MicroRNA-520c-3p Modulates Doxorubicin-Chemosensitivity in HepG2 Cells

Page: [237 - 245] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Background: Doxorubicin (DOX) is one of the most common drugs used in cancer therapy, including Hepatocellular Carcinoma (HCC). Drug resistance is one of chemotherapy’s significant problems. Emerging studies have shown that microRNAs (miRNAs) could participate in regulating this mechanism. Nevertheless, the impact of miRNAs on HCC chemoresistance is still enigmatic.

Objective: Investigating the role of microRNA-520c-3p (miR-520c-3p) in the enhancement of the anti-tumor effect of DOX against HepG2 cells.

Methods: Expression profile for liver-related miRNAs (384 miRNAs) has been analyzed on HepG2 cells treated with DOX using qRT-PCR. miR-520c-3p, the most deregulated miRNA, was selected for combination treatment with DOX. The expression level for LEF1, CDK2, CDH1, VIM, Mcl-1 and p53 was evaluated in miR-520c-3p transfected cells. Cell viability, colony formation, wound healing as well as apoptosis assays have been demonstrated. Furthermore, Mcl-1 protein level was measured using the western blot technique.

Results: The present data indicated that miR-520c-3p overexpression could render HepG2 cells chemo-sensitive to DOX through enhancing its suppressive effects on proliferation, migration, and induction of apoptosis. The suppressive effect of miR-520c-3p involved altering the expression levels of some key regulators of cell cycle, proliferation, migration and apoptosis, including LEF1, CDK2, CDH1, VIM, Mcl-1 and p53. Interestingly, Mcl-1 was found to be one of the potential targets of miR-520c-3p, and its protein expression level was down-regulated upon miR-520c-3p overexpression.

Conclusion: Our data referred to the tumor suppressor function of miR-520c-3p that could modulate the chemosensitivity of HepG2 cells towards DOX treatment, providing a promising therapeutic strategy in HCC.

Keywords: Hepatocellular carcinoma, miR-520c-3p, doxorubicin, chemosensitivity, Mcl-1.

Graphical Abstract

[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Llovet, J.M.; Zucman-Rossi, J.; Pikarsky, E.; Sangro, B.; Schwartz, M.; Sherman, M.; Gores, G. Hepatocellular carcinoma. Nat. Rev. Dis. Primers, 2016, 2, 16018.
[http://dx.doi.org/10.1038/nrdp.2016.18] [PMID: 27158749]
[3]
Forner, A.; Gilabert, M.; Bruix, J.; Raoul, J-L. Treatment of intermediate-stage hepatocellular carcinoma. Nat. Rev. Clin. Oncol., 2014, 11(9), 525-535.
[http://dx.doi.org/10.1038/nrclinonc.2014.122] [PMID: 25091611]
[4]
EASL Clinical Practice Guidelines Management of hepatocellular carcinoma. J. Hepatol., 2018, 69(1), 182-236.
[http://dx.doi.org/10.1016/j.jhep.2018.03.019] [PMID: 29628281]
[5]
Yang, F.; Teves, S.S.; Kemp, C.J.; Henikoff, S. Doxorubicin, DNA torsion, and chromatin dynamics. Biochim. Biophys. Acta, 2014, 1845(1), 84-89.
[PMID: 24361676]
[6]
He, L.; Hannon, G.J. MicroRNAs: Small RNAs with a big role in gene regulation. Nat. Rev. Genet., 2004, 5(7), 522-531.
[http://dx.doi.org/10.1038/nrg1379] [PMID: 15211354]
[7]
Farazi, T.A.; Hoell, J.I.; Morozov, P.; Tuschl, T. MicroRNAs in Human Cancer. In MicroRNA Cancer Regulation: Advanced Concepts, Bioinformatics and Systems Biology Tools; Schmitz, U.; Wolkenhauer, O.; Vera, J., Eds.; Springer: Dordrecht, 2013, Vol. 774, pp. 1-20.
[http://dx.doi.org/10.1007/978-94-007-5590-1_1]
[8]
Berindan-Neagoe, I.; Monroig, P.C.; Pasculli, B.; Calin, G.A. MicroRNAome genome: A treasure for cancer diagnosis and therapy. CA Cancer J. Clin., 2014, 64(5), 311-336.
