, 2(6), 595-608.
[http://dx.doi.org/10.1002/acn3.197] [PMID: 26125036]
[128]
Villalón, C.M.; Olesen, J. The role of CGRP in the pathophysiology of migraine and efficacy of CGRP receptor antagonists as acute antimigraine drugs. Pharmacol. Ther., 2009, 124(3), 309-323.
[http://dx.doi.org/10.1016/j.pharmthera.2009.09.003] [PMID: 19796656]
[129]
Petersen, K.A.; Birk, S.; Lassen, L.H.; Kruuse, C.; Jonassen, O.; Lesko, L.; Olesen, J. The CGRP-antagonist, BIBN4096BS does not affect cerebral or systemic haemodynamics in healthy volunteers. Cephalalgia, 2005, 25(2), 139-147.
[http://dx.doi.org/10.1111/j.1468-2982.2004.00830.x] [PMID: 15658951]
[130]
Ho, T.W.; Ho, A.P.; Chaitman, B.R.; Johnson, C.; Mathew, N.T.; Kost, J.; Fan, X.; Aurora, S.K.; Brandes, J.L.; Fei, K.; Beebe, L.; Lines, C.; Krucoff, M.W. Randomized, controlled study of telcagepant in patients with migraine and coronary artery disease. Headache, 2012, 52(2), 224-235.
[http://dx.doi.org/10.1111/j.1526-4610.2011.02052.x] [PMID: 22221076]
[131]
Olesen, J.; Diener, H.C.; Husstedt, I.W.; Goadsby, P.J.; Hall, D.; Meier, U.; Pollentier, S.; Lesko, L.M. BIBN 4096 BS Clinical Proof of Concept Study Group. Calcitonin gene-related peptide receptor antagonist BIBN 4096 BS for the acute treatment of migraine. N. Engl. J. Med., 2004, 350(11), 1104-1110.
[http://dx.doi.org/10.1056/NEJMoa030505] [PMID: 15014183]
[132]
Bigal, M.E.; Edvinsson, L.; Rapoport, A.M.; Lipton, R.B.; Spierings, E.L.; Diener, H.C.; Burstein, R.; Loupe, P.S.; Ma, Y.; Yang, R.; Silberstein, S.D. Safety, tolerability, and efficacy of TEV-48125 for preventive treatment of chronic migraine: a multicentre, randomised, double-blind, placebo-controlled, phase 2b study. Lancet Neurol., 2015, 14(11), 1091-1100.
[http://dx.doi.org/10.1016/S1474-4422(15)00245-8] [PMID: 26432181]
[133]
Bigal, M.E.; Dodick, D.W.; Rapoport, A.M.; Silberstein, S.D.; Ma, Y.; Yang, R.; Loupe, P.S.; Burstein, R.; Newman, L.C.; Lipton, R.B. Safety, tolerability, and efficacy of TEV-48125 for preventive treatment of high-frequency episodic migraine: a multicentre, randomised, double-blind, placebo-controlled, phase 2b study. Lancet Neurol., 2015, 14(11), 1081-1090.
[http://dx.doi.org/10.1016/S1474-4422(15)00249-5] [PMID: 26432182]
[134]
Mai, T.H.; Wu, J.; Diedrich, A.; Garland, E.M.; Robertson, D. Calcitonin gene-related peptide (CGRP) in autonomic cardiovascular regulation and vascular structure. J. Am. Soc. Hypertens., 2014, 8(5), 286-296.
[http://dx.doi.org/10.1016/j.jash.2014.03.001] [PMID: 24746612]
[135]
Chai, W.; Mehrotra, S.; Jan Danser, A.H.; Schoemaker, R.G. The role of calcitonin gene-related peptide (CGRP) in ischemic preconditioning in isolated rat hearts. Eur. J. Pharmacol., 2006, 531(1-3), 246-253.
[http://dx.doi.org/10.1016/j.ejphar.2005.12.039] [PMID: 16438955]
[136]
Haynes, J.M.; Cooper, M.E. Adrenomedullin and calcitonin gene-related peptide in the rat isolated kidney and in the anaesthetised rat: in vitro and in vivo effects. Eur. J. Pharmacol., 1995, 280(1), 91-94.
