Review about Structure and Evaluation of Reactivators of Acetylcholinesterase Inhibited with Neurotoxic Organophosphorus Compounds

Page: [1422 - 1442] Pages: 21

  • * (Excluding Mailing and Handling)

Abstract

Background: Neurotoxic chemical warfare agents can be classified as some of the most dangerous chemicals for humanity. The most effective of those agents are the Organophosphates (OPs) capable of restricting the enzyme Acetylcholinesterase (AChE), which in turn, controls the nerve impulse transmission. When AChE is inhibited by OPs, its reactivation can be usually performed through cationic oximes. However, until today, it has not been developed one universal defense agent, with complete effective reactivation activity for AChE inhibited by any of the many types of existing neurotoxic OPs. For this reason, before treating people intoxicated by an OP, it is necessary to determine the neurotoxic compound that was used for contamination, in order to select the most effective oxime. Unfortunately, this task usually requires a relatively long time, raising the possibility of death. Cationic oximes also display a limited capacity of permeating the Blood-Brain Barrier (BBB). This fact compromises their capacity to reactivating AChE inside the nervous system.

Methods: We performed a comprehensive search on the data about OPs available on the scientific literature today in order to cover all the main drawbacks still faced in the research for the development of effective antidotes against those compounds.

Results: Therefore, this review about neurotoxic OPs and the reactivation of AChE, provides insights for the new agents’ development. The most expected defense agent is a molecule without toxicity and effective to reactivate AChE inhibited by all neurotoxic OPs.

Conclusion: To develop these new agents, the application of diverse scientific areas of research, especially theoretical procedures as computational science (computer simulation, docking and dynamics), organic synthesis, spectroscopic methodologies, biology, biochemical and biophysical information, medicinal chemistry, pharmacology and toxicology, is necessary.

Keywords: Acetylcholinesterase, reactivators, neurotoxic organophosphorus compounds, oximes, warfare agents, chemical defense.

[1]
Busl, K.M.; Bleck, T.P. Treatment of neuroterrorism. Neurotherapeutics, 2012, 9(1), 139-157.
[http://dx.doi.org/10.1007/s13311-011-0097-2] [PMID: 22227729]
[2]
Marrs, T.C.; Maynard, R.L.; Sidell, F.R. Chemical Warfare Agents : Toxicology and Treatment, 2nd ed; Wiley & Sons: New York, 2007.
[3]
Delfino, R.T.; Ribeiro, T.S.; Figueroa-Villar, J.D. Organophosphorus compounds as chemical warfare agents: a review. J. Braz. Chem. Soc., 2009, 20, 407-428.
[http://dx.doi.org/10.1590/S0103-50532009000300003]
[4]
Hilmas, C.J.; Smart, J.K.; Hill, B.A. History of Chemical Warfare.Medical Aspects of Chemical Warfare; Martha, K., Ed.; Washington, DC, 2008, pp. 9-76.
[5]
Patočka, J.; Fusek, J. Chemical agents and chemical terrorism. Cent. Eur. J. Public Health, 2004, 12, S75-S77.
[PMID: 15141987]
[6]
Ganesan, K.; Raza, S.K.; Vijayaraghavan, R. Chemical warfare agents. J. Pharm. Bioallied Sci., 2010, 2(3), 166-178.
[http://dx.doi.org/10.4103/0975-7406.68498] [PMID: 21829312]
[7]
Pitschmann, V. Overall view of chemical and biochemical weapons. Toxins (Basel), 2014, 6(6), 1761-1784.
[http://dx.doi.org/10.3390/toxins6061761] [PMID: 24902078]
[8]
Schmaltz, F. Neurosciences and research on chemical weapons of mass destruction in Nazi Germany. J. Hist. Neurosci., 2006, 15(3), 186-209.
[http://dx.doi.org/10.1080/09647040600658229] [PMID: 16887760]
[9]
López-Muñoz, F.; Alamo, C.; Guerra, J.A.; García-García, P. The development of neurotoxic agents as chemical weapons during the National Socialist period in Germany. Rev. Neurol., 2008, 47(2), 99-106.
[PMID: 18623009]
[10]
Ghosh, R.; Newman, J.F. A new group of organophosphorus pesticides. Chem. Ind., 1955, 5, 118-119.
[11]
Mirzayanov, V.S. State Secrets: An Insider’s Chronicle of the Russian Chemical Weapons Program; Outskirts Press, Inc.: Denver, Colorado, 2009.
[12]
Patocka, J. Novichok agents-mysterious poisonous substances from the cold war period. Mil. Med. Sci. Lett., 2018, 28(2), 92-94.
[http://dx.doi.org/10.31482/mmsl.2018.012]
[13]
Vásárhelyi, G.; Földi, L. History of Russia’s chemical weapons. Acad. Appl. Res. Mil. Sci., 2007, 6(1), 135-146.
[14]
Franca, T.C.C.; Kitagawa, D.A.S.; Cavalcante, S.F.A.; da Silva, J.A.V.; Nepovimova, E.; Kuca, K. Novichoks: the dangerous fourth generation of chemical weapons. Int. J. Mol. Sci., 2019, 20(5), 1222.
[http://dx.doi.org/10.3390/ijms20051222] [PMID: 30862059]
[15]
Nepovimova, E.; Kuca, K. Chemical warfare agent NOVICHOK - mini-review of available data. Food Chem. Toxicol., 2018, 121, 343-350.
[http://dx.doi.org/10.1016/j.fct.2018.09.015] [PMID: 30213549]
[16]
Stuart, J.A.; Ursano, R.J.; Fullerton, C.S.; Norwood, A.E.; Murray, K. Belief in exposure to terrorist agents: reported exposure to nerve or mustard gas by Gulf War veterans. J. Nerv. Ment. Dis., 2003, 191(7), 431-436.
[http://dx.doi.org/10.1097/01.NMD.0000081634.28356.6B] [PMID: 12891089]
[17]
Macilwain, C. Study proves Iraq used nerve gas. Nature, 1993, 363(6424), 3.
[http://dx.doi.org/10.1038/363003b0] [PMID: 8479533]
[18]
Kelle, A. The third review conference of the chemical weapons convention and beyond: key themes and the prospects of incremental change. International. Affairs., 2013, 89(1), 143-158.
[http://dx.doi.org/10.1111/1468-2346.12009]
[19]
Morita, H.; Yanagisawa, N.; Nakajima, T.; Shimizu, M.; Hirabayashi, H.; Okudera, H.; Nohara, M.; Midorikawa, Y.; Mimura, S. Sarin poisoning in Matsumoto, Japan. Lancet, 1995, 346(8970), 290-293.
[http://dx.doi.org/10.1016/S0140-6736(95)92170-2] [PMID: 7630252]
[20]
Szinicz, L. History of chemical and biological warfare agents. Toxicology, 2005, 214(3), 167-181.