[http://dx.doi.org/10.3322/caac.21244] [PMID: 25104502]
[9]
Chen, S.; Yang, C.; Sun, C.; Sun, Y.; Yang, Z.; Cheng, S.; Zhuge, B. miR-21-5p suppressed the sensitivity of hepatocellular carcinoma cells to cisplatin by targeting FASLG. DNA Cell Biol., 2019, 38(8), 865-873.
[http://dx.doi.org/10.1089/dna.2018.4529] [PMID: 31225740]
[10]
Chen, M.; Wu, L.; Tu, J.; Zhao, Z.; Fan, X.; Mao, J.; Weng, Q.; Wu, X.; Huang, L.; Xu, M.; Ji, J. miR-590-5p suppresses hepatocellular carcinoma chemoresistance by targeting YAP1 expression. EBioMedicine, 2018, 35, 142-154.
[http://dx.doi.org/10.1016/j.ebiom.2018.08.010] [PMID: 30111512]
[11]
Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Δ Δ C(T)). Method. Methods, 2001, 25(4), 402-408.
[http://dx.doi.org/10.1006/meth.2001.1262] [PMID: 11846609]
[12]
Cheng, D.; Xu, Y.; Sun, C.; He, Z. MicroRNA-451 sensitizes lung cancer cells to cisplatin through regulation of Mcl-1. Mol. Cell. Biochem., 2016, 423(1-2), 85-91.
[http://dx.doi.org/10.1007/s11010-016-2827-6] [PMID: 27686452]
[13]
Xie, Q.; Wang, S.; Zhao, Y.; Zhang, Z.; Qin, C.; Yang, X. MiR-519d impedes cisplatin-resistance in breast cancer stem cells by down-regulating the expression of MCL-1. Oncotarget, 2017, 8(13), 22003-22013.
[http://dx.doi.org/10.18632/oncotarget.15781] [PMID: 28423543]
[14]
Tian, T.; Fu, X.; Lu, J.; Ruan, Z.; Nan, K.; Yao, Y.; Yang, Y. MicroRNA‐760 inhibits doxorubicin resistance in hepatocellular carcinoma through regulating Notch1/Hes1‐PTEN/Akt signaling pathway. J. Biochem. Mol. Toxicol., 2018, 32(8)e22167
[http://dx.doi.org/10.1002/jbt.22167] [PMID: 29968951]
[15]
Yang, F.; Li, Q.J.; Gong, Z.B.; Zhou, L.; You, N.; Wang, S.; Li, X.L.; Li, J.J.; An, J.Z.; Wang, D.S.; He, Y.; Dou, K.F. MicroRNA-34a targets Bcl-2 and sensitizes human hepatocellular carcinoma cells to sorafenib treatment. Technol. Cancer Res. Treat., 2014, 13(1), 77-86.
[http://dx.doi.org/10.7785/tcrt.2012.500364] [PMID: 23862748]
[16]
Mazan-Mamczarz, K.; Zhao, X.F.; Dai, B.; Steinhardt, J.J.; Peroutka, R.J.; Berk, K.L.; Landon, A.L.; Sadowska, M.; Zhang, Y.; Lehrmann, E.; Becker, K.G.; Shaknovich, R.; Liu, Z.; Gartenhaus, R.B. Down-regulation of eIF4GII by miR-520c-3p represses diffuse large B cell lymphoma development. PLoS Genet., 2014, 10(1)e1004105
[http://dx.doi.org/10.1371/journal.pgen.1004105] [PMID: 24497838]
[17]
Li, X.; Fu, Q.; Li, H.; Zhu, L.; Chen, W.; Ruan, T.; Xu, W.; Yu, X. MicroRNA-520c-3p functions as a novel tumor suppressor in lung adenocarcinoma. FEBS J., 2019, 286(14), 2737-2752.
[http://dx.doi.org/10.1111/febs.14835] [PMID: 30942957]
[18]
Hu, S.; Chen, H.; Zhang, Y.; Wang, C.; Liu, K.; Wang, H.; Luo, J. MicroRNA-520c inhibits glioma cell migration and invasion by the suppression of transforming growth factor-β receptor type 2. Oncol. Rep., 2017, 37(3), 1691-1697.
[http://dx.doi.org/10.3892/or.2017.5421] [PMID: 28184932]
[19]
Yang, K.; Handorean, A.M.; Iczkowski, K.A. MicroRNAs 373 and 520c are downregulated in prostate cancer, suppress CD44 translation and enhance invasion of prostate cancer cells in vitro. Int. J. Clin. Exp. Pathol., 2009, 2(4), 361-369.
