[3]
Sharma S, Mehra R. Automatic Magnification Independent Classification of Breast Cancer Tissue in Histological Images Using Deep Convolutional Neural Network. International Conference on Advanced Informatics for Computing Research. 2019; 772-81.
[10]
Cho H, Lim S, Choi G, Min H. Neural stain-style transfer learning using gan for histopathological images 2017. arXiv preprint arXiv:1710.08543,
[15]
Jaafari A, Pourghasemi HR. Factors Influencing Regional-Scale Wildfire Probability in Iran: An Application of Random Forest and Support Vector Machine.Spatial Modeling in GIS and R for Earth and Environmental Sciences. Elsevier 2019; pp. 607-19.
[19]
Njuguna SN, Ondimu S, Kenji GM. Classification of drying methods for macadamia nuts based on the glcm texture parameters. In: 2018 Annual Sustainable Research and Innovation (SRI) Conference.
[20]
Mukhopadhyay S, Pratiher S, Mukherjee S, Dasgupta D, Ghosh N, Panigrahi PK. A two-stage framework for DIC image denoising and Gabor based GLCM feature extraction for pre-cancer diagnosis.High-Speed Biomedical Imaging and Spectroscopy III: Toward Big Data Instrumentation and Management. International Society for Optics and Photonics 2018.
[21]
Rashid M, Khan MA, Sharif M, Raza M, Sarfraz MM, Afza F. Object detection and classification: a joint selection and fusion strategy of deep convolutional neural network and SIFT point features. Multimedia Tools Appl 2019; 78: 15751-77.
[22]
Lakshmi TV, Reddy CVK. Object Classification Using SIFT Algorithm and Transformation Techniques.Cognitive Informatics and Soft Computing. Springer 2019; pp. 403-8.
[23]
Zeng J, Zhai Y, Feng W, Chen Y, Gan J, Wang F. A novel finger-vein recognition based on quality assessment and multi-scale histogram of oriented gradients feature. Int J Enterprise Inf Syst 2019; 15(1): 100-15.
[24]
Reichman D, Collins LM, Malof JM. gprHOG: Several simple improvements to the histogram of oriented gradients feature for threat detection in ground-penetrating radar 2018. arXiv preprint arXiv:1806.01349.
[25]
Tasdemir SBY, Tasdemir K, Aydin Z. ROI Detection in Mammogram Images Using Wavelet-Based Haralick and HOG Features. In: 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA). Orlando, FL, USA.
[35]
Vivanti R, Ephrat A, Joskowicz L, Karaaslan OA, Lev-Cohain N, Sosna J. Automatic liver tumor segmentation in follow-up CT studies using convolutional neural networks. In: Proc Patch-Based Methods in Medical Image Processing Workshop. 1-9.
[47]
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition 2014. arXiv preprint arXiv:1409.1556,
[49]
Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions. Proceedings of the IEEE conference on computer vision and pattern recognition. 2015; Boston, MA, USA.
[50]
Chen H, Dou Q, Wang X, Qin J, Heng PA. Mitosis detection in breast cancer histology images via deep cascaded networks. Thirtieth AAAI Conference on Artificial Intelligence. 2016; 1160-6.
[51]
Wang D, Khosla A, Gargeya R, Irshad H, Beck AH. Deep learning for identifying metastatic breast cancer 2016. arXiv preprint arXiv:1606.05718.
[52]
Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems. 2012.
[56]
Feng Y, Zhang L, Mo J. Deep manifold preserving autoencoder for classifying breast cancer histopathological images. IEEE/ACM Trans Comput Biol Bioinformatics 2018; 17(1): 91-101.