Recent Progress in the Synthesis and Applications of Azaacenes

Page: [885 - 899] Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

Partial substitution of CH groups in the skeletons of linearly fused phenyl rings provides an appreciable possibility to tailor their properties. Among them, azaacenes induced from a partial substitution of oligoacenes by nitrogen are one of the most promising derivatives with a view of their potential application in organic electronic devices as a novel organic n-type semiconductor. Hence this review focuses on recent progress in the synthesis of azaacenes and their applications beyond organic field-effect transistors (OFETs) such as organic light-emitting diodes (OLEDs), phototransistors, photoelectrical chemical cells, organic memory, solar cells, conductors and sensors.

Keywords: Azaacenes, electronic devices, light-emitting diodes, n-type semiconductors, organic sensors, solar cells.

Graphical Abstract

[1]
Chiang, C.K.; Fincher, C.R.; Park, Y.W.; Heeger, A.J.; Shirakawa, H.; Louis, E.J.; Gau, S.C.; MacDiarmid, A.G. Electrical conductivity in doped polyacetylene. Phys. Rev. Lett., 1977, 39(17), 1098-1101.
[http://dx.doi.org/10.1103/PhysRevLett.39.1098]
[2]
Gelinck, G.H.; Huitema, H.E.A.; van Veenendaal, E.; Cantatore, E.; Schrijnemakers, L.; van der Putten, J.B.; Geuns, T.C.T.; Beenhakkers, M.; Giesbers, J.B.; Huisman, B.H.; Meijer, E.J.; Benito, E.M.; Touwslager, F.J.; Marsman, A.W.; van Rens, B.J.E.; de Leeuw, D.M. Flexible active-matrix displays and shift registers based on solution-processed organic transistors. Nat. Mater., 2004, 3(2), 106-110.
[http://dx.doi.org/10.1038/nmat1061] [PMID: 14743215]
[3]
Zhou, L.S.; Wanga, A.; Wu, S.C.; Sun, J.; Park, S.; Jackson, T.N. All-organic active matrix flexible display. Appl. Phys. Lett., 2006, 88 083502
[http://dx.doi.org/10.1063/1.2178213]
[4]
Lee, S.; Koo, B.; Park, J.G.; Moon, H.; Hahn, J.; Kim, J.M. Development of high-performance organic thin-film transistors for large-area displays. MRS Bull., 2006, 31, 455-459.
[http://dx.doi.org/10.1557/mrs2006.118]
[5]
Sirringhaus, H.; Kawase, T.; Friend, R.H. High-resolution ink-jet printing of all-polymer transistor circuits. MRS Bull., 2001, 26(7), 539-543.
[http://dx.doi.org/10.1557/mrs2001.127]
[6]
Rogers, J.A.; Bao, Z.; Baldwin, K.; Dodabalapur, A.; Crone, B.; Raju, V.R.; Kuck, V.; Katz, H.; Amundson, K.; Ewing, J.; Drzaic, P. Paper-like electronic displays: large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks. Proc. Natl. Acad. Sci. USA, 2001, 98(9), 4835-4840.
[http://dx.doi.org/10.1073/pnas.091588098] [PMID: 11320233]
[7]
Li, J.B.; Zhang, Q.C. Mono- and oligocyclic aromatic ynes and diynes as building blocks to approach larger acenes, heteroacenes, and twistacenes. Synlett, 2013, 24, 686-696.
[http://dx.doi.org/10.1055/s-0032-1318157]
[8]
Qu, H.M.; Chi, C.Y. Synthetic chemistry of acenes and heteroacenes. Curr. Org. Chem., 2010, 14(18), 2070-2108.
[http://dx.doi.org/10.2174/138527210793351580]
[9]
Ye, Q.; Chi, C.Y. Recent highlights and perspectives on acene based molecules and materials. Chem. Mater., 2014, 26(14), 4046-4056.
[http://dx.doi.org/10.1021/cm501536p]
[10]
Jiang, W.; Li, Y.; Wang, Z. Heteroarenes as high performance organic semiconductors. Chem. Soc. Rev., 2013, 42(14), 6113-6127.
[http://dx.doi.org/10.1039/c3cs60108k] [PMID: 23628866]
[11]
Stolar, M.; Baumgartner, T. Phosphorus-containing materials for organic electronics. Chem. Asian J., 2014, 9(5), 1212-1225.
[http://dx.doi.org/10.1002/asia.201301670] [PMID: 24678037]
[12]
Wang, X.Y.; Wang, J.Y.; Pei, J. BN heterosuperbenzenes: synthesis and properties. Chemistry, 2015, 21(9), 3528-3539.
[http://dx.doi.org/10.1002/chem.201405627] [PMID: 25469827]
[13]
Winkler, M.; Houk, K.N. Nitrogen-rich oligoacenes: candidates for n-channel organic semiconductors. J. Am. Chem. Soc., 2007, 129(6), 1805-1815.
[http://dx.doi.org/10.1021/ja067087u] [PMID: 17249669]
[14]
Constantinides, C.P.; Koutentis, P.A.; Schatz, J. A DFT study of the ground state multiplicities of linear vs angular polyheteroacenes. J. Am. Chem. Soc., 2004, 126(49), 16232-16241.