[PMID: 19158933]
[20]
Huang, Q.; Gumireddy, K.; Schrier, M.; le Sage, C.; Nagel, R.; Nair, S.; Egan, D.A.; Li, A.; Huang, G.; Klein-Szanto, A.J.; Gimotty, P.A.; Katsaros, D.; Coukos, G.; Zhang, L.; Puré, E.; Agami, R. The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat. Cell Biol., 2008, 10(2), 202-210.
[http://dx.doi.org/10.1038/ncb1681] [PMID: 18193036]
[21]
Keklikoglou, I.; Koerner, C.; Schmidt, C.; Zhang, J.D.; Heckmann, D.; Shavinskaya, A.; Allgayer, H.; Gückel, B.; Fehm, T.; Schneeweiss, A.; Sahin, O.; Wiemann, S.; Tschulena, U. MicroRNA-520/373 family functions as a tumor suppressor in estrogen receptor negative breast cancer by targeting NF-κB and TGF-β signaling pathways. Oncogene, 2012, 31(37), 4150-4163.
[http://dx.doi.org/10.1038/onc.2011.571] [PMID: 22158050]
[22]
Liu, P.; Wilson, M.J. miR-520c and miR-373 upregulate MMP9 expression by targeting mTOR and SIRT1, and activate the Ras/Raf/MEK/Erk signaling pathway and NF-κB factor in human fibrosarcoma cells. J. Cell. Physiol., 2012, 227(2), 867-876.
[http://dx.doi.org/10.1002/jcp.22993] [PMID: 21898400]
[23]
Li, Y.R.; Wen, L.Q.; Wang, Y.; Zhou, T.C.; Ma, N.; Hou, Z.H.; Jiang, Z.P. MicroRNA-520c enhances cell proliferation, migration, and invasion by suppressing IRF2 in gastric cancer. FEBS Open Bio, 2016, 6(12), 1257-1266.
[http://dx.doi.org/10.1002/2211-5463.12142] [PMID: 28203525]
[24]
Lei, C-J.; Yao, C.; Li, D-K.; Long, Z-X.; Li, Y.; Tao, D.; Liou, Y-P.; Zhang, J-Z.; Liu, N. Effect of co-transfection of miR-520c-3p and miR-132 on proliferation and apoptosis of hepatocellular carcinoma Huh7. Asian Pac. J. Trop. Med., 2016, 9(9), 898-902.
[http://dx.doi.org/10.1016/j.apjtm.2016.07.015] [PMID: 27633306]
[25]
Miao, H.L.; Lei, C.J.; Qiu, Z.D.; Liu, Z.K.; Li, R.; Bao, S.T.; Li, M.Y. MicroRNA-520c-3p inhibits hepatocellular carcinoma cell proliferation and invasion through induction of cell apoptosis by targeting glypican-3. Hepatol. Res., 2014, 44(3), 338-348.
[http://dx.doi.org/10.1111/hepr.12121] [PMID: 23607462]
[26]
Mudduluru, G.; Ilm, K.; Fuchs, S.; Stein, U. Epigenetic silencing of miR-520c leads to induced S100A4 expression and its mediated colorectal cancer progression. Oncotarget, 2017, 8(13), 21081-21094.
[http://dx.doi.org/10.18632/oncotarget.15499] [PMID: 28423501]
[27]
Dong, X.; Fang, Z.; Yu, M.; Zhang, L.; Xiao, R.; Li, X.; Pan, G.; Liu, J. Knockdown of long noncoding RNA HOXA-AS2 suppresses chemoresistance of acute myeloid leukemia via the miR-520c-3p/S100A4 axis. Cell. Physiol. Biochem., 2018, 51(2), 886-896.
[http://dx.doi.org/10.1159/000495387] [PMID: 30466095]
[28]
Thorgeirsson, S.S.; Grisham, J.W. Molecular pathogenesis of human hepatocellular carcinoma. Nat. Genet., 2002, 31(4), 339-346.
[http://dx.doi.org/10.1038/ng0802-339] [PMID: 12149612]
[29]
Liu, F.Y.; Zhou, S.J.; Deng, Y.L.; Zhang, Z.Y.; Zhang, E.L.; Wu, Z.B.; Huang, Z.Y.; Chen, X.P. MiR-216b is involved in pathogenesis and progression of hepatocellular carcinoma through HBx-miR-216b-IGF2BP2 signaling pathway. Cell Death Dis., 2015, 6(3)e1670
[http://dx.doi.org/10.1038/cddis.2015.46] [PMID: 25741595]
[30]
Fang, S.; Liu, M.; Li, L.; Zhang, F-F.; Li, Y.; Yan, Q.; Cui, Y-Z.; Zhu, Y-H.; Yuan, Y-F.; Guan, X-Y. Lymphoid enhancer-binding factor-1 promotes stemness and poor differentiation of hepatocellular carcinoma by directly activating the NOTCH pathway. Oncogene, 2019, 38(21), 4061-4074.
