The Influence of Calcination on the Physicochemical Properties of Acidactivated Natural Mordenite

Page: [138 - 147] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

The influence of air–calcination (500oC for 2h) on the physicochemical properties of natural mordenite and mordenite activated by aqueous solutions of several acids, has been studied through various methods. Calcination does not affect the crystal structure of the samples and their fibrous and pores morphology. In contrast, it causes a drastic decrease in the high Bronsted acidity of the acidactivated samples, which was tentatively attributed to the partial destruction of the very strong Al– (OH)–Si acid sites. The influence of calcination on the texture is different depending on the acidic solution used for mordenite activation. The high specific surface area and the moderate acidity obtained after calcination of the sample activated by HCl render this material quite attractive support for the development of nickel supported catalysts for green diesel production.

Keywords: Natural mordenite, acid-activated mordenite, air-calcination, catalyst support, porosity, surface acidity.

Graphical Abstract

[1]
Alexandropoulos, S.; Tsatsaronis, A.; Haimalas, P.; Kordulis, C. React. Kinet. Catal. Lett., 1991, 43, 329.
[http://dx.doi.org/10.1007/BF02064693]
[2]
Kloprogge, J. Theo., Duong, Loc V., Frost, Ray L. Environ. Geol., 2005, 47, 967.
[http://dx.doi.org/10.1007/s00254-005-1226-1]
[3]
Soni, V.K.; Sharma, P.R.; Choudhary, G.; Pandey, S.; Sharma, R.K. ACS Sustain. Chem.& Eng., 2017, 5, 5351.
[http://dx.doi.org/10.1021/acssuschemeng.7b00659]
[4]
Zhou, C.H.; Li, G.L.; Zhuang, X.Y.; Wang, P.P.; Tong, D.S.; Yang, H.M.; Lin, C.X.; Li, L.; Zhang, H.; Ji, S.F.; Yu, W.H. Molecular Catalysis, 2017, 434, 219.
[http://dx.doi.org/10.1016/j.mcat.2016.12.022]
[5]
Malko, M.; Antosik, A.K.; Wroblewska, A.; Czech, Z.; Wilpiszewska, K.; Miadlicki, P.; Michalkiewicz, B. Pol. J. Chem. Technol., 2017, 19, 50.
[http://dx.doi.org/10.1515/pjct-2017-0067]
[6]
Catrinescu, C.; Fernandes, C.; Castilho, P.; Breen, C. Appl. Catal. A Gen., 2006, 311, 172.
[http://dx.doi.org/10.1016/j.apcata.2006.06.023]
[7]
Martin-Luengo, M.A.; Yates, M.; Rojo, E.S.; Arribas, D.H.; Aguilar, D.; Hitzky, E.R. Appl. Catal. A Gen., 2010, 387, 141.
[http://dx.doi.org/10.1016/j.apcata.2010.08.016]
[8]
Belver, C.; Aranda, P.; Martin-Luengo, M.A.; Ruiz-Hitzky, E. Microporous Mesoporous Mater., 2012, 147, 157.
[http://dx.doi.org/10.1016/j.micromeso.2011.05.037]
[9]
Makarouni, D.; Lycourghiotis, S.; Kordouli, E.; Bourikas, K.; Kordulis, C.; Dourtoglou, V. Appl. Catal. B, 2018, 224, 740.
[http://dx.doi.org/10.1016/j.apcatb.2017.11.006]
[10]
Lycourghiotis, S.; Makarouni, D.; Kordouli, E.; Bourikas, K.; Kordulis, C.; Dourtoglou, V. Molecular Catalysis, 2018, 450, 95.
[http://dx.doi.org/10.1016/j.mcat.2018.03.013]
[11]
Lycourghiotis, A.; Kordulis, C.; Lycourghiotis, S. Beyond fossil fuels: the return journey to renewable energy; Crete University Editions, 2017.
[12]
Saxena, S.K.; Viswanadham, N. Appl. Surf. Sci., 2017, 392, 384.
[http://dx.doi.org/10.1016/j.apsusc.2016.09.062]
[13]
Saxena, S.K.; Viswanadham, N.; Al-Muhtaseb, A.H. J. Porous Mater., 2016, 23, 1671.
[http://dx.doi.org/10.1007/s10934-016-0228-6]
[14]
Narayanan, S.; Vijaya, J.J.; Sivasanker, S.; Alam, M.; Tamizhdurai, P.; Kennedy, L.J. Polyhedron, 2015, 89, 289.
[http://dx.doi.org/10.1016/j.poly.2014.12.038]
[15]
Chung, K-H. Microporous Mesoporous Mater., 2008, 111, 544.
[http://dx.doi.org/10.1016/j.micromeso.2007.08.031]
[16]
Viswanadham, N.; Kumar, M. Microporous Mesoporous Mater., 2006, 92, 31.
[http://dx.doi.org/10.1016/j.micromeso.2005.07.049]
[17]