[http://dx.doi.org/10.1016/j.tox.2005.06.011] [PMID: 16111798]
[21]
Okumura, T.; Takasu, N.; Ishimatsu, S.; Miyanoki, S.; Mitsuhashi, A.; Kumada, K.; Tanaka, K.; Hinohara, S. Report on 640 victims of the Tokyo subway sarin attack. Ann. Emerg. Med., 1996, 28(2), 129-135.
[http://dx.doi.org/10.1016/S0196-0644(96)70052-5] [PMID: 8759575]
[22]
Holstege, C.P.; Kirk, M.; Sidell, F.R. Chemical warfare. Nerve agent poisoning. Crit. Care Clin., 1997, 13(4), 923-942.
[http://dx.doi.org/10.1016/S0749-0704(05)70374-2] [PMID: 9330846]
[23]
Tu, A.T. Overview of sarin terrorist attacks in Japan. ACS Symposium Series, 1999, 745, pp. 304-317.
[http://dx.doi.org/10.1021/bk-2000-0745.ch020]
[24]
Nikitin, M.B.D.; Kerr, P.K.; Feickert, A. Syria’s Chemical Weapons: Issues for Congress; Congressional Research Service: Washington, DC, 2013.
[25]
Koblentz, G.D. Chemical-weapon use in Syria: atrocities, attribution and accountability. The Nonproliferative Review, 2020, 26(5), 575-598.
[http://dx.doi.org/10.1080/10736700.2019.1718336]
[26]
Nepovimova, E.; Kuca, K. The history of poisoning: from ancient times until modern ERA. Arch. Toxicol., 2019, 93(1), 11-24.
[http://dx.doi.org/10.1007/s00204-018-2290-0] [PMID: 30132046]
[27]
Bajwa, U.; Sandhu, K.S. Effect of handling and processing on pesticide residues in food- a review. J. Food Sci. Technol., 2014, 51(2), 201-220.
[http://dx.doi.org/10.1007/s13197-011-0499-5] [PMID: 24493878]
[28]
Jokanović, M.; Kosanović, M. Neurotoxic effects in patients poisoned with organophosphorus pesticides. Environ. Toxicol. Pharmacol., 2010, 29(3), 195-201.
[http://dx.doi.org/10.1016/j.etap.2010.01.006] [PMID: 21787602]
[29]
Eyer, P. The role of oximes in the management of organophosphorus pesticide poisoning. Toxicol. Rev., 2003, 22(3), 165-190.
[http://dx.doi.org/10.2165/00139709-200322030-00004] [PMID: 15181665]
[30]
Yamashita, M.; Yamashita, M.; Tanaka, J.; Ando, Y. Human mortality in organophosphate poisonings. Vet. Hum. Toxicol., 1997, 39(2), 84-85.
[PMID: 9080632]
[31]
Mehrotra, K.; Pradhan, B. Children Buried at Indian School as Pesticide is Blamed 2013. Available at: https://www.bloomberg.com/news/articles/2013-07-17/pesticide-laced-school-lunches-blamed-for-22-child-deaths (Accessed: Feb 23 2020
[32]
Kaufer, D.; Friedman, A.; Seidman, S.; Soreq, H. Anticholinesterases induce multigenic transcriptional feedback response suppressing cholinergic neurotransmission. Chem. Biol. Interact., 1999, 119-120, 349-360.
[http://dx.doi.org/10.1016/S0009-2797(99)00046-0] [PMID: 10421471]
[33]
Silman, I.; Sussman, J.L. Acetylcholinesterase: how is structure related to function? Chem. Biol. Interact., 2008, 175(1-3), 3-10.
[http://dx.doi.org/10.1016/j.cbi.2008.05.035] [PMID: 18586019]
[34]
Marrs, T.C.; Maynard, R.L. Neurotransmission systems as targets for toxicants: a review. Cell Biol. Toxicol., 2013, 29(6), 381-396.
[http://dx.doi.org/10.1007/s10565-013-9259-9] [PMID: 24036955]
[35]
Lydic, R.; Baghdoyan, H.A.; Lorinc, Z. Microdialysis of cat pons reveals enhanced acetylcholine release during state-dependent respiratory depression. Am. J. Physiol., 1991, 261(3 Pt 2), R766-R770.
[http://dx.doi.org/10.1152/ajpregu.1991.261.3.r766] [PMID: 1887963]
[36]
Cavalcante, S.F.A.; Simas, A.B.C.; Barcellos, M.C.; de Oliveira, V.G.M.; Sousa, R.B.; Cabral, P.A.M.; Kuča, K.; França, T.C.C. Acetylcholinesterase: the “Hub” for neurodegenerative diseases and chemical weapons convention. Biomolecules, 10(3), 414.
[http://dx.doi.org/10.3390/biom10030414] [PMID: 32155996]
[37]
Worek, F.; Aurbek, N.; Wetherell, J.; Pearce, P.; Mann, T.; Thiermann, H. Inhibition, reactivation and aging kinetics of highly toxic organophosphorus compounds: pig versus minipig acetylcholinesterase. Toxicology, 2008, 244(1), 35-41.
[http://dx.doi.org/10.1016/j.tox.2007.10.021] [PMID: 18054823]
[38]
Sirin, G.S.; Zhou, Y.; Lior-Hoffmann, L.; Wang, S.; Zhang, Y. Aging mechanism of soman inhibited acetylcholinesterase. J. Phys. Chem. B, 2012, 116(40), 12199-12207.
[http://dx.doi.org/10.1021/jp307790v] [PMID: 22984913]
[39]
Marrs, T.C. Organophosphate poisoning. Pharmacol. Ther., 1993, 58(1), 51-66.
[http://dx.doi.org/10.1016/0163-7258(93)90066-M] [PMID: 8415873]
[40]
Chambers, J.E.; Chambers, H.W.; Meek, E.C.; Pringle, R.B. Testing of novel brain-penetrating oxime reactivators of acetylcholinesterase inhibited by nerve agent surrogates. Chem. Biol. Interact., 2013, 203(1), 135-138.
[http://dx.doi.org/10.1016/j.cbi.2012.10.017] [PMID: 23123249]
[41]
Petroianu, G.A.; Lorke, D.E. Pyridinium oxime reactivators of cholinesterase inhibited by diisopropyl-fluorophosphate (DFP): predictive value of in-vitro testing for in-vivo efficacy. Mini Rev. Med. Chem., 2008, 8(13), 1328-1342.
[http://dx.doi.org/10.2174/138955708786369555] [PMID: 18991751]
[42]
Meek, E.C.; Chambers, H.W.; Coban, A.; Funck, K.E.; Pringle, R.B.; Ross, M.K.; Chambers, J.E. Synthesis and in vitro and in vivo inhibition potencies of highly relevant nerve agent surrogates. Toxicol. Sci., 2012, 126(2), 525-533.