[http://dx.doi.org/10.1016/0014-2999(95)00230-I] [PMID: 7498258]
[137]
Ando, K.; Pegram, B.L.; Frohlich, E.D. Hemodynamic effects of calcitonin gene-related peptide in spontaneously hypertensive rats. Am. J. Physiol., 1990, 258(2 Pt 2), R425-R429.
[PMID: 2309935]
[138]
Rubio-Beltrán, E.; Labastida-Ramírez, A.; Haanes, K.A.; van den Bogaerdt, A.; Bogers, A.J.J.C.; Dirven, C.; Danser, A.H.J.; Xu, C.; Snellman, J.; MaassenVanDenBrink, A. Characterisation of vasodilatory responses in the presence of the CGRP receptor antibody erenumab in human isolated arteries. Cephalalgia, 2019, 39(14), 1735-1744.
[http://dx.doi.org/10.1177/0333102419863027] [PMID: 20855369]
[139]
Gupta, S.; Mehrotra, S.; Villalón, C.M.; Garrelds, I.M.; de Vries, R.; van Kats, J.P.; Sharma, H.S.; Saxena, P.R.; Maassenvandenbrink, A. Characterisation of CGRP receptors in human and porcine isolated coronary arteries: evidence for CGRP receptor heterogeneity. Eur. J. Pharmacol., 2006, 530(1-2), 107-116.
[http://dx.doi.org/10.1016/j.ejphar.2005.11.020] [PMID: 16375887]
[140]
Edvinsson, L.; Chan, K.Y.; Eftekhari, S.; Nilsson, E.; de Vries, R.; Säveland, H.; Dirven, C.M.; Danser, A.H. MaassenVanDenBrink, A. Effect of the calcitonin gene-related peptide (CGRP) receptor antagonist telcagepant in human cranial arteries. Cephalalgia, 2010, 30(10), 1233-1240.
[http://dx.doi.org/10.1177/0333102410362122] [PMID: 20855369]
[141]
Edvinsson, L.; Alm, R.; Shaw, D.; Rutledge, R.Z.; Koblan, K.S.; Longmore, J.; Kane, S.A. Effect of the CGRP receptor antagonist BIBN4096BS in human cerebral, coronary and omental arteries and in SK-N-MC cells. Eur. J. Pharmacol., 2002, 434(1-2), 49-53.
[http://dx.doi.org/10.1016/S0014-2999(01)01532-1] [PMID: 11755165]
[142]
Edvinsson, L.; Gulbenkian, S.; Barroso, C.P.; Cunha e Sá, M.; Polak, J.M.; Mortensen, A.; Jørgensen, L.; Jansen-Olesen, I. Innervation of the human middle meningeal artery: immunohistochemistry, ultrastructure, and role of endothelium for vasomotility. Peptides, 1998, 19(7), 1213-1225.
[http://dx.doi.org/10.1016/S0196-9781(98)00066-7] [PMID: 9786171]
[143]
Champion, H.C.; Bivalacqua, T.J.; Pierce, R.L.; Murphy, W.A.; Coy, D.H.; Hyman, A.L.; Kadowitz, P.J. Responses to human CGRP, ADM, and PAMP in human thymic arteries. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2003, 284(2), R531-R537.
[http://dx.doi.org/10.1152/ajpregu.00337.2002] [PMID: 12529288]
[144]
Keith, I.M. The role of endogenous lung neuropeptides in regulation of the pulmonary circulation. Physiol. Res., 2000, 49(5), 519-537.
[PMID: 11191357]
[145]
Lindstedt, I.H.; Edvinsson, M.L.; Edvinsson, L. Reduced responsiveness of cutaneous microcirculation in essential hypertension--a pilot study. Blood Press., 2006, 15(5), 275-280.
[http://dx.doi.org/10.1080/08037050600996586] [PMID: 17380845]
[146]
Russell, F.A.; King, R.; Smillie, S.J.; Kodji, X.; Brain, S.D. Calcitonin gene-related peptide: physiology and pathophysiology. Physiol. Rev., 2014, 94(4), 1099-1142.
[http://dx.doi.org/10.1152/physrev.00034.2013] [PMID: 25287861]
[147]
Homma, S.; Kimura, T.; Sakai, S.; Yanagi, K.; Miyauchi, Y.; Aonuma, K.; Miyauchi, T. Calcitonin gene-related peptide protects the myocardium from ischemia induced by endothelin-1: intravital microscopic observation and (31)P-MR spectroscopic studies. Life Sci., 2014, 118(2), 248-254.