[http://dx.doi.org/10.1038/s41388-019-0704-y] [PMID: 30696957]
[31]
Liu, X.; Liu, X.; Wu, Y.; Fang, Z.; Wu, Q.; Wu, C.; Hao, Y.; Yang, X.; Zhao, J.; Li, J.; Wang, Q.; Yang, Z.; Xu, J.; Hu, X.; Tan, M.; Li, L. MicroRNA-34a attenuates metastasis and chemoresistance of bladder cancer cells by targeting the TCF1/LEF1 axis. Cell. Physiol. Biochem., 2018, 48(1), 87-98.
[http://dx.doi.org/10.1159/000491665] [PMID: 30001529]
[32]
Xu, M.; Jin, H.; Xu, C-X.; Bi, W-Z.; Wang, Y. MiR-34c inhibits osteosarcoma metastasis and chemoresistance. Med. Oncol., 2014, 31(6), 972.
[http://dx.doi.org/10.1007/s12032-014-0972-x] [PMID: 24802328]
[33]
Vousden, K.H.; Lu, X. Live or let die: The cell’s response to p53. Nat. Rev. Cancer, 2002, 2(8), 594-604.
[http://dx.doi.org/10.1038/nrc864] [PMID: 12154352]
[34]
El-Deiry, W.S. The role of p53 in chemosensitivity and radiosensitivity. Oncogene, 2003, 22(47), 7486-7495.
[http://dx.doi.org/10.1038/sj.onc.1206949] [PMID: 14576853]
[35]
Xue, J.; Chi, Y.; Chen, Y.; Huang, S.; Ye, X.; Niu, J.; Wang, W.; Pfeffer, L.M.; Shao, Z.M.; Wu, Z.H.; Wu, J. MiRNA-621 sensitizes breast cancer to chemotherapy by suppressing FBXO11 and enhancing p53 activity. Oncogene, 2016, 35(4), 448-458.
[http://dx.doi.org/10.1038/onc.2015.96] [PMID: 25867061]
[36]
Zeisberg, M.; Neilson, E.G. Biomarkers for epithelial-mesenchymal transitions. J. Clin. Invest., 2009, 119(6), 1429-1437.
[http://dx.doi.org/10.1172/JCI36183] [PMID: 19487819]
[37]
Wang, W.; Wang, L.; Mizokami, A.; Shi, J.; Zou, C.; Dai, J.; Keller, E.T.; Lu, Y.; Zhang, J. Down-regulation of E-cadherin enhances prostate cancer chemoresistance via Notch signaling. Chin. J. Cancer, 2017, 36(1), 35.
[http://dx.doi.org/10.1186/s40880-017-0203-x] [PMID: 28356132]
[38]
Pan, J-X.; Wang, F.; Ye, L-Y. Doxorubicin-induced epithelial-mesenchymal transition through SEMA 4A in hepatocellular carcinoma. Biochem. Biophys. Res. Commun., 2016, 479(4), 610-614.
[http://dx.doi.org/10.1016/j.bbrc.2016.09.167] [PMID: 27697528]
[39]
De Blasio, A.; Vento, R.; Di Fiore, R. Mcl-1 targeting could be an intriguing perspective to cure cancer. J. Cell. Physiol., 2018, 233(11), 8482-8498.
[http://dx.doi.org/10.1002/jcp.26786] [PMID: 29797573]
[40]
Eldeeb, M.A.; Fahlman, R.P.; Esmaili, M.; Ragheb, M.A. Regulating apoptosis by degradation: The N-End rule-mediated regulation of apoptotic proteolytic fragments in mammalian cells. Int. J. Mol. Sci., 2018, 19(11), 3414.
[http://dx.doi.org/10.3390/ijms19113414] [PMID: 30384441]
[41]
Hou, J.; Eldeeb, M.; Wang, X. Beyond deubiquitylation: Usp30-mediated regulation of mitochondrial homeostasis. Mitochondrial DNA Dis., 2017, 1038, 133-148.