[http://dx.doi.org/10.1093/toxsci/kfs013] [PMID: 22247004]
[43]
Karasova, J.Z.; Kuca, K.; Jun, D.; Bajgar, J. Using the Ellman method for in vivo testing of cholinesterase activity. Chemické. Listy, 2010, 104(1), 46-50.
[44]
Worek, F.; Thiermann, H. Reactivation of organophosphate-inhibited human acetylcholinesterase by isonitrosoacetone (MINA): a kinetic analysis. Chem. Biol. Interact., 2011, 194(2-3), 91-96.
[http://dx.doi.org/10.1016/j.cbi.2011.09.001] [PMID: 21930118]
[45]
Ribeiro, T.S.; Prates, A.; Alves, S.R.; Oliveira-Silva, J.J.; Riehl, C.A.S.; Figueroa-Villar, J.D. The effect of neutral oximes on the reactivation of human acetylcholinesterase inhibited with paraoxon. J. Braz. Chem. Soc., 2012, 23, 1216-1225.
[http://dx.doi.org/10.1590/S0103-50532012000700004]
[46]
Kuca, K.; Musilova, L.; Palecek, J.; Cirkva, V.; Paar, M.; Musilek, K.; Hrabinova, M.; Pohanka, M.; Karasova, J.Z.; Jun, D. Novel bisquaternary oximes-reactivation of acetylcholinesterase and butyrylcholinesterase inhibited by paraoxon. Molecules, 2009, 14(12), 4915-4921.
[http://dx.doi.org/10.3390/molecules14124915] [PMID: 20032868]
[47]
Kuca, K.; Juna, D.; Musilek, K. Structural requirements of acetylcholinesterase reactivators. Mini Rev. Med. Chem., 2006, 6(3), 269-277.
[http://dx.doi.org/10.2174/138955706776073510] [PMID: 16515465]
[48]
Jokanović, M. Structure-activity relationship and efficacy of pyridinium oximes in the treatment of poisoning with organophosphorus compounds: a review of recent data. Curr. Top. Med. Chem., 2012, 12(16), 1775-1789.
[http://dx.doi.org/10.2174/1568026611209061775] [PMID: 23030612]
[49]
Musilek, K.; Komloova, M.; Holas, O.; Horova, A.; Pohanka, M.; Gunn-Moore, F.; Dohnal, V.; Dolezal, M.; Kuca, K. Mono-oxime bisquaternary acetylcholinesterase reactivators with prop-1,3-diyl linkage-preparation, in vitro screening and molecular docking. Bioorg. Med. Chem., 2011, 19(2), 754-762.
[http://dx.doi.org/10.1016/j.bmc.2010.12.021] [PMID: 21215642]
[50]
Karade, H.N.; Valiveti, A.K.; Acharya, J.; Kaushik, M.P. Synthesis and in vitro evaluation of bis-quaternary 2-(hydroxyimino)-N-(pyridin-3-yl)acetamide derivatives as reactivators against sarin and VX inhibited human acetylcholinesterase (hAChE). Bioorg. Med. Chem., 2014, 22(9), 2684-2691.
[http://dx.doi.org/10.1016/j.bmc.2014.03.023] [PMID: 24721830]
[51]
McHardy, S.F.; Bohmann, J.A.; Corbett, M.R.; Campos, B.; Tidwell, M.W.; Thompson, P.M.; Bemben, C.J.; Menchaca, T.A.; Reeves, T.E.; Cantrell, W.R. Jr.; Bauta, W.E.; Lopez, A.; Maxwell, D.M.; Brecht, K.M.; Sweeney, R.E.; McDonough, J. Design, synthesis and characterization of novel, nonquaternary reactivators of GF-inhibited human acetylcholinesterase. Bioorg. Med. Chem. Lett., 2014, 24(7), 1711-1714.
[http://dx.doi.org/10.1016/j.bmcl.2014.02.049] [PMID: 24630558]
[52]
Renou, J.; Loiodice, M.; Arboléas, M.; Baati, R.; Jean, L.; Nachon, F.; Renard, P.Y. Tryptoline-3-hydroxy-pyridinaldoxime conjugates as efficient reactivators of phosphylated human acetyl and butyrylcholinesterases. Chem. Commun. (Camb.), 2014, 50(30), 3947-3950.
[http://dx.doi.org/10.1039/C4CC00561A] [PMID: 24599312]
[53]
Zemek, F.; Zdarova, J.K.; Sepsova, V.; Kuca, K. Acetylcholinesterase reactivators (HI-6, obidoxime, trimedoxime, K027, K075, K127, K203, K282): structural evaluation of human serum albumin binding and absorption kinetics. Int. J. Mol. Sci., 2013, 14(8), 16076-16086.
[http://dx.doi.org/10.3390/ijms140816076] [PMID: 23917882]
[54]
Musilek, K.; Holas, O.; Hambalek, J.; Kuca, K.; Jun, D.; Dohnal, V.; Dolezal, M. Synthesis of bispyridinium compounds bearing propane linker and evaluation of their reactivation activity against tabun- and paraoxon-inhibited acetylcholinesterase. Lett. Org. Chem., 2006, 3(11), 831-835.
[http://dx.doi.org/10.2174/157017806779117012]
[55]
Kovarik, Z.; Maček, N.; Sit, R.K.; Radić, Z.; Fokin, V.V.; Barry Sharpless, K.; Taylor, P. Centrally acting oximes in reactivation of tabun-phosphoramidated AChE. Chem. Biol. Interact., 2013, 203(1), 77-80.
[http://dx.doi.org/10.1016/j.cbi.2012.08.019] [PMID: 22960624]
[56]
Mercey, G.; Renou, J.; Verdelet, T.; Kliachyna, M.; Baati, R.; Gillon, E.; Arboléas, M.; Loiodice, M.; Nachon, F.; Jean, L.; Renard, P.Y. Phenyltetrahydroisoquinoline-pyridinaldoxime conjugates as efficient uncharged reactivators for the dephosphylation of inhibited human acetylcholinesterase. J. Med. Chem., 2012, 55(23), 10791-10795.
[http://dx.doi.org/10.1021/jm3015519] [PMID: 23148598]
[57]
Mercey, G.; Verdelet, T.; Renou, J.; Kliachyna, M.; Baati, R.; Nachon, F.; Jean, L.; Renard, P.Y. Reactivators of acetylcholinesterase inhibited by organophosphorus nerve agents. Acc. Chem. Res., 2012, 45(5), 756-766.
[http://dx.doi.org/10.1021/ar2002864] [PMID: 22360473]
[58]
Kalisiak, J.; Ralph, E.C.; Cashman, J.R. Nonquaternary reactivators for organophosphate-inhibited cholinesterases. J. Med. Chem., 2012, 55(1), 465-474.
