Recent Developments on Noble Metal Based Microparticles for Their Applications in Organic Catalysis

Page: [855 - 869] Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

Noble metal microparticles have been employed as desired catalysts for a number of classical organic chemical reactions due to their unique physicochemical properties. Currently, in order to obtain more benefits for practical applications such as low cost, easy separation and high selectivity, many efforts of scientists are devoted to constructing composite microparticles in which noble metals are coupled with other materials. In this paper, we summarize some recent research developments on noble metal based microparticles for their catalytic applications in organic synthesis. Among them, application of the gold and silver based microparticles is the focus of this paper for their relatively low cost and the diversity of preparation methods. Furthermore, the challenges and prospects of noble metal based microparticles for their applications in organic catalysis are also discussed.

Keywords: Noble metal, microparticles, composites, organic catalysis, review, physiochemical.

Graphical Abstract

[1]
Yu, Y.; Gan, L.; Zhang, G.; Yang, B. Asymmetric microparticles and heterogeneous microshells via angled colloidal lithography. Colloid. Surface. A., 2012, 405, 51-58.
[http://dx.doi.org/10.1016/j.colsurfa.2012.04.035]
[2]
Fan, Z.; Zhang, H. Crystal phase-controlled synthesis, properties and applications of noble metal nanomaterials. Chem. Soc. Rev., 2016, 45(1), 63-82.
[http://dx.doi.org/10.1039/C5CS00467E] [PMID: 26584059]
[3]
Yang, S.; Luo, X. Mesoporous nano/micro noble metal particles: synthesis and applications. Nanoscale, 2014, 6(9), 4438-4457.
[http://dx.doi.org/10.1039/C3NR06858G] [PMID: 24676151]
[4]
Liu, Y.; Hu, X.; Zhu, N.; Guo, K. Microfluidic synthesis of micro- and nanoparticles. Huaxue Jinzhan, 2018, 30(8), 1133-1142.
[5]
Neumeister, A.; Jakobi, J.; Rehbock, C.; Moysig, J.; Barcikowski, S. Monophasic ligand-free alloy nanoparticle synthesis determinants during pulsed laser ablation of bulk alloy and consolidated microparticles in water. Phys. Chem. Chem. Phys., 2014, 16(43), 23671-23678.
[http://dx.doi.org/10.1039/C4CP03316G] [PMID: 25271711]
[6]
Matsuyama, K.; Tanaka, S.; Kato, T.; Okuyama, T.; Muto, H.; Miyamoto, R.; Bai, H. Supercritical fluid-assisted immobilization of Pd nanoparticles in the mesopores of hierarchical porous SiO2 for catalytic applications. J. Supercrit. Fluids, 2017, 130, 140-146.
[http://dx.doi.org/10.1016/j.supflu.2017.07.032]
[7]
Bjerneld, E.J.; Svedberg, F.; Kall, M. Laser-induced growth and deposition of noble-metal nanoparticles for surface-enhanced Raman scattering. Nano Lett., 2003, 3(5), 593-596.
[http://dx.doi.org/10.1021/nl034034r]
[8]
Kucherik, A.; Arakelian, S.; Vartanyan, T.; Kutrovskaya, S.; Osipov, A.; Povolotskaya, A.; Povolotskii, A.; Man’Shina, A. Laser-induced synthesis of metal-carbon materials for implementing surface-enhanced Raman scattering. Opt. Spectrosc., 2016, 121(2), 263-270.
[http://dx.doi.org/10.1134/S0030400X16080105]
[9]
Cui, H.; Liu, P.; Yang, G.W. Noble metal nanoparticle patterning deposition using pulsed-laser deposition in liquid for surface-enhanced Raman scattering. Appl. Phys. Lett., 2006, 89 15312415
[http://dx.doi.org/10.1063/1.2359289]
[10]
Long, N.V.; Yang, Y.; Teranishi, T.; Thi, C.M.; Cao, Y.; Nogami, M. Biomedical applications of advanced multifunctional magnetic nanoparticles. J. Nanosci. Nanotechnol., 2015, 15(12), 10091-10107.
[http://dx.doi.org/10.1166/jnn.2015.11691] [PMID: 26682455]
[11]
Cao, Y.; Zhang, J.; Yang, Y.; Huang, Z.; Nguyen, V.L.; Fu, C. Engineering of SERS substrates based on noble metal nanomaterials for chemical and biomedical applications. Appl. Spectrosc. Rev., 2015, 50(6), 499-525.
[http://dx.doi.org/10.1080/05704928.2014.923901]
[12]
Jiang, X.; Du, B.; Huang, Y.; Zheng, J. Ultrasmall noble metal nanoparticles: breakthroughs and biomedical implications. Nano Today, 2018, 21, 106-125.
[http://dx.doi.org/10.1016/j.nantod.2018.06.006] [PMID: 31327979]
[13]
Yang, S.; Cao, C.; Wei, F.; Huang, P.; Sun, Y.; Song, W. Controllable loading of noble metal nanoparticles on multiwalled carbon nanotubes/Fe3O4 through an in situ galvanic replacement reaction for high-performance catalysis. ChemCatChem, 2014, 6(7), 1868-1872.
[http://dx.doi.org/10.1002/cctc.201402167]
[14]
Bigall, N.C.; Reitzig, M.; Naumann, W.; Simon, P.; van Pée, K.H.; Eychmüller, A. Fungal templates for noble-metal nanoparticles and their application in catalysis. Angew. Chem. Int. Ed. Engl., 2008, 47(41), 7876-7879.