[http://dx.doi.org/10.1016/j.lfs.2014.02.024] [PMID: 24607775]
[148]
Struthers, A.D.; Brown, M.J.; Macdonald, D.W.; Beacham, J.L.; Stevenson, J.C.; Morris, H.R.; MacIntyre, I. Human calcitonin gene related peptide: a potent endogenous vasodilator in man. Clin. Sci. (Lond.), 1986, 70(4), 389-393.
[http://dx.doi.org/10.1042/cs0700389] [PMID: 3486086]
[149]
Bussiere, J.L.; Davies, R.; Dean, C.; Xu, C.; Kim, K.H.; Vargas, H.M.; Chellman, G.J.; Balasubramanian, G.; Rubio-Beltran, E. MaassenVanDenBrink, A.; Monticello, T.M. Nonclinical safety evaluation of erenumab, a CGRP receptor inhibitor for the prevention of migraine. Regul. Toxicol. Pharmacol., 2019, 106, 224-238.
[http://dx.doi.org/10.1016/j.yrtph.2019.05.013] [PMID: 31085251]
[150]
Kawasaki, H.; Saito, A.; Takasaki, K. Age-related decrease of calcitonin gene-related peptide-containing vasodilator innervation in the mesenteric resistance vessel of the spontaneously hypertensive rat. Circ. Res., 1990, 67(3), 733-743.
[http://dx.doi.org/10.1161/01.RES.67.3.733] [PMID: 2397578]
[151]
Zygmunt, P.M.; Petersson, J.; Andersson, D.A.; Chuang, H.; Sørgård, M.; Di Marzo, V.; Julius, D.; Högestätt, E.D. Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature, 1999, 400(6743), 452-457.
[http://dx.doi.org/10.1038/22761] [PMID: 10440374]
[152]
Marichal-Cancino, B.A.; Altamirano-Espinoza, A.H.; Manrique-Maldonado, G. MaassenVanDenBrink, A.; Villalón, C.M. Role of pre-junctional CB1, but not CB2, TRPV1 or GPR55 receptors in anandamide-induced inhibition of the vasodepressor sensory CGRPergic outflow in pithed rats. Basic Clin. Pharmacol. Toxicol., 2014, 114(3), 240-247.
[http://dx.doi.org/10.1111/bcpt.12152] [PMID: 24118786]
[153]
Shiraki, H.; Kawasaki, H.; Tezuka, S.; Nakatsuma, A.; Nawa, H.; Araki, H.; Gomita, Y.; Kurosaki, Y. Adrenergic nerves mediate acetylcholine-induced endothelium-independent vasodilation in the rat mesenteric resistance artery. Eur. J. Pharmacol., 2001, 419(2-3), 231-242.
[http://dx.doi.org/10.1016/S0014-2999(01)00981-5] [PMID: 11426846]
[154]
Hua, X.Y.; Jinno, S.; Back, S.M.; Tam, E.K.; Yaksh, T.L. Multiple mechanisms for the effects of capsaicin, bradykinin and nicotine on CGRP release from tracheal afferent nerves: role of prostaglandins, sympathetic nerves and mast cells. Neuropharmacology, 1994, 33(10), 1147-1154.
[http://dx.doi.org/10.1016/S0028-3908(05)80004-8] [PMID: 7862250]
[155]
Kawasaki, H.; Nuki, C.; Saito, A.; Takasaki, K. NPY modulates neurotransmission of CGRP-containing vasodilator nerves in rat mesenteric arteries. Am. J. Physiol., 1991, 261(3 Pt 2), H683-H690.
[PMID: 1653537]
[156]
Holzer, P.; Jocic, M. Cutaneous vasodilatation induced by nitric oxide-evoked stimulation of afferent nerves in the rat. Br. J. Pharmacol., 1994, 112(4), 1181-1187.
[http://dx.doi.org/10.1111/j.1476-5381.1994.tb13208.x] [PMID: 7524993]
[157]
Lozano-Cuenca, J.; González-Hernández, A.; Muñoz-Islas, E.; Sánchez-López, A.; Centurión, D.; Cobos-Puc, L.E.; Villalón, C.M. Effect of some acute and prophylactic antimigraine drugs on the vasodepressor sensory CGRPergic outflow in pithed rats. Life Sci., 2009, 84(5-6), 125-131.