[http://dx.doi.org/10.1021/jm201364d] [PMID: 22206546]
[59]
Žunec, S.; Radić, B.; Kuča, K.; Musilek, K.; Lucić Vrdoljak, A. Comparative determination of the efficacy of bispyridinium oximes in paraoxon poisoning. Arh. Hig. Rada Toksikol., 2015, 66(2), 129-134.
[http://dx.doi.org/10.1515/aiht-2015-66-2623] [PMID: 26110474]
[60]
Antonijevic, E.; Musilek, K.; Kuca, K.; Djukic-Cosic, D.; Vucinic, S.; Antonijevic, B. Therapeutic and reactivating efficacy of oximes K027 and K203 against a direct acetylcholinesterase inhibitor. Neurotoxicology, 2016, 55, 33-39.
[http://dx.doi.org/10.1016/j.neuro.2016.05.006] [PMID: 27177985]
[61]
Chambers, J.E.; Chambers, H.W.; Funck, K.E.; Meek, E.C.; Pringle, R.B.; Ross, M.K. Efficacy of novel phenoxyalkyl pyridinium oximes as brain-penetrating reactivators of cholinesterase inhibited by surrogates of sarin and VX. Chem. Biol. Interact.,, 2016, 259(Pt B), 154-159.
[http://dx.doi.org/10.1016/j.cbi.2016.07.004] [PMID: 27387540]
[62]
Gorecki, L.; Soukup, O.; Kucera, T.; Malinak, D.; Jun, D.; Kuca, K.; Musilek, K.; Korabecny, J. Oxime K203: a drug candidate for the treatment of tabun intoxication. Arch. Toxicol., 2019, 93(3), 673-691.
[http://dx.doi.org/10.1007/s00204-018-2377-7] [PMID: 30564897]
[63]
Kim, J.; Malpani, Y.R.; Lee, J.; Shin, J.S.; Han, S.B.; Jung, Y.S. Novel tacrine-pyridinium hybrid reactivators of organophosphorus-inhibited acetylcholinesterase: synthesis, molecular docking, and in vitro reactivation study. Bioorg. Med. Chem. Lett., 2018, 28(23-24), 3784-3786.
[http://dx.doi.org/10.1016/j.bmcl.2018.10.006] [PMID: 30301674]
[64]
Kuca, K.; Musilek, K.; Jun, D.; Zdarova-Karasova, J.; Nepovimova, E.; Soukup, O.; Hrabinova, M.; Mikler, J.; Franca, T.C.C.; Da Cunha, E.F.F.; De Castro, A.A.; Valis, M.; Ramalho, T.C. A newly developed oxime K203 is the most effective reactivator of tabun-inhibited acetylcholinesterase. BMC Pharmacol. Toxicol., 2018, 19(1), 8.
[http://dx.doi.org/10.1186/s40360-018-0196-3] [PMID: 29467029]
[65]
Musilek, K.; Holas, O.; Kuca, K.; Jun, D.; Dohnal, V.; Opletalova, V.; Dolezal, M. Synthesis of monooxime-monocarbamoyl bispyridinium compounds bearing (E)-but-2-ene linker and evaluation of their reactivation activity against tabun- and paraoxon-inhibited acetylcholinesterase. J. Enzyme Inhib. Med. Chem., 2008, 23(1), 70-76.
[http://dx.doi.org/10.1080/14756360701383981] [PMID: 18341256]
[66]
Jaćević, V.; Nepovimova, E.; Kuča, K. Interspecies and intergender differences in acute toxicity of K-oximes drug candidates. Chem. Biol. Interact., 2019, 308, 312-316.
[http://dx.doi.org/10.1016/j.cbi.2019.05.035] [PMID: 31153983]
[67]
Lorke, D.E.; Petroianu, G.A. The experimental oxime K027-a promising protector from organophosphate pesticide poisoning. A review comparing K027, K048, pralidoxime and obidoxime. Front. Neurosci., 2019, 13, 427.
[http://dx.doi.org/10.3389/fnins.2019.00427] [PMID: 31191210]
[68]
Sit, R.K.; Fokin, V.V.; Amitai, G.; Sharpless, K.B.; Taylor, P.; Radić, Z. Imidazole aldoximes effective in assisting butyrylcholinesterase catalysis of organophosphate detoxification. J. Med. Chem., 2014, 57(4), 1378-1389.
[http://dx.doi.org/10.1021/jm401650z] [PMID: 24571195]
[69]
Winter, M.; Wille, T.; Musilek, K.; Kuca, K.; Thiermann, H.; Worek, F. Investigation of the reactivation kinetics of a large series of bispyridinium oximes with organophosphate-inhibited human acetylcholinesterase. Toxicol. Lett., 2016, 244, 136-142.
[http://dx.doi.org/10.1016/j.toxlet.2015.07.007] [PMID: 26210933]
[70]
Kuca, K.; Musilek, K.; Jun, D.; Nepovimova, E.; Soukup, O.; Korabecny, J.; França, T.C.C.; de Castro, A.A.; Krejcar, O.; da Cunha, E.F.F.; Ramalho, T.C. Oxime K074 - in vitro and in silico reactivation of acetylcholinesterase inhibited by nerve agents and pesticides. Toxin Rev., 2018, 39(2), 157-166.
[http://dx.doi.org/10.1080/15569543.2018.1485702]
[71]
Kuca, K.; Musilek, K.; Jun, D.; Pejchal, J.; Krejcar, O.; Penhaker, M.; Wu, Q.; Lopes, R.O.; Ramalho, T.C.; Franca, T.C.C.; Nepovimova, E.; Soukup, O. Oxime K033-reactivation activity of cholinesterases inhibited by various nerve agents and organophosphorus pesticides. Lett. Drug Des. Discov., 2018, 15(11), 1124-1130.
[http://dx.doi.org/10.2174/1570164615666180713112238]
[72]
Kuca, K.; Nepovimova, E.; Wu, Q.; de Souza, F.R.; Ramalho, T. de C.; Franca, T.C.C.; Musilek, K. Experimental hydrophilic reactivator: bisoxime with three positive charges. Chem. Pap., 2019, 73, 777-782.
[http://dx.doi.org/10.1007/s11696-018-0612-6]
[73]
Karasova, J.Z.; Chladek, J.; Hroch, M.; Josef, F.; Hnidkova, D.; Kuca, K. Pharmacokinetic study of two acetylcholinesterase reactivators, trimedoxime and newly synthesized oxime K027, in rat plasma. J. Appl. Toxicol., 2013, 33(1), 18-23.
[http://dx.doi.org/10.1002/jat.1699] [PMID: 21717485]
[74]
Bhattacharjee, A.K.; Kuca, K.; Musilek, K.; Gordon, R.K. An in silico stereo-electronic comparison of conventional pyridinium oximes and k-oximes for organophosphate (OP) poisoning. Med. Chem., 2012, 8(2), 230-245.