[http://dx.doi.org/10.1002/anie.200801802] [PMID: 18773403]
[15]
Garcia, M.N.; Torres, D.S.; Mori, K.; Kuwahara, Y.; Yamashita, H. Tailoring the size and shape of colloidal noble metal nanocrystals as a valuable tool in catalysis. Catal. Surv. Asia, 2019, 23(3), 127-148.
[http://dx.doi.org/10.1007/s10563-019-09271-7]
[16]
Kelly, K.L.; Coronado, E.; Zhao, L.L.; Schatz, G.C. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B, 2003, 107(3), 668-677.
[http://dx.doi.org/10.1021/jp026731y]
[17]
Dhakshinamoorthy, A.; Garcia, H. Catalysis by metal nanoparticles embedded on metal-organic frameworks. Chem. Soc. Rev., 2012, 41(15), 5262-5284.
[http://dx.doi.org/10.1039/c2cs35047e] [PMID: 22695806]
[18]
Crooks, R.M.; Zhao, M.; Sun, L.; Chechik, V.; Yeung, L.K. Dendrimer-encapsulated metal nanoparticles: synthesis, characterization, and applications to catalysis. Acc. Chem. Res., 2001, 34(3), 181-190.
[http://dx.doi.org/10.1021/ar000110a] [PMID: 11263876]
[19]
Kamat, P.V. Meeting the clean energy demand: nanostructure architectures for solar energy conversion. J. Phys. Chem. C, 2007, 111(7), 2834-2860.
[http://dx.doi.org/10.1021/jp066952u]
[20]
Astruc, D.; Lu, F.; Aranzaes, J.R. Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis. Angew. Chem. Int. Ed. Engl., 2005, 44(48), 7852-7872.
[http://dx.doi.org/10.1002/anie.200500766] [PMID: 16304662]
[21]
Dong, X.; Gao, Z.; Yang, K.; Zhang, W.; Xu, L. Nanosilver as a new generation of silver catalysts in organic transformations for efficient synthesis of fine chemicals. Catal. Sci. Technol., 2015, 5(5), 2554-2574.
[http://dx.doi.org/10.1039/C5CY00285K]
[22]
Chen, D.; Cui, P.; Liu, H.; Yang, J. Heterogeneous nanocomposites composed of silver sulfide and hollow structured Pd nanoparticles with enhanced catalytic activity toward formic acid oxidation. Electrochim. Acta, 2015, 153, 461-467.
[http://dx.doi.org/10.1016/j.electacta.2014.12.016]
[23]
Narayanan, R. Recent advances in noble metal nanocatalysts for Suzuki and Heck cross-coupling reactions. Molecules, 2010, 15(4), 2124-2138.
[http://dx.doi.org/10.3390/molecules15042124] [PMID: 20428032]
[24]
Das, T.K.; Ganguly, S.; Ghosh, S.; Remanan, S.; Ghosh, S.K.; Das, N.C. In-situ synthesis of magnetic nanoparticle immobilized heterogeneous catalyst through mussel mimetic approach for the efficient removal of water pollutants. Colloid Interfac. Sci., 2019, 33100218
[http://dx.doi.org/10.1016/j.colcom.2019.100218]
[25]
Zang, W.; Li, G.; Wang, L.; Zhang, X. Catalytic hydrogenation by noble-metal nanocrystals with well-defined facets: a review. Catal. Sci. Technol., 2015, 5(5), 2532-2553.
[http://dx.doi.org/10.1039/C4CY01619J]
[26]
Kanti Das, T.; Ganguly, S.; Remanan, S.; Das, N.C. Temperature‐dependent study of catalytic Ag nanoparticles entrapped resin nanocomposite towards reduction of 4‐nitrophenol. ChemistrySelect, 2019, 4(13), 3665-3671.
[http://dx.doi.org/10.1002/slct.201900470]
[27]
Das, T.K.; Bhawal, P.; Ganguly, S.; Mondal, S.; Das, N.C. A facile green synthesis of amino acid boosted Ag decorated reduced graphene oxide nanocomposites and its catalytic activity towards 4-nitrophenol reduction. Surf. Interfaces, 2018, 13, 79-91.
[http://dx.doi.org/10.1016/j.surfin.2018.08.004]
[28]
Ganguly, S.; Das, P.; Bose, M.; Das, T.K.; Mondal, S.; Das, A.K.; Das, N.C. Sonochemical green reduction to prepare Ag nanoparticles decorated graphene sheets for catalytic performance and antibacterial application. Ultrason. Sonochem., 2017, 39, 577-588.
[http://dx.doi.org/10.1016/j.ultsonch.2017.05.005] [PMID: 28732982]
[29]
Ganguly, S.; Mondal, S.; Das, P.; Bhawal, P.; Das, T.k.; Bose, M.; Choudhary, S.; Gangopadhyay, S.; Das, A.K.; Das, N.C. Natural saponin stabilized nano-catalyst as efficient dye-degradation catalyst. Nano-Struct. Nano-Obj., 2018, 16, 86-95.
[http://dx.doi.org/10.1016/j.nanoso.2018.05.002]
[30]
Aditya, T.; Pal, A.; Pal, T. Nitroarene reduction: a trusted model reaction to test nanoparticle catalysts. Chem. Commun. (Camb.), 2015, 51(46), 9410-9431.