[http://dx.doi.org/10.1021/ja045006t] [PMID: 15584760]
[15]
Ahmed, R.; Simbrunner, C.; Baig, M.A.; Sitter, H. Grain size and interface dependence of bias stress stability of N-type organic field effect transistors. ACS Appl. Mater. Interfaces, 2015, 7(40), 22380-22384.
[http://dx.doi.org/10.1021/acsami.5b06210] [PMID: 26381018]
[16]
Endres, A.H.; Schaffroth, M.; Paulus, F.; Reiss, H.; Wadepohl, H.; Rominger, F.; Krämer, R.; Bunz, U.H.F. Coronene-containing N-heteroarenes: 13 rings in a row. J. Am. Chem. Soc., 2016, 138(6), 1792-1795.
[http://dx.doi.org/10.1021/jacs.5b12642] [PMID: 26808212]
[17]
Santhini, P.V.; Krishnan R, A.; Babu, S.A.; Simethy, B.S.; Das, G.; Praveen, V.K.; Varughese, S.; John, J. One-pot MCR-oxidation approach toward indole-fused heteroacenes. J. Org. Chem., 2017, 82(19), 10537-10548.
[http://dx.doi.org/10.1021/acs.joc.7b02039] [PMID: 28910533]
[18]
Chu, M.; Fan, J.X.; Yang, S.; Liu, D.; Ng, C.F.; Dong, H.; Ren, A.M.; Miao, Q. Halogenated tetraazapentacenes with electron mobility as high as 27.8 cm2V-1s-1 in solution-processed N-channel organic thin-film transistors. Adv. Mater., 2018, 30(38) e1803467
[http://dx.doi.org/10.1002/adma.201803467] [PMID: 30066472]
[19]
Li, J.; Shen, Y.; Wan, J.; Yu, X.; Zhang, Q. Recent progress in the usage of phenazinediamine and its analogues as building blocks to construct large N-heteroacenes. Eur. J. Org. Chem., 2018, 2018(26), 3375-3390.
[http://dx.doi.org/10.1002/ejoc.201800478]
[20]
Reiss, H.; Ji, L.; Han, J.; Koser, S.; Tverskoy, O.; Freudenberg, J.; Hinkel, F.; Moos, M.; Friedrich, A.; Krummenacher, I.; Lambert, C.; Braunschweig, H.; Dreuw, A.; Marder, T.B.; Bunz, U.H.F. Bromination improves the electron mobility of tetraazapentacene. Angew. Chem. Int. Ed. Engl., 2018, 57(30), 9543-9547.
[http://dx.doi.org/10.1002/anie.201805728] [PMID: 29851219]
[21]
Guevara-Level, P.; Pascal, S.; Siri, O.; Jacquemin, D. First principles investigation of the spectral properties of neutral, zwitterionic, and bis-cationic azaacenes. Phys. Chem. Chem. Phys., 2019, 21(41), 22910-22918.
[http://dx.doi.org/10.1039/C9CP04835A] [PMID: 31596289]
[22]
Li, G.; Wang, S.; Yang, S.; Liu, G.; Hao, P.; Zheng, Y.; Long, G.; Li, D.; Zhang, Y.; Yang, W.; Xu, L.; Gao, W.; Zhang, Q.; Cui, G.; Tang, B. Synthesis, photophysical properties and two-photon absorption study of tetraazachrysene-based N-heteroacenes. Chem. Asian J., 2019, 14(10), 1807-1813.
[http://dx.doi.org/10.1002/asia.201801656] [PMID: 30548955]
[23]
Lunchev, A.V.; Morris, S.A.; Ganguly, R.; Grimsdale, A.C. Synthesis and electronic properties of novel 5,7-diazapentacene derivatives. Chemistry, 2019, 25(7), 1819-1823.
[http://dx.doi.org/10.1002/chem.201805466] [PMID: 30478866]
[24]
Zhao, K.; Long, G.; Liu, W.; Li, D-S.; Gao, W.; Zhang, Q. U-shaped helical azaarenes: synthesis, structures, and properties. J. Org. Chem., 2020, 85(1), 291-295.
[http://dx.doi.org/10.1021/acs.joc.9b02895] [PMID: 31797673]
[25]
Li, J.; Zhang, Q. Linearly fused azaacenes: novel approaches and new applications beyond Field-Effect Transistors (FETs). ACS Appl. Mater. Interfaces, 2015, 7(51), 28049-28062.
[http://dx.doi.org/10.1021/acsami.5b00113] [PMID: 25992713]
[26]
Bunz, U.H.F. N-heteroacenes. Chemistry, 2009, 15(28), 6780-6789.
[http://dx.doi.org/10.1002/chem.200900990] [PMID: 19551789]
[27]
Richards, G.J.; Hill, J.P.; Mori, T.; Ariga, K. Putting the ‘N’ in ACENE: pyrazinacenes and their structural relatives. Org. Biomol. Chem., 2011, 9(14), 5005-5017.