[http://dx.doi.org/10.2174/157340612800493700] [PMID: 22385173]
[75]
Musilek, K.; Dolezal, M.; Gunn-Moore, F.; Kuca, K. Design, evaluation and structure-activity relationship studies of the AChE reactivators against organophosphorus pesticides. Med. Res. Rev., 2011, 31(4), 548-575.
[http://dx.doi.org/10.1002/med.20192] [PMID: 20027669]
[76]
Louise-Leriche, L.; Pǎunescu, E.; Saint-André, G.; Baati, R.; Romieu, A.; Wagner, A.; Renard, P.Y. A HTS assay for the detection of organophosphorus nerve agent scavengers. Chemistry, 2010, 16(11), 3510-3523.
[http://dx.doi.org/10.1002/chem.200902986] [PMID: 20143367]
[77]
Gilbert, G.; Wagner-Jauregg, T.; Steinberg, G.M. Hydroxamic acids: relationship between structure and ability to reactivate phosphonate-inhibited acetylcholinesterase. Arch. Biochem. Biophys., 1961, 93, 469-475.
[http://dx.doi.org/10.1016/S0003-9861(61)80038-6] [PMID: 13705238]
[78]
Renou, J.; Mercey, G.; Verdelet, T.; Păunescu, E.; Gillon, E.; Arboléas, M.; Loiodice, M.; Kliachyna, M.; Baati, R.; Nachon, F.; Jean, L.; Renard, P.Y. Syntheses and in vitro evaluations of uncharged reactivators for human acetylcholinesterase inhibited by organophosphorus nerve agents. Chem. Biol. Interact., 2013, 203(1), 81-84.
[http://dx.doi.org/10.1016/j.cbi.2012.09.023] [PMID: 23111374]
[79]
Gerlits, O.; Kong, X.; Cheng, X.; Wymore, T.; Blumenthal, D.K.; Taylor, P.; Radić, Z.; Kovalevsky, A. Productive reorientation of a bound oxime reactivator revealed in room temperature X-ray structures of native and VX-inhibited human acetylcholinesterase. J. Biol. Chem., 2019, 294(27), 10607-10618.
[http://dx.doi.org/10.1074/jbc.RA119.008725] [PMID: 31138650]
[80]
Cochran, R.; Kalisiak, J.; Küçükkilinç, T.; Radić, Z.; Garcia, E.; Zhang, L.; Ho, K.Y.; Amitai, G.; Kovarik, Z.; Fokin, V.V.; Sharpless, K.B.; Taylor, P. Oxime-assisted acetylcholinesterase catalytic scavengers of organophosphates that resist aging. J. Biol. Chem., 2011, 286(34), 29718-29724.
[http://dx.doi.org/10.1074/jbc.M111.264739] [PMID: 21730071]
[81]
Radić, Z.; Sit, R.K.; Kovarik, Z.; Berend, S.; Garcia, E.; Zhang, L.; Amitai, G.; Green, C.; Radić, B.; Fokin, V.V.; Sharpless, K.B.; Taylor, P. Refinement of structural leads for centrally acting oxime reactivators of phosphylated cholinesterases. J. Biol. Chem., 2012, 287(15), 11798-11809.
[http://dx.doi.org/10.1074/jbc.M111.333732] [PMID: 22343626]
[82]
Sit, R.K.; Radić, Z.; Gerardi, V.; Zhang, L.; Garcia, E.; Katalinić, M.; Amitai, G.; Kovarik, Z.; Fokin, V.V.; Sharpless, K.B.; Taylor, P. New structural scaffolds for centrally acting oxime reactivators of phosphylated cholinesterases. J. Biol. Chem., 2011, 286(22), 19422-19430.
[http://dx.doi.org/10.1074/jbc.M111.230656] [PMID: 21464125]
[83]
Gonçalves, A.D.S.; França, T.C.C.; Figueroa-Villar, J.D.; Pascutti, P.G. Molecular dynamics simulations and QM/MM studies of the reactivation by 2-PAM of tabun inhibited human acethylcolinesterase. J. Braz. Chem. Soc., 2011, 22(1), 155-165.
[http://dx.doi.org/10.1590/S0103-50532011000100021]
[84]
Cuya, T.; Gonçalves, A.D.S.; da Silva, J.A.V.; Ramalho, T.C.; Kuca, K.C.C.; França, T. The role of the oximes HI-6 and HS-6 inside human acetylcholinesterase inhibited with nerve agents: a computational study. J. Biomol. Struct. Dyn., 2018, 36(13), 3444-3452.
[http://dx.doi.org/10.1080/07391102.2017.1389307] [PMID: 29019446]
[85]
da Silva Gonçalves, A.; França, T.C.C.; Caetano, M.S.; Ramalho, T.C. Reactivation steps by 2-PAM of tabun-inhibited human acetylcholinesterase: reducing the computational cost in hybrid QM/MM methods. J. Biomol. Struct. Dyn., 2014, 32(2), 301-307.
[http://dx.doi.org/10.1080/07391102.2013.765361] [PMID: 23527625]
[86]
Matos, K.S.; da Cunha, E.F.F.; Gonçalves, A.S.; Wilter, A.; Kuča, K.; França, T.C.C.; Ramalho, T.C. First principles calculations of thermodynamics and kinetic parameters and molecular dynamics simulations of acetylcholinesterase reactivators: can mouse data provide new insights into humans? J. Biomol. Struct. Dyn., 2012, 30(5), 546-558.
[http://dx.doi.org/10.1080/07391102.2012.687521] [PMID: 22731788]
[87]
da Silva, J.A.V.; Nepovimova, E.; Ramalho, T.C.; Kuca, K.; França, T.C.S. Molecular modeling studies on the interactions of 7-methoxytacrine-4-pyridinealdoxime, 4-PA, 2-PAM, and obidoxime with VX-inhibited human acetylcholinesterase: a near attack conformation approach. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 1018-1029.
[http://dx.doi.org/10.1080/14756366.2019.1609953] [PMID: 31074292]
[88]
da Silva, J.A.V.; Pereira, A.F.; LaPlante, S.R.; Kuca, K.; Ramalho, T.C.; França, T.C.C. Reactivation of VX-inhibited human acetylcholinesterase by deprotonated pralidoxime. A complementary quantum mechanical study. Biomolecules, 2020, 10(2), 192.
[http://dx.doi.org/10.3390/biom10020192] [PMID: 32012780]
[89]
da Silva, J.A.V.; Nepovimova, E.; Ramalho, T.C.; Kuca, K.; França, T.C.C. Molecular modelling studies on the interactions of 7-methoxytacrine-4-pyridinealdoxime with VX-inhibited human acetylcholinesterase. A near attack approach to assess different spacer-lengths. Chem. Biol. Interact., 2019, 307, 195-205.