[http://dx.doi.org/10.1039/C5CC01131K] [PMID: 25872865]
[31]
Ganguly, S.; Das, P.; Das, T.K.; Ghosh, S.; Das, S.; Bose, M.; Mondal, M.; Das, A.K.; Das, N.C. Acoustic cavitation assisted destratified clay tactoid reinforced in situ elastomer-mimetic semi-IPN hydrogel for catalytic and bactericidal application. Ultrason. Sonochem., 2020, 60104797
[http://dx.doi.org/10.1016/j.ultsonch.2019.104797] [PMID: 31546086]
[32]
Lukosi, M.; Zhu, H.; Dai, S. Recent advances in gold-metal oxide core-shell nanoparticles: synthesis, characterization, and their application for heterogeneous catalysis. Front. Chem. Sci. Eng., 2016, 10(1), 39-56.
[http://dx.doi.org/10.1007/s11705-015-1551-1]
[33]
Thanh, T.D.; Balamurugan, J.; Hien, H.V.; Kim, N.H.; Lee, J.H. A novel sensitive sensor for serotonin based on high-quality of AuAg nanoalloy encapsulated graphene electrocatalyst. Biosens. Bioelectron., 2017, 96, 186-193.
[http://dx.doi.org/10.1016/j.bios.2017.05.014] [PMID: 28494370]
[34]
Tran, D.T.; Hoa, V.H.; Tuan, L.H.; Kim, N.H.; Lee, J.H. Cu-Au nanocrystals functionalized carbon nanotube arrays vertically grown on carbon spheres for highly sensitive detecting cancer biomarker. Biosens. Bioelectron., 2018, 119, 134-140.
[http://dx.doi.org/10.1016/j.bios.2018.08.022] [PMID: 30125873]
[35]
Le, H.T.; Tran, D.T.; Luyen Doan, T.L.; Kim, N.H.; Lee, J.H. Hierarchical Cu@CuxO nanowires arrays-coated gold nanodots as a highly sensitive self-supported electrocatalyst for L-cysteine oxidation. Biosens. Bioelectron., 2019, 139111327
[http://dx.doi.org/10.1016/j.bios.2019.111327] [PMID: 31121438]
[36]
Tran, D.T.; Kshetri, T.; Chuong, N.D.; Gautam, J.; van Hien, H.; Tuan, L.H.; Kim, N.H.; Lee, J.H. Emerging core-shell nanostructured catalysts of transition metal encapsulated by two-dimensional carbon materials for electrochemical applications. Nano Today, 2018, 22, 100-131.
[http://dx.doi.org/10.1016/j.nantod.2018.08.006]
[37]
Pani, A.; Thanh, T.D.; Kim, N.H.; Lee, J.H.; Yun, S.I. Peanut skin extract mediated synthesis of gold nanoparticles, silver nanoparticles and gold-silver bionanocomposites for electrochemical Sudan IV sensing. IET Nanobiotechnol., 2016, 10(6), 431-437.
[http://dx.doi.org/10.1049/iet-nbt.2016.0017]
[38]
Thanh, T.D.; Balamurugan, J.; Tuan, N.T.; Jeong, H.; Lee, S.H.; Kim, N.H.; Lee, J.H. Enhanced electrocatalytic performance of an ultrafine AuPt nanoalloy framework embedded in graphene towards epinephrine sensing. Biosens. Bioelectron., 2017, 89(Pt 2), 750-757.
[http://dx.doi.org/10.1016/j.bios.2016.09.076] [PMID: 27816589]
[39]
Kai, S.; Xi, B.; Liu, X.; Ju, L.; Wang, P.; Feng, Z.; Ma, X.; Xiong, S. An innovative Au-CdS/ZnS-RGO architecture for efficient photocatalytic hydrogen evolution. J. Mater. Chem. A Mater. Energy Sustain., 2018, 6(7), 2895-2899.
[http://dx.doi.org/10.1039/C7TA10958J]
[40]
Zhou, G.; Yang, Q.; Guo, X.; Chen, Y.; Yang, Q.; Xu, L.; Sun, D.; Tang, Y. Coupling molybdenum carbide nanoparticles with N-doped carbon nanosheets as a high-efficiency electrocatalyst for hydrogen evolution reaction. Int. J. Hydrogen Energy, 2018, 43(19), 9326-9333.
[http://dx.doi.org/10.1016/j.ijhydene.2018.04.002]
[41]
Losurdo, M.; Yi, C.; Suvorova, A.; Rubanov, S.; Kim, T.H.; Giangregorio, M.M.; Jiao, W.; Bergmair, I.; Bruno, G.; Brown, A.S. Demonstrating the capability of the high-performance plasmonic gallium-graphene couple. ACS Nano, 2014, 8(3), 3031-3041.
[http://dx.doi.org/10.1021/nn500472r] [PMID: 24575951]
[42]
Chowdhury, S.R.; Maiyalagan, T. Enhanced electro-catalytic activity of nitrogen-doped reduced graphene oxide supported PdCu nanoparticles for formic acid electro-oxidation. Int. J. Hydrogen Energy, 2019, 44(29), 14808-14819.
[http://dx.doi.org/10.1016/j.ijhydene.2019.04.025]
[43]
Rai, P. Plasmonic noble metal@metal oxide core-shell nanoparticles for dye-sensitized solar cell applications. Sustain. Energy Fuels., 2019, 3(1), 63-91.
[http://dx.doi.org/10.1039/C8SE00336J]
[44]
Zhang, Y.; Gao, F.; Fu, M. Composite of Au-Pd nanoalloys/reduced graphene oxide toward catalytic selective organic transformation to fine chemicals. Chem. Phys. Lett., 2018, 691, 61-67.