[http://dx.doi.org/10.1007/978-981-10-6674-0_10]
[42]
Eldeeb, M.A.; Ragheb, M.A. Post-translational N-terminal arginylation of protein fragments: A pivotal portal to proteolysis. Curr. Protein Pept. Sci., 2018, 19(12), 1214-1223.
[http://dx.doi.org/10.2174/1389203719666180809113122] [PMID: 30091410]
[43]
Kramer, D.A.; Eldeeb, M.A.; Wuest, M.; Mercer, J.; Fahlman, R.P. Proteomic characterization of EL4 lymphoma-derived tumors upon chemotherapy treatment reveals potential roles for lysosomes and caspase-6 during tumor cell death in vivo. Proteomics, 2017, 17(12)1700060
[http://dx.doi.org/10.1002/pmic.201700060] [PMID: 28508578]
[44]
Eldeeb, M.A.; Ragheb, M.A.; Fon, E.A. Cell death: N-degrons fine-tune pyroptotic cell demise. Curr. Biol., 2019, 29(12), R588-R591.
[http://dx.doi.org/10.1016/j.cub.2019.05.004] [PMID: 31211982]
[45]
Eldeeb, M.A.; Fahlman, R.P. Phosphorylation impacts N-end rule degradation of the proteolytically activated form of BMX kinase. J. Biol. Chem., 2016, 291(43), 22757-22768.
[http://dx.doi.org/10.1074/jbc.M116.737387] [PMID: 27601470]
[46]
Zhang, H.; Guttikonda, S.; Roberts, L.; Uziel, T.; Semizarov, D.; Elmore, S.W.; Leverson, J.D.; Lam, L.T. Mcl-1 is critical for survival in a subgroup of non-small-cell lung cancer cell lines. Oncogene, 2011, 30(16), 1963-1968.
[http://dx.doi.org/10.1038/onc.2010.559] [PMID: 21132008]
[47]
Zhang, B.; Gojo, I.; Fenton, R.G. Myeloid cell factor-1 is a critical survival factor for multiple myeloma. Blood, 2002, 99(6), 1885-1893.
[http://dx.doi.org/10.1182/blood.V99.6.1885] [PMID: 11877256]
[48]
Ding, Q.; He, X.; Xia, W.; Hsu, J-M.; Chen, C-T.; Li, L-Y.; Lee, D-F.; Yang, J-Y.; Xie, X.; Liu, J-C.; Hung, M-C. Myeloid cell leukemia-1 inversely correlates with glycogen synthase kinase-3β activity and associates with poor prognosis in human breast cancer. Cancer Res., 2007, 67(10), 4564-4571.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-1788] [PMID: 17495324]
[49]
Sieghart, W.; Losert, D.; Strommer, S.; Cejka, D.; Schmid, K.; Rasoul-Rockenschaub, S.; Bodingbauer, M.; Crevenna, R.; Monia, B.P.; Peck-Radosavljevic, M.; Wacheck, V. Mcl-1 overexpression in hepatocellular carcinoma: a potential target for antisense therapy. J. Hepatol., 2006, 44(1), 151-157.
[http://dx.doi.org/10.1016/j.jhep.2005.09.010] [PMID: 16289418]
[50]
Peddaboina, C.; Jupiter, D.; Fletcher, S.; Yap, J.L.; Rai, A.; Tobin, R.P.; Jiang, W.; Rascoe, P.; Rogers, M.K.N.; Smythe, W.R.; Cao, X. The downregulation of Mcl-1 via USP9X inhibition sensitizes solid tumors to Bcl-xl inhibition. BMC Cancer, 2012, 12(1), 541.
[http://dx.doi.org/10.1186/1471-2407-12-541] [PMID: 23171055]
[51]
He, H.; Tian, W.; Chen, H.; Deng, Y. MicroRNA-101 sensitizes hepatocellular carcinoma cells to doxorubicin-induced apoptosis via targeting Mcl-1. Mol. Med. Rep., 2016, 13(2), 1923-1929.
[http://dx.doi.org/10.3892/mmr.2015.4727] [PMID: 26718267]
[52]
Toge, M.; Yokoyama, S.; Kato, S.; Sakurai, H.; Senda, K.; Doki, Y.; Hayakawa, Y.; Yoshimura, N.; Saiki, I. Critical contribution of MCL-1 in EMT-associated chemo-resistance in A549 non-small cell lung cancer. Int. J. Oncol., 2015, 46(4), 1844-1848.
[http://dx.doi.org/10.3892/ijo.2015.2861] [PMID: 25647738]