[http://dx.doi.org/10.1016/j.lfs.2008.11.008] [PMID: 19041880]
[158]
Hannon, J.; Hoyer, D. Molecular biology of 5-HT receptors. Behav. Brain Res., 2008, 195(1), 198-213.
[http://dx.doi.org/10.1016/j.bbr.2008.03.020] [PMID: 18571247]
[159]
Shi, T.S.; Winzer-Serhan, U.; Leslie, F.; Hökfelt, T. Distribution and regulation of alpha(2)-adrenoceptors in rat dorsal root ganglia. Pain, 2000, 84(2-3), 319-330.
[http://dx.doi.org/10.1016/S0304-3959(99)00224-9] [PMID: 10666537]
[160]
Kawasaki, H.; Takatori, S.; Zamami, Y.; Koyama, T.; Goda, M.; Hirai, K.; Tangsucharit, P.; Jin, X.; Hobara, N.; Kitamura, Y. Paracrine control of mesenteric perivascular axo-axonal interaction. Acta Physiol. (Oxf.), 2011, 203(1), 3-11.
[http://dx.doi.org/10.1111/j.1748-1716.2010.02197.x] [PMID: 20887357]
[161]
Takatori, S.; Hirai, K.; Ozaki, S.; Tangsucharit, P.; Fukushima-Miyashita, S.; Goda, M.; Hashikawa-Hobara, N.; Ono, N.; Kawasaki, H. Protons modulate perivascular axo-axonal neurotransmission in the rat mesenteric artery. Br. J. Pharmacol., 2014, 171(24), 5743-5756.
[http://dx.doi.org/10.1111/bph.12878] [PMID: 25117291]
[162]
Benemei, S.; De Logu, F.; Li, Puma. S.; Marone, I.M.; Coppi, E.; Ugolini, F.; Liedtke, W.; Pollastro, F.; Appendino, G.; Geppetti, P.; Materazzi, S.; Nassini, R. . The anti-migraine component of butterbur extracts, isopetasin, desensitizes peptidergic nociceptors by acting on TRPA1 cation channel. Br. J. Pharmacol., 2017, 174(17), 2897-2911.
[http://dx.doi.org/10.1111/bph.13917] [PMID: 28622417]
[163]
González-Hernández, A.; Muñoz-Islas, E.; Lozano-Cuenca, J.; Ramírez-Rosas, M.B.; Sánchez-López, A.; Centurión, D.; Ramírez-San Juan, E.; Villalón, C.M. Activation of 5-HT1B receptors inhibits the vasodepressor sensory CGRPergic outflow in pithed rats. Eur. J. Pharmacol., 2010, 637(1-3), 131-137.
[http://dx.doi.org/10.1016/j.ejphar.2010.03.053] [PMID: 20385119]
[164]
González-Hernández, A.; Manrique-Maldonado, G.; Lozano-Cuenca, J.; Muñoz-Islas, E.; Centurión, D.; Maassen VanDenBrink, A.; Villalón, C.M. The 5-HT(1) receptors inhibiting the rat vasodepressor sensory CGRPergic outflow: further involvement of 5-HT(1F), but not 5-HT(1A) or 5-HT(1D), subtypes. Eur. J. Pharmacol., 2011, 659(2-3), 233-243.
[http://dx.doi.org/10.1016/j.ejphar.2011.03.035] [PMID: 21473863]
[165]
Chen, J.X.; Pan, H.; Rothman, T.P.; Wade, P.R.; Gershon, M.D. Guinea pig 5-HT transporter: cloning, expression, distribution, and function in intestinal sensory reception. Am. J. Physiol., 1998, 275(3), G433-G448.
[PMID: 9724254]
[166]
Nicholson, R.; Small, J.; Dixon, A.K.; Spanswick, D.; Lee, K. Serotonin receptor mRNA expression in rat dorsal root ganglion neurons. Neurosci. Lett., 2003, 337(3), 119-122.