[http://dx.doi.org/10.1016/j.cplett.2017.10.060]
[45]
Li, Y.; Xiao, L.; Liu, F.; Dou, Y.; Liu, S.; Fan, Y.; Cheng, G.; Song, W.; Zhou, J. Core-shell structure Ag@Pd nanoparticles supported on layered MnO2 substrate as toluene oxidation catalyst. J. Nanopart. Res., 2019, 21(2), 28.
[http://dx.doi.org/10.1007/s11051-019-4467-8]
[46]
Song, S.; Liu, R.; Zhang, Y.; Feng, J.; Liu, D.; Xing, Y.; Zhao, F.; Zhang, H. Colloidal noble-metal and bimetallic alloy nanocrystals: a general synthetic method and their catalytic hydrogenation properties. Chemistry, 2010, 16(21), 6251-6256.
[http://dx.doi.org/10.1002/chem.200903279] [PMID: 20411536]
[47]
Tamasi, A.; Konya, Z.; Guczi, L.; Kiricsi, I. Infrared spectroscopic study of benzene and chlorobenzene adsorption on Pt, Cu- and Pt, CoZSM-5 bimetallic zeolite catalysts. J. Mol. Struct., 2001, 563, 435-438.
[http://dx.doi.org/10.1016/S0022-2860(01)00443-4]
[48]
Jiang, F.; Li, R.; Cai, J.; Xu, W.; Cao, A.; Chen, D.; Zhang, X.; Wang, C.; Shu, C. Ultrasmall Pd/Au bimetallic nanocrystals embedded in hydrogen-bonded supramolecular structures: facile synthesis and catalytic activities in the reduction of 4-nitrophenol. J. Mater. Chem. A Mater. Energy Sustain., 2015, 3(38), 19433-19438.
[http://dx.doi.org/10.1039/C5TA02260F]
[49]
Li, Y.; Liu, F.; Fan, Y.; Cheng, G.; Song, W.; Zhou, J. Silver palladium bimetallic core-shell structure catalyst supported on TiO2 for toluene oxidation. Appl. Surf. Sci., 2018, 462, 207-212.
[http://dx.doi.org/10.1016/j.apsusc.2018.08.023]
[50]
Zhu, G.; Geng, J.; Yan, L.; Yuan, Y.; Han, G. Homogeneous magnetic Ag-Au alloy microparticles for ultrasensitive catalytic reduction of aromatic nitro compounds. Colloids Surf. A Physicochem. Eng. Asp., 2019, 580 123697
[http://dx.doi.org/10.1016/j.colsurfa.2019.123697]
[51]
Cai, Y.; Gao, K.; Li, G.; Deng, Z.; Han, G. Facile controlled synthesis of silver particles with high catalytic activity. Colloid. Surface. A., 2015, 481, 407-412.
[http://dx.doi.org/10.1016/j.colsurfa.2015.06.005]
[52]
Prechtl, M.H.G.; Scholten, J.D.; Dupont, J. Carbon-carbon cross coupling reactions in ionic liquids catalysed by palladium metal nanoparticles. Molecules, 2010, 15(5), 3441-3461.
[http://dx.doi.org/10.3390/molecules15053441] [PMID: 20657493]
[53]
Chang, Z.; Yang, Y.; He, J.; Rusling, J.F. Gold nanocatalysts supported on carbon for electrocatalytic oxidation of organic molecules including guanines in DNA. Dalton Trans., 2018, 47(40), 14139-14152.
[http://dx.doi.org/10.1039/C8DT01966E] [PMID: 30066010]
[54]
Zhang, W.; Lu, G.; Cui, C.; Liu, Y.; Li, S.; Yan, W.; Xing, C.; Chi, Y.R.; Yang, Y.; Huo, F. A family of metal-organic frameworks exhibiting size-selective catalysis with encapsulated noble-metal nanoparticles. Adv. Mater., 2014, 26(24), 4056-4060.
[http://dx.doi.org/10.1002/adma.201400620] [PMID: 24710716]
[55]
Gill, A.M.; Hinde, C.S.; Leary, R.K.; Potter, M.E.; Jouve, A.; Wells, P.P.; Midgley, P.A.; Thomas, J.M.; Raja, R. Design of highly selective platinum nanoparticle catalysts for the aerobic oxidation of KA-oil using continuous-flow chemistry. ChemSusChem, 2016, 9(5), 423-427.
[http://dx.doi.org/10.1002/cssc.201501264] [PMID: 26833972]
[56]
Cai, S.; Duan, H.; Rong, H.; Wang, D.; Li, L.; He, W.; Li, Y. Highly active and selective catalysis of bimetallic Rh3Ni1 nanoparticles in the hydrogenation of nitroarenes. ACS Catal., 2013, 3(4), 608-612.
[http://dx.doi.org/10.1021/cs300689w]
[57]
Chen, F.; Kreyenschulte, C.; Radnik, J.; Lund, H.; Surkus, A.; Junge, K.; Beller, M. Selective semihydrogenation of alkynes with N-graphitic-modified cobalt nanoparticles supported on silica. ACS Catal., 2017, 7(3), 1526-1532.
[http://dx.doi.org/10.1021/acscatal.6b03140]
[58]
Wang, H.; Zhang, N.; Liu, R.; Zhao, R.; Guo, T.; Li, J.; Asefa, T.; Du, J. Efficient catalysts for cyclohexane dehydrogenation synthesized by mo-promoted growth of 3d block carbon coupled with Mo2C. ACS Omega, 2018, 3(9), 10773-10780.