[http://dx.doi.org/10.1039/c1ob05454f] [PMID: 21655575]
[28]
Miao, Q. N-Heteropentacenes and N-heteropentacenequinones: from molecules to semiconductors. Synlett, 2012, 23(3), 326-336.
[http://dx.doi.org/10.1055/s-0031-1290323]
[29]
Bunz, U.H.F.; Engelhart, J.U.; Lindner, B.D.; Schaffroth, M. Large N-heteroacenes: new tricks for very old dogs? Angew. Chem. Int. Ed. Engl., 2013, 52(14), 3810-3821.
[http://dx.doi.org/10.1002/anie.201209479] [PMID: 23420781]
[30]
Miao, Q. Ten years of N-heteropentacenes as semiconductors for organic thin-film transistors. Adv. Mater., 2014, 26(31), 5541-5549.
[http://dx.doi.org/10.1002/adma.201305497] [PMID: 24585514]
[31]
Jiang, H.; Hu, W. The emergence of organic single-crystal electronics. Angew. Chem. Int. Ed. Engl., 2020, 59(4), 1408-1428.
[http://dx.doi.org/10.1002/anie.201814439] [PMID: 30927312]
[32]
Liu, Y.Y.; Song, C.L.; Zeng, W.J.; Zhou, K.G.; Shi, Z.F.; Ma, C.B.; Yang, F.; Zhang, H.L.; Gong, X. High and balanced hole and electron mobilities from ambipolar thin-film transistors based on nitrogen-containing oligoacences. J. Am. Chem. Soc., 2010, 132(46), 16349-16351.
[http://dx.doi.org/10.1021/ja107046s] [PMID: 20979424]
[33]
He, Z.; Liu, D.; Mao, R.; Tang, Q.; Miao, Q. Hydrogen-bonded dihydrotetraazapentacenes. Org. Lett., 2012, 14(4), 1050-1053.
[http://dx.doi.org/10.1021/ol203404q] [PMID: 22292727]
[34]
Lindner, B.D.; Engelhart, J.U.; Märken, M.; Tverskoy, O.; Appleton, A.L.; Rominger, F.; Hardcastle, K.I.; Enders, M.; Bunz, U.H.F. Synthesis and optical properties of diaza- and tetraazatetracenes. Chemistry, 2012, 18(15), 4627-4633.
[http://dx.doi.org/10.1002/chem.201103227] [PMID: 22345054]
[35]
Tverskoy, O.; Rominger, F.; Peters, A.; Himmel, H.J.; Bunz, U.H.F. An efficient synthesis of tetraazapentacenes. Angew. Chem. Int. Ed. Engl., 2011, 50(15), 3557-3560.
[http://dx.doi.org/10.1002/anie.201007654] [PMID: 21416569]
[36]
Engelhart, J.U.; Lindner, B.D.; Tverskoy, O.; Rominger, F.; Bunz, U.H.F. Large azaacenes: pyridine rings reacting like carbonyl groups. Org. Lett., 2012, 14(4), 1008-1011.
[http://dx.doi.org/10.1021/ol203334u] [PMID: 22316051]
[37]
Appleton, A.L.; Barlow, S.; Marder, S.R.; Hardcastle, K.I.; Bunz, U.H.F.N. N-dihydrotetraazaheptacene: a synthetic strategy towards larger acenes with amibent stability. Synlett, 2011, 14, 1983-1986.
[38]
Appleton, A.L.; Brombosz, S.M.; Barlow, S.; Sears, J.S.; Bredas, J.L.; Marder, S.R.; Bunz, U.H.F. Effects of electronegative substitution on the optical and electronic properties of acenes and diazaacenes. Nat. Commun., 2010, 1(7), 91-97.
[http://dx.doi.org/10.1038/ncomms1088] [PMID: 20981019]
[39]
Song, C.L.; Ma, C.B.; Yang, F.; Zeng, W.J.; Zhang, H.L.; Gong, X. Synthesis of tetrachloro-azapentacene as an ambipolar organic semiconductor with high and balanced carrier mobilities. Org. Lett., 2011, 13(11), 2880-2883.
[http://dx.doi.org/10.1021/ol2008999] [PMID: 21548606]
[40]
Bunz, U.H.F. The larger N-heteroacenes. Pure Appl. Chem., 2010, 82(4), 953-968.
[http://dx.doi.org/10.1351/PAC-CON-09-09-17]
[41]
Kummer, F.; Zimmermann, H. Ãœber die elektronenspektren linearer Diaza- und tetraaza-acene. Ber. Bunsenges. Phys. Chem, 1967, 71(9-10), 1119-1126.
[42]
Bunz, U.H.F. The larger linear N-heteroacenes. Acc. Chem. Res., 2015, 48(6), 1676-1686.
[http://dx.doi.org/10.1021/acs.accounts.5b00118] [PMID: 25970089]
[43]
Muccini, M. A bright future for organic field-effect transistors. Nat. Mater., 2006, 5(8), 605-613.
[http://dx.doi.org/10.1038/nmat1699] [PMID: 16880804]
[44]
Liang, Z.; Tang, Q.; Xu, J.; Miao, Q. Soluble and stable N-heteropentacenes with high field-effect mobility. Adv. Mater., 2011, 23(13), 1535-1539.