[http://dx.doi.org/10.1016/S0304-3940(02)01256-9] [PMID: 12536038]
[167]
González-Hernández, A.; Lozano-Cuenca, J.; Marichal-Cancino, B.A. MaassenVanDenBrink, A.; Villalón, C.M. Dihydroergotamine inhibits the vasodepressor sensory CGRPergic outflow by prejunctional activation of α2-adrenoceptors and 5-HT1 receptors. J. Headache Pain, 2018, 19(1), 40.
[http://dx.doi.org/10.1186/s10194-018-0869-8] [PMID: 29802544]
[168]
Ramage, A.G.; Villalón, C.M. 5-hydroxytryptamine and cardiovascular regulation. Trends Pharmacol. Sci., 2008, 29(9), 472-481.
[http://dx.doi.org/10.1016/j.tips.2008.06.009] [PMID: 19086344]
[169]
Manrique-Maldonado, G.; González-Hernández, A.; Altamirano-Espinoza, A.H.; Marichal-Cancino, B.A.; Ruiz-Salinas, I.; Villalón, C.M. The role of pre-junctional D2 -like receptors mediating quinpirole-induced inhibition of the vasodepressor sensory CGRPergic out-flow in pithed rats. Basic Clin. Pharmacol. Toxicol., 2014, 114(2), 174-180.
[http://dx.doi.org/10.1111/bcpt.12122] [PMID: 23964609]
[170]
Manrique-Maldonado, G.; Altamirano-Espinoza, A.H.; Rivera-Mancilla, E.; Hernández-Abreu, O.; Villalón, C.M. Activation of dopamine D3 receptor subtypes inhibits the neurogenic systemic vasodilation induced by stimulation of the perivascular CGRPergic discharge. ACS Chem. Neurosci., 2019, 10(8), 3751-3757.
[http://dx.doi.org/10.1021/acschemneuro.9b00277] [PMID: 31343160]
[171]
Malinowska, B.; Schlicker, E. Identification of endothelial H1, vascular H2 and cardiac presynaptic H3 receptors in the pithed rat. Naunyn Schmiedebergs Arch. Pharmacol., 1993, 347(1), 55-60.
[http://dx.doi.org/10.1007/BF00168772] [PMID: 8383300]
[172]
Sun, P.; Takatori, S.; Jin, X.; Koyama, T.; Tangsucharit, P.; Li, S.; Zamami, Y.; Kitamura, Y.; Kawasaki, H. Histamine H(3) receptor-mediated modulation of perivascular nerve transmission in rat mesenteric arteries. Eur. J. Pharmacol., 2011, 655(1-3), 67-73.
[http://dx.doi.org/10.1016/j.ejphar.2011.01.020] [PMID: 21272571]
[173]
Manrique-Maldonado, G.; Altamirano-Espinoza, A.H.; Marichal-Cancino, B.A.; Rivera-Mancilla, E.; Avilés-Rosas, V.; Villalón, C.M. Pharmacological evidence that histamine H3 receptors inhibit the vasodepressor responses by selective stimulation of the rat perivascular sensory CGRPergic outflow. Eur. J. Pharmacol., 2015, 754, 25-31.
[http://dx.doi.org/10.1016/j.ejphar.2015.02.017] [PMID: 25704614]
[174]
Willems, E.W.; Valdivia, L.F.; Villalón, C.M.; Saxena, P.R. Possible role of alpha-adrenoceptor subtypes in acute migraine therapy. Cephalalgia, 2003, 23(4), 245-257.
[http://dx.doi.org/10.1046/j.1468-2982.2003.00547.x] [PMID: 12716341]
[175]
Nag, S.; Mokha, S.S. Activation of alpha2-adrenoceptors in the trigeminal region produces sex-specific modulation of nociception in the rat. Neuroscience, 2006, 142(4), 1255-1262.
[http://dx.doi.org/10.1016/j.neuroscience.2006.07.012] [PMID: 16934408]
[176]
Andersson, K.E.; Vinge, E. Beta-adrenoceptor blockers and calcium antagonists in the prophylaxis and treatment of migraine. Drugs, 1990, 39(3), 355-373.
[http://dx.doi.org/10.2165/00003495-199039030-00003] [PMID: 1970289]
[177]
Danesh, A.; Gottschalk, P.C.H. Beta-Blockers for migraine prevention: a review article. Curr. Treat. Options Neurol., 2019, 21(4), 20.