[http://dx.doi.org/10.1021/acsomega.8b01411] [PMID: 31459192]
[59]
Burke, L.D.; Nugent, P.F. The electrochemistry of gold: II the electrocatalytic behaviour of the metal in aqueous media. Gold Bull., 1998, 31(2), 39-50.
[http://dx.doi.org/10.1007/BF03214760]
[60]
Liao, G.; Fang, J.; Li, Q.; Li, S.; Xu, Z.; Fang, B. Ag-Based nanocomposites: synthesis and applications in catalysis. Nanoscale, 2019, 11(15), 7062-7096.
[http://dx.doi.org/10.1039/C9NR01408J] [PMID: 30931457]
[61]
Singh, J.; Dutta, T.; Kim, K.H.; Rawat, M.; Samddar, P.; Kumar, P. ‘Green’ synthesis of metals and their oxide nanoparticles: applications for environmental remediation. J. Nanobiotechnology, 2018, 16(1), 84.
[http://dx.doi.org/10.1186/s12951-018-0408-4] [PMID: 30373622]
[62]
Hutchings, G.J.; Haruta, M. A golden age of catalysis: a perspective. Appl. Catal. A Gen., 2005, 291(1), 2-5.
[http://dx.doi.org/10.1016/j.apcata.2005.05.044]
[63]
Haruta, M.; Yamada, N.; Kobayashi, T.; Iijima, S. Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. J. Catal., 1989, 115(2), 301-309.
[http://dx.doi.org/10.1016/0021-9517(89)90034-1]
[64]
Chen, X.; Hou, Y.; Wang, H.; Cao, Y.; He, J. Facile deposition of Pd nanoparticles on carbon nanotube microparticles and their catalytic activity for Suzuki coupling reactions. J. Phys. Chem. C, 2008, 112(22), 8172-8176.
[http://dx.doi.org/10.1021/jp800610q]
[65]
Zhao, R.; Wang, H.; Gao, N.; Liu, R.; Guo, T.; Wu, J.; Zhang, T.; Li, J.; Du, J.; Asefa, T. Hollow hemispherical carbon microspheres with mo2c nanoparticles synthesized by precursor design: effective noble metal-free catalysts for dehydrogenation. Small Methods., 2020, 4(1)1900597
[http://dx.doi.org/10.1002/smtd.201900597]
[66]
Liu, S.; Sun, K.; Xu, B. Specific selectivity of Au-catalyzed oxidation of glycerol and other C3-polyols in water without the presence of a base. ACS Catal., 2014, 4(7), 2226-2230.
[http://dx.doi.org/10.1021/cs5005568]
[67]
Tongsakul, D.; Nishimura, S.; Ebitani, K. Platinum/gold alloy nanoparticles-supported hydrotalcite catalyst for selective aerobic oxidation of polyols in base-free aqueous solution at room temperature. ACS Catal., 2013, 3(10), 2199-2207.
[http://dx.doi.org/10.1021/cs400458k]
[68]
Ding, X.; Zhu, G.; Guan, J.N.; Han, G.Z. Selective reduction of nitro group in aryl halides catalyzed by silver nanoparticles modified with β-CD. J. Nanosci. Nanotechnol., 2018, 18(12), 8201-8206.
[http://dx.doi.org/10.1166/jnn.2018.16406] [PMID: 30189938]
[69]
An, X. Du Jie; Lu, X. Application in life analysis of electrochemiluminescent sensor based on noble metal nanocluster. Faguang Xuebao, 2017, 38(5), 675-684.
[http://dx.doi.org/10.3788/fgxb20173805.0675]
[70]
Sheng, W.; Yang, Q.; Weng, J. Application of noble metal nanoparticles in organic reactions. Curr. Org. Chem., 2011, 15(21), 3692-3705.
[http://dx.doi.org/10.2174/138527211797884638]
[71]
Li, G.; Tang, Z. Noble metal nanoparticle@metal oxide core/yolk-shell nanostructures as catalysts: recent progress and perspective. Nanoscale, 2014, 6(8), 3995-4011.
[http://dx.doi.org/10.1039/C3NR06787D] [PMID: 24622876]
[72]
Liu, X.; Iocozzia, J.; Wang, Y.; Cui, X.; Chen, Y.; Zhao, S.; Li, Z.; Lin, Z. Noble metal-metal oxide nanohybrids with tailored nanostructures for efficient solar energy conversion, photocatalysis and environmental remediation. Energy Environ. Sci., 2017, 10(2), 402-434.
[http://dx.doi.org/10.1039/C6EE02265K]
[73]
Liu, S.; Regulacio, M.D.; Tee, S.Y.; Khin, Y.W.; Teng, C.P.; Koh, L.D.; Guan, G.; Han, M.Y. Preparation, functionality, and application of metal oxide-coated noble metal nanoparticles. Chem. Rec., 2016, 16(4), 1965-1990.
[http://dx.doi.org/10.1002/tcr.201600028] [PMID: 27291595]
[74]
Ma, R.; Yin, J.; Zhao, X. Recent advances in preparation of magneto-responsive noble metal core-shell nanoparticles. J. Func. Mat., 2013, 44(14), 1975-1983.
[http://dx.doi.org/10.3969/j.issn.1001-9731.2013.14.001]
[75]
Yang, J.; Lu, L.; Zhang, H. Research progress on noble metal composite nanoparticles. Chin. J. Inorg. Chem.,, 2008, 24(8), 1191-1199.