Boveri, M.; Marquez-Alvarez, C.; Laborde, M.A.; Sastre, E. Catal. Today, 2006, 114, 217.
[http://dx.doi.org/10.1016/j.cattod.2006.01.012]
[18]
Bäcktorp, C.; Wass, J.R.; Panas, I.; Sköld, M.; Börje, A.; Nyman, G. Theoretical investigation of linalool oxidation. J. Phys. Chem. A, 2006, 110(44), 12204-12212.
[http://dx.doi.org/10.1021/jp0603278] [PMID: 17078616]
[19]
Ates, A.; Hardacre, C. The effect of various treatment conditions on natural zeolites: ion exchange, acidic, thermal and steam treatments. J. Colloid Interface Sci., 2012, 372(1), 130-140.
[http://dx.doi.org/10.1016/j.jcis.2012.01.017] [PMID: 22331036]
[20]
Kamitsou, M.; Panagiotou, G.D.; Triantafyllidis, K.S.; Bourikas, K.; Lycourghiotis, A.; Kordulis, C. Appl. Catal. A Gen., 2014, 474, 224.
[http://dx.doi.org/10.1016/j.apcata.2013.06.001]
[21]
Martin-Luengo, M.A.; Yates, M.; Rojo, E.S.; Arribas, D.H.; Aguilar, D.; Hitzky, E.R. Appl. Catal. A Gen., 2010, 387, 141.
[http://dx.doi.org/10.1016/j.apcata.2010.08.016]
[22]
Leita, B.A.; Warden, A.C.; Burke, N.; O’Shea, M.S.; Trimm, D. Green Chem., 12, 70.
[http://dx.doi.org/10.1039/B916460J]
[23]
Martin-Luengo, M.A.; Yates, M.; Diaz, M.; Rojo, E.S.; Gil, L.G. Appl. Catal. B, 2011, 106, 488.
[http://dx.doi.org/10.1016/j.apcatb.2011.06.007]
[24]
Belver, C.; Aranda, P.; Martin-Luengo, M.A.; Ruiz-Hitzky, E. Microporous Mesoporous Mater., 2012, 147, 157.
[http://dx.doi.org/10.1016/j.micromeso.2011.05.037]
[25]
Fiege, H. Ullmann’s encyclopedia of industrial chemistry; Wiley-VCH: Weinheim, 2012, Vol. 10, p. 419.
[26]
Du, J.; Xu, H.; Shen, J.; Huang, J.; Shen, W.; Zhao, D. Appl. Catal. A Gen., 2005, 296, 186.
[http://dx.doi.org/10.1016/j.apcata.2005.08.030]
[27]
Corma, A.; Iborra, S.; Velty, A. Chemical routes for the transformation of biomass into chemicals. Chem. Rev., 2007, 107(6), 2411-2502.
[http://dx.doi.org/10.1021/cr050989d] [PMID: 17535020]
[28]
Martin-Luengo, M.A.; Yates, M.; Martinez Domingo, M.J.; Casal, B.; Iglesias, M.; Esteban, M.; Ruiz-Hitzky, E. Appl. Catal. B, 2008, 81, 218.
[http://dx.doi.org/10.1016/j.apcatb.2007.12.003]
[29]
Kordulis, C.; Bourikas, K.; Gousi, M.; Kordouli, E.; Lycourghiotis, A. Appl. Catal. B, 2016, 181, 156.
[http://dx.doi.org/10.1016/j.apcatb.2015.07.042]
[30]
Gousi, M.; Andriopoulou, C.; Bourikas, K.; Ladas, S.; Sotiriou, M.; Kordulis, C.; Lycourghiotis, A. Appl. Catal. A Gen., 2017, 536, 45.
[http://dx.doi.org/10.1016/j.apcata.2017.02.010]
[31]
Kordouli, E.; Sygellou, L.; Kordulis, C.; Bourikas, K.; Lycourghiotis, A. Appl. Catal. B, 2017, 209, 12.
[http://dx.doi.org/10.1016/j.apcatb.2017.02.045]
[32]
Kordouli, E.; Pawelec, B.; Bourikas, K.; Kordulis, C.; Fierro, J.L.G.; Lycourghiotis, A. Appl. Catal. B, 2018, 229, 139.
[http://dx.doi.org/10.1016/j.apcatb.2018.02.015]
[33]
Zhang, C.; Huang, H.; Li, G.; Wang, L.; Song, L.; Li, X. Catal. Today, 2019, 327, 374.
[http://dx.doi.org/10.1016/j.cattod.2018.03.019]
[34]
Zhang, C.; Wang, C.; Huang, H.; Zeng, K.; Wang, Z.; Jia, H.; Li, X. Appl. Surf. Sci., 2019, 486, 108.
[http://dx.doi.org/10.1016/j.apsusc.2019.04.201]
[35]
Panagiotou, G.D.; Petsi, T.; Bourikas, K.; Garoufalis, C.S.; Tsevis, A.; Spanos, N.; Kordulis, C.; Lycourghiotis, A. Mapping the surface (hydr)oxo-groups of titanium oxide and its interface with an aqueous solution: the state of the art and a new approach. Adv. Colloid Interface Sci., 2008, 142(1-2), 20-42.
[http://dx.doi.org/10.1016/j.cis.2008.04.003] [PMID: 18511015]
[36]
Liu, X.; Mäki-Arvela, P.; Aho, A.; Vajglova, Z.; Gun’ko, V.M.; Heinmaa, I.; Kumar, N.; Eränen, K.; Salmi, T.; Murzin, D.Y. Zeta potential of beta zeolites: influence of structure, acidity, pH, temperature and concentration. Molecules, 2018, 23(4), 946.