[http://dx.doi.org/10.1007/s11940-019-0556-3] [PMID: 30903383]
[178]
Buccafusco, J.J.; Finberg, J.P.; Spector, S. Mechanism of the antihypertensive action of clonidine on the pressor response to physostigmine. J. Pharmacol. Exp. Ther., 1980, 212(1), 58-63.
[PMID: 7351626]
[179]
Prichard, B.N.; Owens, C.W.; Graham, B.R. Pharmacology and clinical use of moxonidine, a new centrally acting sympatholytic antihypertensive agent. J. Hum. Hypertens., 1997, 11(Suppl. 1), S29-S45.
[PMID: 9321737]
[180]
Monroy-Ordoñez, E.B.; Villalón, C.M.; Cobos-Puc, L.E.; Márquez-Conde, J.A.; Sánchez-López, A.; Centurión, D. Evidence that some imidazoline derivatives inhibit peripherally the vasopressor sympathetic outflow in pithed rats. Auton. Neurosci., 2008, 143(1-2), 40-45.
[http://dx.doi.org/10.1016/j.autneu.2008.07.007] [PMID: 18774761]
[181]
Houston, M.C. Clonidine hydrochloride. South. Med. J., 1982, 75(6), 713-719.
[http://dx.doi.org/10.1097/00007611-198206000-00022] [PMID: 7046065]
[182]
Oh, D.J.; Chen, J.L.; Vajaranant, T.S.; Dikopf, M.S. Brimonidine tartrate for the treatment of glaucoma. Expert Opin. Pharmacother., 2019, 20(1), 115-122.
[http://dx.doi.org/10.1080/14656566.2018.1544241] [PMID: 30407890]
[183]
Khouri, C.; Blaise, S.; Carpentier, P.; Villier, C.; Cracowski, J.L.; Roustit, M. Drug-induced Raynaud’s phenomenon: beyond β-adrenoceptor blockers. Br. J. Clin. Pharmacol., 2016, 82(1), 6-16.
[http://dx.doi.org/10.1111/bcp.12912] [PMID: 26949933]
[184]
Khouri, C.; Jouve, T.; Blaise, S.; Carpentier, P.; Cracowski, J.L.; Roustit, M. Peripheral vasoconstriction induced by β-adrenoceptor blockers: a systematic review and a network meta-analysis. Br. J. Clin. Pharmacol., 2016, 82(2), 549-560.
[http://dx.doi.org/10.1111/bcp.12980] [PMID: 27085011]
[185]
Marichal-Cancino, B.A.; González-Hernández, A.; Manrique-Maldonado, G.; Ruiz-Salinas, I.I.; Altamirano-Espinoza, A.H. MaassenVanDenBrink, A.; Villalón, C.M. Intrathecal dihydroergotamine inhibits capsaicin-induced vasodilatation in the canine external carotid circulation via GR127935- and rauwolscine-sensitive receptors. Eur. J. Pharmacol., 2012, 692(1-3), 69-77.
[http://dx.doi.org/10.1016/j.ejphar.2012.07.033] [PMID: 22841658]
[186]
Doenicke, A.; Brand, J.; Perrin, V.L. Possible benefit of GR43175, a novel 5-HT1-like receptor agonist, for the acute treatment of severe migraine. Lancet, 1988, 1(8598), 1309-1311.
[http://dx.doi.org/10.1016/S0140-6736(88)92122-8] [PMID: 2897560]
[187]
Tullo, V.; Bussone, G.; Omboni, S.; Barbanti, P.; Cortelli, P.; Curone, M.; Peccarisi, C.; Benedetto, C.; Pezzola, D.; Zava, D.; Allais, G. Efficacy of frovatriptan and other triptans in the treatment of acute migraine of hypertensive and normotensive subjects: a review of randomized studies. Neurol. Sci., 2013, 34(Suppl. 1), S87-S91.
[http://dx.doi.org/10.1007/s10072-013-1367-z] [PMID: 23695053]
[188]
Goldberg, L.I. Cardiovascular and renal actions of dopamine: potential clinical applications. Pharmacol. Rev., 1972, 24(1), 1-29.
[PMID: 4554480]
[189]
Frishman, W.H.; Hotchkiss, H. Selective and nonselective dopamine receptor agonists: an innovative approach to cardiovascular disease treatment. Am. Heart J., 1996, 132(4), 861-870.