[http://dx.doi.org/10.1039/c5nr02216a]
[76]
Zhang, L.; Niu, W.; Xu, G. Synthesis and applications of noble metal nanocrystals with high-energy facets. Nano Today, 2012, 7(6), 586-605.
[http://dx.doi.org/10.1016/j.nantod.2012.10.005]
[77]
Zhu, C.; Dong, S. Synthesis of graphene-supported noble metal hybrid nanostructures and their applications as advanced electrocatalysts for fuel cells. Nanoscale, 2013, 5(22), 10765-10775.
[http://dx.doi.org/10.1039/c3nr03280a] [PMID: 24060985]
[78]
Li, G.; Jin, R. Catalysis by gold nanoparticles: carbon-carbon coupling reactions. Nanotechnol. Rev., 2013, 2, 529-545.
[http://dx.doi.org/10.1515/ntrev-2013-0020]
[79]
Wu, X.; Jaatinen, E.; Sarina, S.; Zhu, H.Y. Direct photocatalysis of supported metal nanostructures for organic synthesis. J. Phys. D Appl. Phys., 2017, 50(28) 283001
[http://dx.doi.org/10.1088/1361-6463/aa73f6]
[80]
Lo, V.K.; Chan, A.O.; Che, C.M. Gold and silver catalysis: from organic transformation to bioconjugation. Org. Biomol. Chem., 2015, 13(24), 6667-6680.
[http://dx.doi.org/10.1039/C5OB00407A] [PMID: 25997423]
[81]
Shahzad, S.A.; Sajid, M.A.; Khan, Z.A.; Gonzalez, D.C. Gold catalysis in organic transformations: a review. Synth. Commun., 2017, 47(8), 735-755.
[http://dx.doi.org/10.1080/00397911.2017.1280508]
[82]
Takale, B.S.; Bao, M.; Yamamoto, Y. Gold nanoparticle (AuNPs) and gold nanopore (AuNPore) catalysts in organic synthesis. Org. Biomol. Chem., 2014, 12(13), 2005-2027.
[http://dx.doi.org/10.1039/c3ob42207k] [PMID: 24525525]
[83]
Heddle, J.G. Gold nanoparticle-biological molecule interactions and catalysis. Catalysis., 2013, 3(3), 683-708.
[84]
Cozzoli, P.D.; Comparelli, R.; Fanizza, E.; Curri, M.L.; Agostiano, A.; Laub, D. Photocatalytic synthesis of silver nanoparticles stabilized by TiO2 nanorods: a semiconductor/metal nanocomposite in homogeneous nonpolar solution. J. Am. Chem. Soc., 2004, 126(12), 3868-3879.
[http://dx.doi.org/10.1021/ja0395846] [PMID: 15038741]
[85]
Janczarek, M.; Wei, Z.; Endo, M.; Ohtani, B.; Kowalska, E. Silver- and copper-modified decahedral anatase titania particles as visible light-responsive plasmonic photocatalyst. J. Photonics Energy., 2017, 7(1) 0120081
[http://dx.doi.org/10.1117/1.JPE.7.012008]
[86]
Boote, B.W.; Byun, H.; Kim, J.H. Silver-gold bimetallic nanoparticles and their applications as optical materials. J. Nanosci. Nanotechnol., 2014, 14(2), 1563-1577.
[http://dx.doi.org/10.1166/jnn.2014.9077] [PMID: 24749442]
[87]
Corma, A.; Garcia, H. Supported gold nanoparticles as catalysts for organic reactions. Chem. Soc. Rev., 2008, 37(9), 2096-2126.
[http://dx.doi.org/10.1039/b707314n] [PMID: 18762848]
[88]
Pradhan, N.; Pal, A.; Pal, T. Catalytic reduction of aromatic nitro compounds by coinage metal nanoparticles. Langmuir, 2001, 17(5), 1800-1802.
[http://dx.doi.org/10.1021/la000862d]
[89]
Das, T.K.; Ganguly, S.; Bhawal, P.; Mondal, S.; Das, N.C. A facile green synthesis of silver nanoparticle-decorated hydroxyapatite for efficient catalytic activity towards 4-nitrophenol reduction. Res. Chem. Intermed., 2018, 44(2), 1189-1208.
[http://dx.doi.org/10.1007/s11164-017-3161-7]
[90]
Das, T.K.; Ganguly, S.; Bhawal, P.; Remanan, S.; Ghosh, S.; Das, N.C. A facile green synthesis of silver nanoparticles decorated silica nanocomposites using mussel inspired polydopamine chemistry and assessment its catalytic activity. J. Environ. Chem. Eng., 2018, 6(6), 6989-7001.
[http://dx.doi.org/10.1016/j.jece.2018.10.067]
[91]
Wunder, S.; Polzer, F.; Lu, Y.; Mei, Y.; Ballauff, M. Kinetic analysis of catalytic reduction of 4-nitrophenol by metallic nanoparticles immobilized in spherical polyelectrolyte brushes. J. Phys. Chem. C, 2010, 114(19), 8814-8820.