[http://dx.doi.org/10.1002/adma.201004325] [PMID: 21449057]
[45]
Tang, C.W.; Van Slyke, S.A. Organic electroluminescent diodes. Appl. Phys. Lett., 1987, 51(12), 913-915.
[http://dx.doi.org/10.1063/1.98799]
[46]
Kolosov, D.; Adamovich, V.; Djurovich, P.; Thompson, M.E.; Adachi, C. 1,8-Naphthalimides in phosphorescent organic LEDs: the interplay between dopant, exciplex, and host emission. J. Am. Chem. Soc., 2002, 124(33), 9945-9954.
[http://dx.doi.org/10.1021/ja0263588] [PMID: 12175257]
[47]
Baldo, M.A.; O’Brien, D.F.; You, Y.; Shoustikov, A.; Sibley, S.; Thompson, M.E.; Forrest, S.R. Highly efficient phosphorescent emission from organic electroluminescent devices. Nature, 1998, 395(6698), 151-154.
[http://dx.doi.org/10.1038/25954]
[48]
Shirota, Y.; Kinoshita, M.; Noda, T.; Okumoto, K.; Ohara, T. A novel class of emitting amorphous molecular materials as bipolar radical formants: 2-4-[bis(4-methylphenyl)amino]phenyl- 5-(dimesitylboryl)thiophene and 2-4-[bis(9,9-dimethylfluorenyl)amino]phenyl- 5-(dimesitylboryl)thiophene. J. Am. Chem. Soc., 2000, 122(44), 11021-11022.
[http://dx.doi.org/10.1021/ja0023332]
[49]
Mitschke, U.; Bauerle, P. The electroluminescence of organic materials. J. Mater. Chem., 2000, 10(7), 1471-1507.
[http://dx.doi.org/10.1039/a908713c]
[50]
Kraft, A.; Grimsdale, A.C.; Holmes, A.B. Electroluminescent conjugated polymers-seeing polymers in a new light. Angew. Chem. Int. Ed. Engl., 1998, 37(4), 402-428.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19980302)37:4<402:AID-ANIE402>3.0.CO;2-9] [PMID: 29711177]
[51]
Bernius, M.T.; Inbasekaran, M.; O’Brien, J.; Wu, W. Progress with light-emitting polymers. Adv. Mater., 2000, 12(23), 1737-1750.
[http://dx.doi.org/10.1002/1521-4095(200012)12:23<1737:AID-ADMA1737>3.0.CO;2-N]
[52]
Bao, Z.; Rogers, J.A.; Dodabalapur, A.; Lovinger, A.J.; Katz, H.E.; Raju, V.R.; Peng, Z.; Galvin, M.E. Polymer light emitting diodes: new materials and devices. Opt. Mater., 1999, 12(2), 177-182.
[http://dx.doi.org/10.1016/S0925-3467(99)00050-6]
[53]
Cao, Y.; Parker, I.D.; Yu, G.; Zhang, C.; Heeger, A.J. Improved quantum efficiency for electroluminescence in semiconducting polymers. Nature, 1999, 397(6718), 414-417.
[http://dx.doi.org/10.1038/17087] [PMID: 29667982]
[54]
Friend, R.H.; Gymer, R.W.; Holmes, A.B.; Burroughes, J.H.; Marks, R.N.; Taliani, C.; Bradley, D.C.C.; dos Santos, D.A.; Bredas, J.L.; Loglund, M.; Salaneck, W.R. Electroluminescence in conjugated polymers. Nature, 1999, 397(6715), 121-128.
[http://dx.doi.org/10.1038/16393]
[55]
Zheng, M.; Ding, L.; Gu¨rel, E.E.; Karasz, F.E. Synthesis and electroluminescent studies of blue-emitting copolymers containing phenylene vinylene and oxadiazole moieties in the main chain. J. Polym. Sci. A Polym. Chem., 2002, 40(2), 235-241.
[http://dx.doi.org/10.1002/pola.10095]
[56]
Peng, Z.; Bao, Z.; Galvin, M.E. Oxadiazole-containing conjugated polymers for light-emitting diodes. Adv. Mater., 1998, 10(9), 680-684.
[http://dx.doi.org/10.1002/(SICI)1521-4095(199806)10:9<680:AID-ADMA680>3.0.CO;2-H]
[57]
Chen, J.P.; Markiewicz, D.; Lee, V.Y.; Klaerner, G.; Miller, R.D.; Scott, J.C. Improved efficiencies of light-emitting diodes through incorporation of charge transporting components in tri-block polymers. Synth. Met., 1999, 107(3), 203-207.
[http://dx.doi.org/10.1016/S0379-6779(99)00168-X]
[58]
Robinson, M.R.; Wang, S.; Bazan, G.C.; Cao, Y. Electroluminescence from well-defined tetrahedral oligophenylenevinylene tetramers. Adv. Mater., 2000, 12(22), 1701-1704.
