[4]
Okada T, Linguraru MG, Yoshida Y. Abdominal multi-organ segmentation of CT images based on hierarchical spatial modeling of organ interrelations. International MICCAI Workshop on Computational and Clinical Challenges in Abdominal Imaging Berlin, Germany; Springer: 2011.
[6]
Wang C, Smedby O. Automatic multi-organ segmentation using fast model based level set method and hierarchical shape priors. Proceedings of the VISCERAL Challenge at ISBI 2014; 1194: 25-31.
[8]
Devi KG, Radhakrishnan R. Segmentation of multiple organ from abdominal CT images using 3D region growing and gradient vector flow. Int J Appl Eng Res 2014; 9(24): 30023-41.
[9]
Gauriau R, Ardori R, Lesage D, Bloch I. Multiple template deformation application to abdominal organ segmentation. IEEE 12th International Symposium on Biomedical Imaging (ISBI); April 16-19; New York, NY, USA. IEEE: 2015.
[11]
Ren S, Laub P, Lu Y, Nagnawa M, Carson RE. Atlas-based multi-organ segmentation for dynamic abdominal PET. IEEE Trans Radiat Plasma Med Sci 2019; 4(1): 50-62.
[12]
Zhao Y, Li H, Zhou R, Tetteh G, Niethammer M, Menze BH. Automatic multi-atlas segmentation for abdominal images using template construction and robust principal component analysis. 24th International Conference on Pattern Recognition (ICPR) Aug 20-24; Beijing, China: IEEE
[21]
Gao Y, Tannenbaum A, Kikinis R. Simultaneous multi-object segmentation using local robust statistics and contour interaction. International MICCAI Workshop on Medical Computer Vision Berlin, Germany; Springer: 2010.
[24]
Al-Shaikhli SDS, Yang MY, Rosenhahn B. Medical image segmentation using multi-level set partitioning with topological graph prior. Pacific-Rim Symposium on Image and Video Technology Berlin: Springer; 2013.
[27]
Oda M, Nakaoka T, Kitasaka T. Organ segmentation from 3D abdominal CT images based on atlas selection and graph cut. International MICCAI Workshop on Computational and Clinical Challenges in Abdominal Imaging Berlin: Springer 2011.
[34]
Ananth C, Parvin M, Gayathri G. Banu. Image segmentation by multi-shape GC-OAAM. Amer J Sust Cities Soc 2014; 1(3): 274-80.
[40]
Burke RP, Xu Z, Lee CP, et al. Multi-atlas segmentation for abdominal organs with Gaussian mixture models Medical Imaging 2015: Biomedical Applications in Molecular, Structural, and Functional Imaging. International Society for Optics and Photonics 2015.
[51]
He B, Huang C, Jia F. Fully Automatic Multi-Organ Segmentation Based on Multi-Boost Learning and Statistical Shape Model Search. in VISCERAL Challenge@ ISBI 2015.
[54]
Larsson M, Zhang Y, Kahl F. Deepseg: abdominal organ segmentation using deep convolutional neural networks[c]//swedish symposium on image analysis 2016. 2016.
[55]
Chen S, Roth H, Dorn S, et al. Towards automatic abdominal multi-organ segmentation in dual energy CT using cascaded 3D fully convolutional network. arXiv preprint arXiv:171005379 2017.
[57]
Roth HR, Oda H, Hayashi Y, et al. Hierarchical 3D fully convolutional networks for multi-organ segmentation. arXiv preprint arXiv:170406382 2017.
[58]
Bobo MF, Bao S, Huo Y, et al. Fully convolutional neural networks improve abdominal organ segmentation Medical Imaging 2018: Image Processing. International Society for Optics and Photonics 2018.
[61]
Çiçek Ö, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O. 3D U-Net: learning dense volumetric segmentation from sparse annotation. International Conference on Medical Image Computing and Computer-Assisted Intervention
[65]
Shen C, Roth HR, Oda H, et al. On the influence of dice loss function in multi-class organ segmentation of abdominal ct using 3D fully convolutional networks. arXiv preprint arXiv:180105912 2018.
[69]
Zhang Y, Jiang X, Zhong C, et al. SequentialSegNet: Combination with Sequential Feature for Multi-Organ Segmentation 24th International Conference on Pattern Recognition (ICPR).
[74]
Zhou Y, Li Z, Bai S, et al. Prior-aware Neural Network for Partially-Supervised Multi-Organ Segmentation. arXiv preprint arXiv:190406346 2019.
[81]
Roth HR, Lu L, Farag A, et al. DeepOrgan: Multi-level deep convolutional networks for automated pancreas segmentation International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI); Cham: Springer 2015.
[84]
Landman B, Xu Z, Igelsias JE, Styner M, Langerak TR, Klein A. MICCAI multi-atlas labeling beyond the cranial vault - workshop and challenge; July.
[85]
Kavur AE, Gezer NS, Baris M, Conze P-H, Groza V, Pham DD, et al. CHAOS Challenge - Combined (CT-MR) Healthy Abdominal Organ Segmentation arXiv pre-print, Jan 2020.
[87]
Soler L, Hostettler A, Agnus V, et al. Marescaux, 3d image reconstruction for comparison of algorithm database: a patientspecific anatomical and medical image database 2012.