[http://dx.doi.org/10.1021/jp101125j]
[92]
Zhong, A.; Xu, Y.; He, Z.; Zhang, H.; Wang, T.; Zhou, M.; Xiong, L.; Huang, K. Thiol-functionalized organic porous polymers as a support for gold nanoparticles and its catalytic applications. Macromol. Chem. Phys., 2017, 218(14) 1700044
[http://dx.doi.org/10.1002/macp.201700044]
[93]
Chen, J.; Yan, D.; Xu, Z.; Chen, X.; Chen, X.; Xu, W.; Jia, H.; Chen, J. A novel redox precipitation to synthesize Au-doped α-MnO2 with high dispersion toward low-temperature oxidation of formaldehyde. Environ. Sci. Technol., 2018, 52(8), 4728-4737.
[http://dx.doi.org/10.1021/acs.est.7b06039] [PMID: 29589742]
[94]
Ghahremani, M.; Ciriminna, R.; Pandarus, V.; Scurria, A.; La Parola, V.; Giordano, F.; Avellone, G.; Béland, F.; Karimi, B.; Pagliaro, M. Green and direct synthesis of benzaldehyde and benzyl benzoate in one pot. ACS Sustain. Chem. Eng., 2018, 6(11), 15441-15446.
[http://dx.doi.org/10.1021/acssuschemeng.8b03893]
[95]
Das, S.; Goswami, A.; Hesari, M.; Sharab, J.F.A.; Mikmeková, E.; Maran, F.; Asefa, T. Reductive deprotection of monolayer protected nanoclusters: an efficient route to supported ultrasmall au nanocatalysts for selective oxidation. Small, 2014, 10(8), 1473-1478.
[http://dx.doi.org/10.1002/smll.201302854] [PMID: 24425579]
[96]
Qi, Y.; Luan, Y.; Peng, X.; Yang, M.; Hou, J.; Wang, G. Design and synthesis of an Au@MIL-53(NH2) catalyst for a one-pot aerobic oxidation/Knoevenagel condensation reaction. Eur. J. Inorg. Chem., 2015, 2015(30), 5099-5105.
[http://dx.doi.org/10.1002/ejic.201500808]
[97]
Zahed, B.; Monfared, H.H. A comparative study of silver-graphene oxide nanocomposites as a recyclable catalyst for the aerobic oxidation of benzyl alcohol: Support effect. Appl. Surf. Sci., 2015, 328, 536-547.
[http://dx.doi.org/10.1016/j.apsusc.2014.12.078]
[98]
Paul, B.; Sharma, S.K.; Adak, S.; Khatun, R.; Singh, G.; Das, D.; Joshi, V.; Bhandari, S.; Dhar, S.S.; Bal, R. Low-temperature catalytic oxidation of aniline to azoxybenzene over an Ag/Fe2O3 nanoparticle catalyst using H2O2 as an oxidant. New J. Chem., 2019, 43(23), 8911-8918.
[http://dx.doi.org/10.1039/C9NJ01085H]
[99]
Han, C.; Yang, X.; Gao, G.; Wang, J.; Lu, H.; Liu, J.; Tong, M.; Liang, X. Selective oxidation of methanol to methyl formate on catalysts of Au–Ag alloy nanoparticles supported on titania under UV irradiation. Green Chem., 2014, 16(7), 3603-3615.
[http://dx.doi.org/10.1039/C4GC00367E]
[100]
Senthilraja, A.; Subash, B.; Krishnakumar, B.; Rajamanickam, D.; Swaminathan, M.; Shanthi, M. Synthesis, characterization and catalytic activity of co-doped Ag–Au–ZnO for MB dye degradation under UV-A light. Mater. Sci. Semicond. Process., 2014, 22, 83-91.
[http://dx.doi.org/10.1016/j.mssp.2014.02.011]
[101]
Zheng, J.; Qu, J.; Lin, H.; Zhang, Q.; Yuan, X.; Yang, Y.; Yuan, Y. Surface composition control of the binary Au–Ag catalyst for enhanced oxidant-free dehydrogenation. ACS Catal., 2016, 6(10), 6662-6669.
[http://dx.doi.org/10.1021/acscatal.6b01348]
[102]
Atar, N.; Eren, T.; Demirdögen, B.; Yola, M.L.; Çağlayan, M.O. Silver, gold, and silver@gold nanoparticle-anchored l-cysteine-functionalized reduced graphene oxide as electrocatalyst for methanol oxidation. Ionics, 2015, 21(8), 2285-2293.
[http://dx.doi.org/10.1007/s11581-015-1395-1]
[103]
Manan, R.S.; Kilaru, P.; Zhao, P. Nickel-catalyzed hydroimination of alkynes. J. Am. Chem. Soc., 2015, 137(19), 6136-6139.
[http://dx.doi.org/10.1021/jacs.5b02272] [PMID: 25923248]
[104]
Wang, L.; Kong, L.; Li, Y.; Ganguly, R.; Kinjo, R. Anti-Markovnikov hydroimination of terminal alkynes in gold-catalyzed pyridine construction from ammonia. Chem. Commun. (Camb.), 2015, 51(62), 12419-12422.
[http://dx.doi.org/10.1039/C5CC04091D] [PMID: 26144528]
[105]
Liu, X.; Ye, S.; Li, H.; Liu, Y.; Cao, Y.; Fan, K. Mild, selective and switchable transfer reduction of nitroarenes catalyzed by supported gold nanoparticles. Catal. Sci. Technol., 2013, 3(12), 3200.
[http://dx.doi.org/10.1039/c3cy00533j]
[106]
Li, P.; Li, S.; Wang, Y.; Zhang, Y.; Han, G. Green synthesis of β-CD-functionalized monodispersed silver nanoparticles with ehanced catalytic activity. Colloids Surf. A Physicochem. Eng. Asp., 2017, 520, 26-31.