[http://dx.doi.org/10.1002/1521-4095(200011)12:22<1701:AID-ADMA1701>3.0.CO;2-U]
[59]
Tarkka, R.M.; Zhang, X.; Jenekhe, S.A. Electrically generated intramolecular proton transfer: electroluminescence and stimulated emission from polymers. J. Am. Chem. Soc., 1996, 118(39), 9438-9439.
[http://dx.doi.org/10.1021/ja9613365]
[60]
Jenekhe, S.A.; Zhang, X.; Chen, X.L.; Choong, V.E.; Gao, Y.; Hsieh, B.R. Finite size effects on electroluminescence of nanoscale semiconducting polymer heterojunctions. Chem. Mater., 1997, 9(2), 409-412.
[http://dx.doi.org/10.1021/cm960474q]
[61]
Zhang, X.; Shetty, A.S.; Jenekhe, S.A. Electroluminescence and photophysical properties of polyquinolines. Macromolecules, 1999, 32(22), 7422-7429.
[http://dx.doi.org/10.1021/ma990960+]
[62]
Cui, Y.; Zhang, X.; Jenekhe, S.A. Thiophene-linked polyphenylquinoxaline: A new electron transport conjugated polymer for electroluminescent devices. Macromolecules, 1999, 32(11), 3824-3826.
[http://dx.doi.org/10.1021/ma9901994]
[63]
Zhang, X.; Jenekhe, S.A. Electroluminescence of multicomponent conjugated polymers. 1. Roles of polymer/polymer interfaces in emission enhancement and voltage-tunable multicolor emission in semiconducting polymer/polymer heterojunctions. Macromolecules, 2000, 33(6), 2069-2082.
[http://dx.doi.org/10.1021/ma991913k]
[64]
Tonzola, C.J.; Alam, M.M.; Jenekhe, S.A. New soluble n-type conjugated copolymer for light-emitting diodes. Adv. Mater., 2002, 14(15), 1086-1090.
[http://dx.doi.org/10.1002/1521-4095(20020805)14:15<1086:AID-ADMA1086>3.0.CO;2-9]
[65]
Zhang, X.; Kale, D.M.; Jenekhe, S.A. Electroluminescence of multicomponent conjugated polymers. 2. Photophysics and enhancement of electroluminescence from blends of polyquinolines. Macromolecules, 2002, 35(2), 382-393.
[http://dx.doi.org/10.1021/ma0112164]
[66]
Alam, M.M.; Jenekhe, S.A. Polybenzobisazoles are efficient electron transport materials for improving the performance and stability of polymer light-emitting diodes. Chem. Mater., 2002, 14(11), 4775-1780.
[http://dx.doi.org/10.1021/cm020600s]
[67]
Alam, M.M.; Tonzola, C.J.; Jenekhe, S.A. Nanophase-separated blends of acceptor and donor conjugated polymers. Efficient electroluminescence from binary polyquinoline/poly(2-methoxy-5-(2′-ethylhexyloxy)-1,4-phenylenevi-nylene) and polyquinoline/poly(3-octylthiophene) blends. Macromolecules, 2003, 36(17), 6577-6587.
[http://dx.doi.org/10.1021/ma0346299]
[68]
Wang, C.; Dong, H.; Hu, W.; Liu, Y.; Zhu, D. Semiconducting π-conjugated systems in field-effect transistors: a material odyssey of organic electronics. Chem. Rev., 2012, 112(4), 2208-2267.
[http://dx.doi.org/10.1021/cr100380z] [PMID: 22111507]
[69]
Tadokoro, M.; Yasuzuka, S.; Nakamura, M.; Shinoda, T.; Tatenuma, T.; Mitsumi, M.; Ozawa, Y.; Toriumi, K.; Yoshino, H.; Shiomi, D.; Sato, K.; Takui, T.; Mori, T.; Murata, K. A high-conductivity crystal containing a copper(I) coordination polymer bridged by the organic acceptor tanc. Angew. Chem. Int. Ed. Engl., 2006, 45(31), 5144-5147.
[http://dx.doi.org/10.1002/anie.200600553] [PMID: 16927325]
[70]
Casu, M.B.; Imperia, P.; Schrader, S.; Falk, B.; Jandke, M.; Strohriegl, P. Ultraviolet photoelectron spectroscopy on new heterocyclic materials for multilayer organic light emitting diodes. Synth. Met., 2001, 124(1), 79-81.
[http://dx.doi.org/10.1016/S0379-6779(01)00427-1]
[71]
Ganschow, M.; Koser, S.; Hahn, S.; Rominger, F.; Freudenberg, J.; Bunz, U.H.F. Dibenzobarrelene-based azaacenes: emitters in organic light-emitting diodes. Chemistry, 2017, 23(18), 4415-4421.
[http://dx.doi.org/10.1002/chem.201605820] [PMID: 28124454]
[72]
Odom, S.A.; Parkin, S.R.; Anthony, J.E. Tetracene derivatives as potential red emitters for organic LEDs. Org. Lett., 2003, 5(23), 4245-4248.