[http://dx.doi.org/10.1016/j.cbi.2019.05.019] [PMID: 31121152]
[90]
de Lima, W.E.A.; Francisco, A.; da Cunha, E.F.F.; Radic, Z.; Taylor, P.; França, T.C.C.; Ramalho, T.C. Mechanistic studies of new oximes reactivators of human butyryl cholinesterase inhibited by cyclosarin and sarin. J. Biomol. Struct. Dyn., 2017, 35(6), 1272-1282.
[http://dx.doi.org/10.1080/07391102.2016.1178173] [PMID: 27125569]
[91]
Delfino, R.T.; Figueroa-Villar, J.D. Nucleophilic reactivation of sarin-inhibited acetylcholinesterase: a molecular modeling study. J. Phys. Chem. B, 2009, 113(24), 8402-8411.
[http://dx.doi.org/10.1021/jp810686k] [PMID: 19449818]
[92]
Petronilho, E.C.; Rennó, M.N.; Castro, N.G.; da Silva, F.M.R.; Pinto, A.C.; Figueroa-Villar, J.D. Design, synthesis, and evaluation of guanylhydrazones as potential inhibitors or reactivators of acetylcholinesterase. J. Enzyme Inhib. Med. Chem., 2016, 31(6), 1069-1078.
[http://dx.doi.org/10.3109/14756366.2015.1094468] [PMID: 26558640]
[93]
Petroianu, G.A.; Arafat, K.; Kuča, K.; Kassa, J. Five oximes (K-27, K-33, K-48, BI-6 and methoxime) in comparison with pralidoxime: in vitro reactivation of red blood cell acetylcholinesterase inhibited by paraoxon. J. Appl. Toxicol., 2006, 26(1), 64-71.
[http://dx.doi.org/10.1002/jat.1108] [PMID: 16193529]
[94]
Soukup, O.; Jun, D.; Tobin, G.; Kuca, K. The summary on non-reactivation cholinergic properties of oxime reactivators: the interaction with muscarinic and nicotinic receptors. Arch. Toxicol., 2013, 87(4), 711-719.
[http://dx.doi.org/10.1007/s00204-012-0977-1] [PMID: 23179755]
[95]
Luo, C.; Tong, M.; Maxwell, D.M.; Saxena, A. Comparison of oxime reactivation and aging of nerve agent-inhibited monkey and human acetylcholinesterases. Chem. Biol. Interact., 2008, 175(1-3), 261-266.
[http://dx.doi.org/10.1016/j.cbi.2008.04.034] [PMID: 18555982]
[96]
Kassa, J.; Karasova, J.; Bajgar, J.; Kuca, K.; Musilek, K.; Kopelikova, I. A comparison of the reactivating and therapeutic efficacy of newly developed bispyridinium oximes (K250, K251) with commonly used oximes against tabun in rats and mice. J. Enzyme Inhib. Med. Chem., 2009, 24(4), 1040-1044.
[http://dx.doi.org/10.1080/14756360802608419] [PMID: 19552519]
[97]
Lorke, D.E.; Hasan, M.Y.; Nurulain, S.M.; Kuca, K.; Schmitt, A.; Petroianu, G.A. Efficacy of two new asymmetric bispyridinium oximes (K-27 and K-48) in rats exposed to diisopropylfluorophosphate: comparison with pralidoxime, obidoxime, trimedoxime, methoxime, and HI-6. Toxicol. Mech. Methods, 2009, 19(4), 327-333.
[http://dx.doi.org/10.1080/15376510902798695] [PMID: 19778224]
[98]
Eckert, S.; Eyer, P.; Herkert, N.; Bumm, R.; Weber, G.; Thiermann, H.; Worek, F. Comparison of the oxime-induced reactivation of erythrocyte and muscle acetylcholinesterase following inhibition by sarin or paraoxon, using a perfusion model for the real-time determination of membrane-bound acetylcholinesterase activity. Biochem. Pharmacol., 2008, 75(3), 698-703.
[http://dx.doi.org/10.1016/j.bcp.2007.09.017] [PMID: 17977518]
[99]
Wilhelm, C.M.; Snider, T.H.; Babin, M.C.; Jett, D.A.; Platoff, G.E. Jr.; Yeung, D.T. A comprehensive evaluation of the efficacy of leading oxime therapies in guinea pigs exposed to organophosphorus chemical warfare agents or pesticides. Toxicol. Appl. Pharmacol., 2014, 281(3), 254-265.
[http://dx.doi.org/10.1016/j.taap.2014.10.009] [PMID: 25448441]
[100]
Black, R.M.; Read, R.W. Biological markers of exposure to organophosphorus nerve agents. Arch. Toxicol., 2013, 87(3), 421-437.
[http://dx.doi.org/10.1007/s00204-012-1005-1] [PMID: 23371414]
[101]
Pohanka, M.; Musilek, K.; Kuca, K. Progress of biosensors based on cholinesterase inhibition. Curr. Med. Chem., 2009, 16(14), 1790-1798.
[http://dx.doi.org/10.2174/092986709788186129] [PMID: 19442145]
[102]
Norrrahim, M.N.F.; Razak, M.A.I.A.; Shah, N.A.A.; Kasim, H.; Yusoff, W.Y.W.; Halim, N.A.; Nor, S.A.M.; Jamal, S.H.; Ong, K.K.; Yunus, W.M.Z.W.; Knight, V.F.; Kasim, N.A.M. Recent developments on oximes to improve the blood brain barrier penetration for the treatment of organophosphorus poisoning: a review. RSC Advances, 2020, 10, 4465-4489.
[http://dx.doi.org/10.1039/C9RA08599H]
[103]
Voicu, V.A.; Bajgar, J.; Medvedovici, A.; Radulescu, F.S.; Miron, D.S. Pharmacokinetics and pharmacodynamics of some oximes and associated therapeutic consequences: a critical review. J. Appl. Toxicol., 2010, 30(8), 719-729.
[http://dx.doi.org/10.1002/jat.1561] [PMID: 20635332]
[104]
Van Bree, J.B.M.M.; De Boer, A.G.; Danhof, M.; Breimer, D.D. Drug transport across the blood-brain barrier. I. Anatomical and physiological aspects. Pharm. Weekbl. Sci., 1992, 14(5), 305-310.
[http://dx.doi.org/10.1007/bf01977618] [PMID: 1437514]
[105]
Ertl, P.; Bernhard, R.; Selzer, P. Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. J. Med. Chem., 2000, 43(20), 3714-3717.
[http://dx.doi.org/10.1021/jm000942e] [PMID: 11020286]
[106]
Dadparvar, M.; Wagner, S.; Wien, S.; Kufleitner, J.; Worek, F.; von Briesen, H.; Kreuter, J. HI 6 human serum albumin nanoparticles-development and transport over an in vitro blood-brain barrier model. Toxicol. Lett., 2011, 206(1), 60-66.
[http://dx.doi.org/10.1016/j.toxlet.2011.06.027] [PMID: 21726608]
[107]
Banks, W.A. Drug delivery to the brain in Alzheimer’s disease: consideration of the blood-brain barrier. Adv. Drug Deliv. Rev., 2012, 64(7), 629-639.