[http://dx.doi.org/10.1016/j.colsurfa.2017.01.034]
[107]
Cui, Q.; Yashchenok, A.; Li, L.; Möhwald, H.; Bargheer, M. Mechanistic study on reduction reaction of nitro compounds catalyzed by gold nanoparticles using in situ SERS monitoring. Colloid. Surface. A., 2015, 470, 108-113.
[http://dx.doi.org/10.1016/j.colsurfa.2015.01.075]
[108]
Mitsudome, T.; Noujima, A.; Mikami, Y.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. Room-temperature deoxygenation of epoxides with CO catalyzed by hydrotalcite-supported gold nanoparticles in water. Chemistry, 2010, 16(39), 11818-11821.
[http://dx.doi.org/10.1002/chem.201001387] [PMID: 20821766]
[109]
Pachfule, P.; Kandambeth, S.; Díaz Díaz, D.; Banerjee, R. Highly stable covalent organic framework-Au nanoparticles hybrids for enhanced activity for nitrophenol reduction. Chem. Commun. (Camb.), 2014, 50(24), 3169-3172.
[http://dx.doi.org/10.1039/C3CC49176E] [PMID: 24519675]
[110]
Liu, J.; Ran, C.; Pu, Y.; Wang, J.; Wang, D.; Chen, J. Silver/graphene nanocomposites as catalysts for the reduction of p-nitrophenol top-aminophenol: materials preparation and reaction kinetics studies. Can. J. Chem. Eng., 2017, 95(7), 1297-1304.
[http://dx.doi.org/10.1002/cjce.22774]
[111]
Kawai, K.; Kawakami, H.; Narushima, T.; Yonezawa, T. Selective and reactive hydration of nitriles to amides in water using silver nanoparticles stabilized by organic ligands. J. Nanopart. Res., 2015, 17(2), 1-9.
[http://dx.doi.org/10.1007/s11051-014-2816-1]
[112]
Mitsudome, T.; Urayama, T.; Yamazaki, K.; Maehara, Y.; Yamasaki, J.; Gohara, K.; Maeno, Z.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. Design of core-Pd/shell-Ag nanocomposite catalyst for selective semihydrogenation of alkynes. ACS Catal., 2016, 6(2), 666-670.
[http://dx.doi.org/10.1021/acscatal.5b02518]
[113]
Das, T.K.; Ganguly, S.; Bhawal, P.; Remanan, S.; Mondal, S.; Das, N.C. Mussel inspired green synthesis of silver nanoparticles-decorated halloysite nanotube using dopamine: characterization and evaluation of its catalytic activity. Appl. Nanosci., 2018, 8(1-2), 173-186.
[http://dx.doi.org/10.1007/s13204-018-0658-3]
[114]
González-Béjar, M.; Peters, K.; Hallett-Tapley, G.L.; Grenier, M.; Scaiano, J.C. Rapid one-pot propargylamine synthesis by plasmon mediated catalysis with gold nanoparticles on ZnO under ambient conditions. Chem. Commun. (Camb.), 2013, 49(17), 1732-1734.
[http://dx.doi.org/10.1039/c3cc38287g] [PMID: 23340772]
[115]
Boominathan, M.; Pugazhenthiran, N.; Nagaraj, M.; Muthusubramanian, S.; Murugesan, S.; Bhuvanesh, N. Nanoporous titania-supported gold nanoparticle-catalyzed green synthesis of 1,2,3-triazoles in aqueous medium. ACS Sustain. Chem., 2013, 1(11), 1405-1411.
[http://dx.doi.org/10.1021/sc400147r]
[116]
Mandi, U.; Kundu, S.K.; Salam, N.; Bhaumik, A.; Islam, S.M. Ag@polypyrrole: A highly efficient nanocatalyst for the N-alkylation of amines using alcohols. J. Colloid Interface Sci., 2016, 467, 291-299.
[http://dx.doi.org/10.1016/j.jcis.2016.01.017] [PMID: 26809107]
[117]
Liu, H.; Chuah, G.K.; Jaenicke, S. Alumina-entrapped Ag catalyzed nitro compounds coupled with alcohols using borrowing hydrogen methodology. Phys. Chem. Chem. Phys., 2015, 17(22), 15012-15018.
[http://dx.doi.org/10.1039/C5CP00330J] [PMID: 25989446]
[118]
Chen, M.; Zhang, Z.; Li, L.; Liu, Y.; Wang, W.; Gao, J. Fast synthesis of Ag–Pd@reduced graphene oxide bimetallic nanoparticles and their applications as carbon–carbon coupling catalysts. RSC Advances, 2014, 4(58), 30914.
[http://dx.doi.org/10.1039/C4RA05186F]
[119]
Bayan, R.; Karak, N. Photo-assisted synthesis of a Pd-Ag@CQD nanohybrid and its catalytic efficiency in promoting the Suzuki-Miyaura cross-coupling reaction under ligand-free and ambient conditions. ACS Omega, 2017, 2(12), 8868-8876.
[http://dx.doi.org/10.1021/acsomega.7b01504] [PMID: 31457415]
[120]
Karimi, B.; Barzegar, H.; Vali, H. Au-Pd bimetallic nanoparticles supported on a high nitrogen-rich ordered mesoporous carbon as an efficient catalyst for room temperature Ullmann coupling of aryl chlorides in aqueous media. Chem. Commun. (Camb.), 2018, 54(52), 7155-7158.
[http://dx.doi.org/10.1039/C8CC00475G] [PMID: 29882943]