[http://dx.doi.org/10.1021/ol035415e] [PMID: 14601971]
[73]
Tonzola, C.J.; Alam, M.M.; Kaminsky, W.; Jenekhe, S.A. New n-type organic semiconductors: synthesis, single crystal structures, cyclic voltammetry, photophysics, electron transport, and electroluminescence of a series of diphenylanthrazolines. J. Am. Chem. Soc., 2003, 125(44), 13548-13558.
[http://dx.doi.org/10.1021/ja036314e] [PMID: 14583052]
[74]
Hayashi, H.; Kato, Y.; Matsumoto, A.; Shikita, S.; Aizawa, N.; Suzuki, M.; Aratani, N.; Yasuda, T.; Yamada, H. Synthesis of anthracene derivatives with azaacene-containing iptycene wings and the utilization as a dopant for solution-processed organic light-emitting diodes. Chemistry, 2019, 25(68), 15565-15571.
[http://dx.doi.org/10.1002/chem.201903476] [PMID: 31529654]
[75]
Duong, H.M.; Bendikov, M.; Steiger, D.; Zhang, Q.; Sonmez, G.; Yamada, J.; Wudl, F. Efficient synthesis of a novel, twisted and stable, electroluminescent “twistacene”. Org. Lett., 2003, 5(23), 4433-4436.
[http://dx.doi.org/10.1021/ol035751v] [PMID: 14602018]
[76]
Lindner, B.D.; Zhang, Y.X.; Hofle, S.; Berger, N.; Teusch, C.; Jesper, M.; Hardcastle, K.I.; Qian, X.H.; Lemmer, U.; Colsmann, A.; Bunz, U.H.F.; Hamburger, M. N-fused quionoxalines and benzoquinoxalines as attractive emitters for organic light emitting diodes. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2013, 1(36), 5718-5724.
[http://dx.doi.org/10.1039/c3tc30828f]
[77]
Li, J.B.; Yan, F.; Gao, J.K.; Li, P.Z.; Xiong, W.W.; Zhao, Y.L.; Sun, X.W.; Zhang, Q.C. Synthesis, physical properties and OLED performance of azatetracenes. Dyes Pigm., 2015, 112, 93-98.
[http://dx.doi.org/10.1016/j.dyepig.2014.06.027]
[78]
Li, G.; Abiyasa, A.P.; Gao, J.K.; Divayana, Y.; Chen, W.Q.; Zhao, Y.; Sun, X.W.; Zhang, Q.C. Synthesis and properties of a diazopentacene analogue. Asian J. Org. Chem., 2012, 1(4), 346-351.
[http://dx.doi.org/10.1002/ajoc.201200120]
[79]
Guo, L.; Leobandung, E.; Chou, S.Y. A silicon single-electron transistor memory operating at room temperature. Science, 1997, 275(5300), 649-651.
[http://dx.doi.org/10.1126/science.275.5300.649] [PMID: 9005847]
[80]
Lankhorst, M.H.R.; Ketelaars, B.W.; Wolters, R.A.M. Low-cost and nanoscale non-volatile memory concept for future silicon chips. Nat. Mater., 2005, 4(4), 347-352.
[http://dx.doi.org/10.1038/nmat1350] [PMID: 15765107]
[81]
Alexe, M.; Harnagea, C.; Erfurth, W.; Hesse, D.; Gosele, U. 100-nm Lateral size ferroelectric memory cells fabricated by electron-beam direct writing. Appl. Phys., A Mater. Sci. Process., 2000, 70(3), 247-251.
[http://dx.doi.org/10.1007/s003390050043]
[82]
Jiang, G.Y.; Michinobu, T.; Yuan, W.F.; Feng, M.; Wen, Y.Q.; Du, S.X.; Gao, H.J.; Jiang, L.; Song, Y.L. Crystalline thin film of a donor-substituted cyanoethynylethene for nanoscale data recording through intermolecular charge-transfer interactions. Adv. Mater., 2005, 17(24), 2170-2173.
[http://dx.doi.org/10.1002/adma.200500559]
[83]
Li, G.; Wu, Y.; Gao, J.; Li, J.; Zhao, Y.; Zhang, Q. Synthesis, physical properties, and anion recognition of two novel larger azaacenes: benzannelated hexazaheptacene and benzannelated N,N′-dihydrohexazaheptacene. Chem. Asian J., 2013, 8(7), 1574-1578.
[http://dx.doi.org/10.1002/asia.201300208] [PMID: 23606661]
[84]
Gu, P.Y.; Zhou, F.; Gao, J.; Li, G.; Wang, C.; Xu, Q.F.; Zhang, Q.; Lu, J.M. Synthesis, characterization, and nonvolatile ternary memory behavior of a larger heteroacene with nine linearly fused rings and two different heteroatoms. J. Am. Chem. Soc., 2013, 135(38), 14086-14089.
[http://dx.doi.org/10.1021/ja408208c] [PMID: 24025023]
[85]
Gu, P.Y.; Gao, J.K.; Lu, C.J.; Chen, W.Q.; Wang, C.Y.; Li, G.; Zhou, F.; Xu, Q.F.; Lu, J.M.; Zhang, Q.C. Synthesis of tetranitro-oxacalix[4]arene with oligoheteroacene groups and its nonvolatile ternary memory performance. Mater. Horiz., 2014, 1(4), 446-451.