[http://dx.doi.org/10.1016/j.addr.2011.12.005] [PMID: 22202501]
[108]
Grumetto, L.; Russo, G.; Barbato, F. Indexes of polar interactions between ionizable drugs and membrane phospholipids measured by IAM-HPLC: their relationships with data of blood-brain barrier passage. Eur. J. Pharm. Sci., 2014, 65, 139-146.
[http://dx.doi.org/10.1016/j.ejps.2014.09.015] [PMID: 25262853]
[109]
de Souza, F.R.; Garcia, D.R.; Cuya, T.; Pimentel, A.S.; Gonçalves, A.S.; de Alencastro, R.B.; França, T.C.C. Molecular modeling study of uncharged oximes compared to HI-6 and 2-PAM inside human AChE sarin and VX conjugates. ACS Omega, 2020, 5(9), 4490-4500.
[http://dx.doi.org/10.1021/acsomega.9b03737] [PMID: 32175496]
[110]
de Souza, F.R.; Garcia, D.R.; Cuya, T.; Kuca, K.; de Alencastro, R.B.; França, T.C.C. Behavior of uncharged oximes compared to HI6 and 2-PAM in the human AChE-tabun conjugate: a molecular modeling approach. J. Biomol. Struct. Dyn., 2018, 36(6), 1430-1438.
[http://dx.doi.org/10.1080/07391102.2017.1324322] [PMID: 28446076]
[111]
Kitagawa, D.A.S.; Cavalcante, S.F.A.; de Paula, R.L.; Rodrigues, R.B.; Bernardo, L.B.; da Silva, M.C.J.; da Silva, T.N.; Dos-Santos, W.V.; Granjeiro, J.M.; de Almeida, J.S.F.D.; Barcellos, M.C. de A Correa, A.B.; França, T.C.C.; Kuča, K.; Simas, A.B.C. In vitro evaluation of neutral aryloximes as reactivators for Electrophorus eel acetylcholinesterase inhibited by paraoxon. Biomolecules, 2019, 9(10), 583.
[http://dx.doi.org/10.3390/biom9100583] [PMID: 31597234]
[112]
de Paula, R.L.; de Almeida, J.S.F.D.; Cavalcante, S.F.A.; Gonçalves, A.S.; Simas, A.B.C.; Franca, T.C.C.; Valis, M.; Kuca, K.; Nepovimova, E.; Granjeiro, J.M. Molecular modeling and in vitro studies of a neutral oxime as a potential reactivator for acetylcholinesterase inhibited by paraoxon. Molecules, 2018, 23(11), 2954.
[http://dx.doi.org/10.3390/molecules23112954] [PMID: 30424582]
[113]
Wei, Z.; Liu, Y.Q.; Wang, S.Z.; Yao, L.; Nie, H.F.; Wang, Y.A.; Liu, X.Y.; Zheng, Z.B.; Li, S. Conjugates of salicylaldoximes and peripheral site ligands: novel efficient nonquaternary reactivators for nerve agent-inhibited acetylcholinesterase. Bioorg. Med. Chem., 2017, 25(16), 4497-4505.
[http://dx.doi.org/10.1016/j.bmc.2017.06.041] [PMID: 28684009]
[114]
Santoni, G.; de Sousa, J.; de la Mora, E.; Dias, J.; Jean, L.; Sussman, J.L.; Silman, I.; Renard, P-Y.; Brown, R.C.D.; Weik, M.; Baati, R.; Nachon, F. Structure-based optimization of nonquaternary reactivators of acetylcholinesterase inhibited by organophosphorus nerve agents. J. Med. Chem., 2018, 61(17), 7630-7639.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00592] [PMID: 30125110]
[115]
de Almeida, J.S.F.D.; Guizado, T.R.C.; Guimarães, A.P.; Ramalho, T.C.; Gonçalves, A.S.; de Koning, M.C.; França, T.C.C. Docking and molecular dynamics studies of peripheral site ligand-oximes as reactivators of sarin-inhibited human acetylcholinesterase. J. Biomol. Struct. Dyn., 2016, 34(12), 2632-2642.
[http://dx.doi.org/10.1080/07391102.2015.1124807] [PMID: 26612005]
[116]
de Koning, M.C.; Joosen, M.J.A.; Noort, D.; van Zuylen, A.; Tromp, M.C. Peripheral site ligand-oxime conjugates: a novel concept towards reactivation of nerve agent-inhibited human acetylcholinesterase. Bioorg. Med. Chem., 2011, 19(1), 588-594.
[http://dx.doi.org/10.1016/j.bmc.2010.10.059] [PMID: 21112787]
[117]
de Koning, M.C.; van Grol, M.; Noort, D. Peripheral site ligand conjugation to a non-quaternary oxime enhances reactivation of nerve agent-inhibited human acetylcholinesterase. Toxicol. Lett., 2011, 206(1), 54-59.
[http://dx.doi.org/10.1016/j.toxlet.2011.04.004] [PMID: 21504785]
[118]
de Koning, M.C.; Horn, G.; Worek, F.; van Grol, M. Discovery of a potent non-oxime reactivator of nerve agent inhibited human acetylcholinesterase. Eur. J. Med. Chem., 2018, 157, 151-160.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.016] [PMID: 30096649]
[119]
Ellman, G.L.; Courtney, K.D.; Andres, V., Jr; Feather-Stone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol., 1961, 7, 88-95.
[http://dx.doi.org/10.1016/0006-2952(61)90145-9] [PMID: 13726518]
[120]
Worek, F.; Eyer, P.; Thiermann, H. Determination of acetylcholinesterase activity by the Ellman assay: a versatile tool for in vitro research on medical countermeasures against organophosphate poisoning. Drug Test. Anal., 2012, 4(3-4), 282-291.
[http://dx.doi.org/10.1002/dta.337] [PMID: 21998030]
[121]
Soares, S.F.C.X.; Vieira, A.A.; Delfino, R.T.; Figueroa-Villar, J.D. NMR determination of Electrophorus electricus acetylcholinesterase inhibition and reactivation by neutral oximes. Bioorg. Med. Chem., 2013, 21(18), 5923-5930.
[http://dx.doi.org/10.1016/j.bmc.2013.05.063] [PMID: 23916150]
[122]
Cardoso, C.L.; Lima, V.V.; Zottis, A.; Oliva, G.; Andricopulo, A.D.; Wainer, I.W.; Moaddel, R.; Cass, Q.B. Development and characterization of an immobilized enzyme reactor (IMER) based on human glyceraldehyde-3-phosphate dehydrogenase for on-line enzymatic studies. J. Chromatogr. A, 2006, 1120(1-2), 151-157.