[http://dx.doi.org/10.1016/S0002-8703(96)90323-3] [PMID: 8831378]
[190]
Gillies, M.A.; Kakar, V.; Parker, R.J.; Honoré, P.M.; Ostermann, M. Fenoldopam to prevent acute kidney injury after major surgery-a systematic review and meta-analysis. Crit. Care, 2015, 19, 449.
[http://dx.doi.org/10.1186/s13054-015-1166-4] [PMID: 26703329]
[191]
Bangash, M.N.; Patel, N.S.; Benetti, E.; Collino, M.; Hinds, C.J.; Thiemermann, C.; Pearse, R.M. Dopexamine can attenuate the inflammatory response and protect against organ injury in the absence of significant effects on hemodynamics or regional microvascular flow. Crit. Care, 2013, 17(2), R57.
[http://dx.doi.org/10.1186/cc12585] [PMID: 23531318]
[192]
Cataldi, M.; Borriello, F.; Granata, F.; Annunziato, L.; Marone, G. Histamine receptors and antihistamines: from discovery to clinical applications. Chem. Immunol. Allergy, 2014, 100, 214-226.
[http://dx.doi.org/10.1159/000358740] [PMID: 24925401]
[193]
Kim, J.; Ogai, A.; Nakatani, S.; Hashimura, K.; Kanzaki, H.; Komamura, K.; Asakura, M.; Asanuma, H.; Kitamura, S.; Tomoike, H.; Kitakaze, M. Impact of blockade of histamine H2 receptors on chronic heart failure revealed by retrospective and prospective randomized studies. J. Am. Coll. Cardiol., 2006, 48(7), 1378-1384.
[http://dx.doi.org/10.1016/j.jacc.2006.05.069] [PMID: 17010798]
[194]
Sasaguri, Y.; Tanimoto, A. Role of macrophage-derived histamine in atherosclerosis-- chronic participation in the inflammatory response. J. Atheroscler. Thromb., 2004, 11(3), 122-130.
[http://dx.doi.org/10.5551/jat.11.122] [PMID: 15256763]
[195]
Campos, H.A.; Montenegro, M. Footshock-induced rise of rat blood histamine depends upon the activation of postganglionic sympathetic neurons. Eur. J. Pharmacol., 1998, 347(2-3), 159-164.
[http://dx.doi.org/10.1016/S0014-2999(98)00097-1] [PMID: 9653876]
[196]
Hu, J.; Chen, T.; Li, M.; He, G.; Meng, J.; Ma, X.; Wu, Y.; Jia, M.; Luo, X. Wide distribution and subcellular localization of histamine in sympathetic nervous systems of different species. Neurosci. Res., 2007, 59(2), 231-236.
[http://dx.doi.org/10.1016/j.neures.2007.06.1481] [PMID: 17723248]
[197]
Ryan, M.J.; Brody, M.J. Distribution of histamine in the canine autonomic nervous system. J. Pharmacol. Exp. Ther., 1970, 174(1), 123-132.
[PMID: 4316532]
[198]
Ryan, M.J.; Brody, M.J. Neurogenic and vascular stores of histamine in the dog. J. Pharmacol. Exp. Ther., 1972, 181(1), 83-91.
[PMID: 4335171]
[199]
He, G.; Hu, J.; Ma, X.; Li, M.; Wang, H.; Meng, J.; Jia, M.; Luo, X. Sympathetic histamine exerts different pre- and post-synaptic functions according to the frequencies of nerve stimulation in guinea pig vas deferens. J. Neurochem., 2008, 106(4), 1710-1719.
[http://dx.doi.org/10.1111/j.1471-4159.2008.05532.x] [PMID: 18565206]
[200]
Levi, R.; Smith, N.C. Histamine H(3)-receptors: a new frontier in myocardial ischemia. J. Pharmacol. Exp. Ther., 2000, 292(3), 825-830.
[PMID: 10688593]
[201]
Worm, J.; Falkenberg, K.; Olesen, J. Histamine and migraine revisited: mechanisms and possible drug targets. J. Headache Pain, 2019, 20(1), 30.
[http://dx.doi.org/10.1186/s10194-019-0984-1] [PMID: 30909864]