[http://dx.doi.org/10.1039/C4MH00022F]
[86]
Hu, B.L.; Wang, C.Y.; Wang, J.X.; Gao, J.K.; Wang, K.; Wu, J.S.; Zhang, G.D.; Cheng, W.Q.; Venkateswarlu, B.; Wang, M.F.; Lee, P.S.; Zhang, Q.C. Inorganic-organic hybrid polymer with multiple redox for high-density data storage. Chem. Sci. (Camb.), 2014, 5(9), 3404-3408.
[http://dx.doi.org/10.1039/C4SC00823E]
[87]
Wang, C.; Wang, J.; Li, P.Z.; Gao, J.; Tan, S.Y.; Xiong, W.W.; Hu, B.; Lee, P.S.; Zhao, Y.; Zhang, Q. Synthesis, characterization, and non-volatile memory device application of an N-substituted heteroacene. Chem. Asian J., 2014, 9(3), 779-783.
[http://dx.doi.org/10.1002/asia.201301547] [PMID: 24382807]
[88]
Wang, C.; Hu, B.; Wang, J.; Gao, J.; Li, G.; Xiong, W.W.; Zou, B.; Suzuki, M.; Aratani, N.; Yamada, H.; Huo, F.; Lee, P.S.; Zhang, Q. Rewritable multilevel memory performance of a tetraazatetracene donor-acceptor derivative with good endurance. Chem. Asian J., 2015, 10(1), 116-119.
[http://dx.doi.org/10.1002/asia.201402899] [PMID: 25252165]
[89]
Li, G.; Zheng, K.; Wang, C.; Leck, K.S.; Hu, F.; Sun, X.W.; Zhang, Q. Synthesis and nonvolatile memory behaviors of dioxatetraazapentacene derivatives. ACS Appl. Mater. Interfaces, 2013, 5(14), 6458-6462.
[http://dx.doi.org/10.1021/am4023434] [PMID: 23834348]
[90]
Zhao, K.; Yu, F.; Liu, W.; Huang, Y.; Said, A.A.; Li, Y.; Zhang, Q. Unexpected synthesis, properties, and nonvolatile memory device application of imidazole-fused azaacenes. J. Org. Chem., 2020, 85(1), 101-107.
[http://dx.doi.org/10.1021/acs.joc.9b02156] [PMID: 31650830]
[91]
Li, G.; Miao, J.; Cao, J.; Zhu, J.; Liu, B.; Zhang, Q. Preparation and photoelectrochemical behavior of 1,4,6,8,11,13-hexazapentacene (HAP). Chem. Commun. (Camb.), 2014, 50(57), 7656-7658.
[http://dx.doi.org/10.1039/C4CC02908A] [PMID: 24898147]
[92]
Gu, P-Y.; Wang, Z.; Xiao, F-X.; Lin, Z.; Song, R.; Xu, Q-F.; Lu, J-M.; Liu, B.; Zhang, Q. An ambipolar azaacene as a stable photocathode for metal-free light-driven water reduction. Mater. Chem. Front., 2017, 1, 495-498.
[http://dx.doi.org/10.1039/C6QM00113K]
[93]
Ding, F.; Xia, D.; Ge, C.; Kang, Z.; Yang, Y.; Fan, R.; Lin, K.; Gao, X. Indenone-fused N-heteroacenes. J. Mater. Chem. C, 2019, 45, 14314-14319.
[http://dx.doi.org/10.1039/C9TC04962B]
[94]
Tang, Q.X.; Li, L.Q.; Song, Y.B.; Liu, Y.L.; Li, H.X.; Xu, W.; Liu, Y.Q.; Hu, W.P.; Zhu, D.B. Photoswitches and phototransistors form organic single-crystalline sub-micro/nanometer ribbons. Adv. Mater., 2007, 19(18), 2624-2628.
[http://dx.doi.org/10.1002/adma.200700208]
[95]
Ji, H.X.; Hu, J.S.; Wan, L.J. ZnOEP based phototransistor: signal amplification and light-controlled switch. Chem. Commun. (Camb.), 2008, 44(23), 2653-2655.
[http://dx.doi.org/10.1039/b805204b] [PMID: 18535697]
[96]
Wu, Y.; Yin, Z.; Xiao, J.; Liu, Y.; Wei, F.; Tan, K.J.; Kloc, C.; Huang, L.; Yan, Q.; Hu, F.; Zhang, H.; Zhang, Q. Crystal structure and phototransistor behavior of N-substituted heptacence. ACS Appl. Mater. Interfaces, 2012, 4(4), 1883-1886.
[http://dx.doi.org/10.1021/am3003389] [PMID: 22475002]
[97]
Gu, P-Y.; Wang, Z.; Zhang, Q. Azaacenes as active elements for sensing and bio applications. J. Mater. Chem. B Mater. Biol. Med., 2016, 4(44), 7060-7074.