[http://dx.doi.org/10.1016/j.chroma.2005.10.063] [PMID: 16297925]
[123]
Kuca, K.; Hrabinova, M.; Soukup, O.; Tobin, G.; Karasova, J.; Pohanka, M. Pralidoxime-the gold standard of acetylcholinesterase reactivators-reactivation in vitro efficacy. Bratisl. Lek Listy, 2010, 111(9), 502-504.
[PMID: 21180265]
[124]
Lineweaver, H.; Burk, D. The determination of enzyme dissociation constants. J. Am. Chem. Soc., 1934, 56(3), 658-666.
[http://dx.doi.org/10.1021/ja01318a036]
[125]
Wetwitayaklung, P.; Limmatvapirat, C.; Phaechamud, T.; Keokitichai, S. Kinetics of acetylcholinesterase inhibition of Quisqualis Indica Linn. flower extract. Silpakorn Univ. Sci. Technol., 2007, 1(2), 20-28.
[126]
Castro, N.G.; Costa, R.S.; Pimentel, L.S.B.; Danuello, A.; Romeiro, N.C.; Viegas, C., Jr; Barreiro, E.J.; Fraga, C.A.M.; Bolzani, V.S.; Rocha, M.S. CNS-selective noncompetitive cholinesterase inhibitors derived from the natural piperidine alkaloid (-)-spectaline. Eur. J. Pharmacol., 2008, 580(3), 339-349.
[http://dx.doi.org/10.1016/j.ejphar.2007.11.035] [PMID: 18096154]
[127]
Oliveira-Silva, J.J.; Alves, S.R.; Meyer, A.; Perez, F.; Sarcinelli, P.N.; da Costa Mattos, R.C.; Moreira, J.C. Influência de fatores socioeconômicos na contaminação por agrotóxicos, Brasil. Rev. Saude Publica, 2001, 35(2), 130-135.
[http://dx.doi.org/10.1590/S0034-89102001000200005] [PMID: 11359198]
[128]
da Silva, J.I.; de Moraes, M.C.; Vieira, L.C.C.; Corrêa, A.G.; Cass, Q.B.; Cardoso, C.L. Acetylcholinesterase capillary enzyme reactor for screening and characterization of selective inhibitors. J. Pharm. Biomed. Anal., 2013, 73, 44-52.
[http://dx.doi.org/10.1016/j.jpba.2012.01.026] [PMID: 22391555]
[129]
Schumacher, M.; Camp, S.; Maulet, Y.; Newton, M.; MacPhee-Quigley, K.; Taylor, S.S.; Friedmann, T.; Taylor, P. Primary structure of Torpedo californica acetylcholinesterase deduced from its cDNA sequence. Nature, 1986, 319(6052), 407-409.
[http://dx.doi.org/10.1038/319407a0] [PMID: 3753747]
[130]
Artursson, E.; Andersson, P.O.; Akfur, C.; Linusson, A.; Börjegren, S.; Ekström, F. Catalytic-site conformational equilibrium in nerve-agent adducts of acetylcholinesterase: possible implications for the HI-6 antidote substrate specificity. Biochem. Pharmacol., 2013, 85(9), 1389-1397.
[http://dx.doi.org/10.1016/j.bcp.2013.01.016] [PMID: 23376121]
[131]
Ekström, F.; Pang, Y.P.; Boman, M.; Artursson, E.; Akfur, C.; Börjegren, S. Crystal structures of acetylcholinesterase in complex with HI-6, Ortho-7 and obidoxime: structural basis for differences in the ability to reactivate tabun conjugates. Biochem. Pharmacol., 2006, 72(5), 597-607.
[http://dx.doi.org/10.1016/j.bcp.2006.05.027] [PMID: 16876764]
[132]
Dvir, H.; Silman, I.; Harel, M.; Rosenberry, T.L.; Sussman, J.L. Acetylcholinesterase: from 3D structure to function. Chem. Biol. Interact., 2010, 187(1-3), 10-22.
[http://dx.doi.org/10.1016/j.cbi.2010.01.042] [PMID: 20138030]
[133]
Cheung, J.; Rudolph, M.J.; Burshteyn, F.; Cassidy, M.S.; Gary, E.N.; Love, J.; Franklin, M.C.; Height, J.J. Structures of human acetylcholinesterase in complex with pharmacologically important ligands. J. Med. Chem., 2012, 55(22), 10282-10286.
[http://dx.doi.org/10.1021/jm300871x] [PMID: 23035744]
[134]
Berg, L.; Andersson, C.D.; Artursson, E.; Hörnberg, A.; Tunemalm, A.K.; Linusson, A.; Ekström, F. Targeting acetylcholinesterase: identification of chemical leads by high throughput screening, structure determination and molecular modeling. PLoS One, 2011, 6(11)e26039
[http://dx.doi.org/10.1371/journal.pone.0026039] [PMID: 22140425]
[135]
Matos, K.S.; Cunha, E.F.F.; Gonçalves, A.S.; Wilter, A.; Kuča, K.; França, T.C.; Ramalho, T.C. First principles calculations of thermodynamics and kinetic parameters and molecular dynamics simulations of acetylcholinesterase reactivators can mouse data provide new insights into humans? J. Biomol. Struct. Dyn., 2012, 30(5), 546-558.
[http://dx.doi.org/10.1080/07391102.2012.687521] [PMID: 22731788]
[136]
da Silva, J.A.V.; Modesto-Costa, L.; de Koning, M.C.; Borges, I.; França, T.C.C. Theoretical NMR and conformational analysis of solvated oximes for organophosphates-inhibited acetylcholinesterase reactivation. J. Mol. Struct., 2018, 1152, 311-320.
[http://dx.doi.org/10.1016/j.molstruc.2017.09.058]
[137]
Carletti, E.; Colletier, J.P.; Schopfer, L.M.; Santoni, G.; Masson, P.; Lockridge, O.; Nachon, F.; Weik, M. Inhibition pathways of the potent organophosphate CBDP with cholinesterases revealed by X-ray crystallographic snapshots and mass spectrometry. Chem. Res. Toxicol., 2013, 26(2), 280-289.
[http://dx.doi.org/10.1021/tx3004505] [PMID: 23339663]
[138]
Figueroa-Villar, J.D.; Tinoco, L.W. Spin-lattice relaxation time in drug discovery and design. Curr. Top. Med. Chem., 2009, 9(9), 811-823.
[http://dx.doi.org/10.2174/156802609789207082] [PMID: 19754396]
[139]
Zuiderweg, E.R.P. Mapping protein-protein interactions in solution by NMR spectroscopy. Biochemistry, 2002, 41(1), 1-7.
[http://dx.doi.org/10.1021/bi011870b] [PMID: 11771996]
[140]
Mayer, M.; Meyer, B. Group epitope mapping by saturation transfer difference NMR to identify segments of a ligand in direct contact with a protein receptor. J. Am. Chem. Soc., 2001, 123(25), 6108-6117.
[http://dx.doi.org/10.1021/ja0100120] [PMID: 11414845]