[http://dx.doi.org/10.1039/C6TB02052F] [PMID: 32263642]
[98]
Craig, I.M.; Duong, H.M.; Wudl, F.; Schwartz, B.J. A new route to dual fluorescence: spectroscopic properties of the valence tautomers of a 3-(2H)-isoquinolinone derivative. Chem. Phys. Lett., 2009, 477(4), 319-324.
[http://dx.doi.org/10.1016/j.cplett.2009.07.041]
[99]
Bryant, J.J.; Zhang, Y.; Lindner, B.D.; Davey, E.A.; Appleton, A.L.; Qian, X.; Bunz, U.H.F. Alkynylated phenazines: synthesis, characterization, and metal-binding properties of their bis-triazolyl cycloadducts. J. Org. Chem., 2012, 77(17), 7479-7486.
[http://dx.doi.org/10.1021/jo3012978] [PMID: 22894605]
[100]
Gao, G.Y.; Qu, W.J.; Shi, B.B.; Zhang, P.; Lin, Q.; Yao, H.; Yang, W.L.; Zhang, Y-M.; Wei, T.B. A highly selective fluorescent chemosensor for iron ion based on 1H-imidazo [4,5-b] phenazine derivative. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 121(37), 514-519.
[http://dx.doi.org/10.1016/j.saa.2013.11.004] [PMID: 24291427]
[101]
Shi, B.B.; Zhang, P.; Wei, T.B.; Yao, H.; Lin, Q.; Liu, J.; Zhang, Y.M. A Reversible fluorescent chemosensor for mercury ions based on 1H-imidazo[4,5-b0phenazine derivatives. Tetrahedron, 2013, 69(37), 7981-7987.
[http://dx.doi.org/10.1016/j.tet.2013.07.007]
[102]
Shi, B.B.; Zhang, Y.M.; Wei, T.B.; Lin, Q.; Yao, H.; Zhang, P.; You, X.M. A fluorescent and colorimetric chemosensor for dihydrogen phosphate ions based on 2-pyridine-1H-imidazo[4,5- b]phenazine-zinc ensemble. Sens. Actuators B Chem., 2014, 190, 555-561.
[http://dx.doi.org/10.1016/j.snb.2013.09.043]
[103]
Li, G.; Duong, H.M.; Zhang, Z.; Xiao, J.; Liu, L.; Zhao, Y.; Zhang, H.; Huo, F.; Li, S.; Ma, J.; Wudl, F.; Zhang, Q. Approaching a stable, green twisted heteroacene through “clean reaction” strategy. Chem. Commun. (Camb.), 2012, 48(48), 5974-5976.
[http://dx.doi.org/10.1039/c2cc32048g] [PMID: 22565156]
[104]
Li, J.; Gao, J.; Li, G.; Xiong, W.; Zhang, Q. Azaisoquinolinones: N positions tell you different stories in their optical properties. J. Org. Chem., 2013, 78(24), 12760-12768.
[http://dx.doi.org/10.1021/jo402338n] [PMID: 24299117]
[105]
Li, J.; Gao, J.; Xiong, W.W.; Li, P.Z.; Zhang, H.; Zhao, Y.; Zhang, Q. Pyridinium-fused pyridinone: a novel “turn-on” fluorescent chemodosimeter for cyanide. Chem. Asian J., 2014, 9(1), 121-125.
[http://dx.doi.org/10.1002/asia.201301144] [PMID: 24347071]
[106]
Zhao, J.F.; Li, G.; Wang, C.Y.; Chen, W.Q.; Loo, S.C.J.; Zhang, Q.C.A. New N-substituted heteroacene can detect CN and F anions via anion-π interaction. RSC Advances, 2013, 3(25), 9653-9657.
[http://dx.doi.org/10.1039/c3ra40845k]
[107]
Li, G.; Gao, J.K.; Zhang, Q.C. Synthesis, characterization, and sensing behavior of an N-heteropentacene. Asian J. Org. Chem., 2014, 3(2), 203-208.
[http://dx.doi.org/10.1002/ajoc.201300210]
[108]
Brosius, V.; Müller, M.; Borstelmann, J.; Rominger, F.; Freudenberg, J.; Bunz, U.H.F. Azaacenodibenzosuberones. J. Org. Chem., 2020, 85(1), 296-300.
[http://dx.doi.org/10.1021/acs.joc.9b02756] [PMID: 31686519]
[109]
Zhang, Q.; Xiao, J.; Yin, Z.; Duong, H.M.; Qiao, F.; Boey, F.; Hu, X.; Zhang, H.; Wudl, F. Synthesis, characterization, and physical properties of a conjugated heteroacene: 2-methyl-1,4,6,7,8,9-hexaphenylbenz(g)isoquinolin-3(2H)-one (BIQ). Chem. Asian J., 2011, 6(3), 856-862.
[http://dx.doi.org/10.1002/asia.201000659] [PMID: 21344661]
[110]
Gu, P-Y.; Wang, N.; Wu, A.; Wang, Z.; Tian, M.; Fu, Z.; Sun, X.W.; Zhang, Q. An azaacene derivative as promising electron-transport layer for inverted perovskite solar cells. Chem. Asian J., 2016, 11(15), 2135-2138.
[http://dx.doi.org/10.1002/asia.201600856] [PMID: 27378599]