Fibroblast Growth Factors as Tools in the Management of Neuropathic Pain Disorders

Page: [1034 - 1043] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Neuropathic pain is caused by a damage to or dysfunction of the somatosensory nervous system. The main mechanisms underlying neuropathic pain include ectopic activity in nociceptive nerves, peripheral and central sensitization, impaired inhibitory modulation, and microglial activation. Fibroblast growth factors (FGFs) make up a large family of growth factors that mediate neural development, metabolism, and function through three main key signaling pathways, including RAS/MAP kinase pathway, PI3 kinase/Akt pathway, and PLCγ. An association between the members of the FGF system and the improvement of neuropathic pain has become evident, recently. These signaling molecules may be expected to provide new drug targets for the treatment of neuropathic pain. To the best of our knowledge, it is the first study that reviews the relationship between some members of the FGF system and neuropathic pain.

Keywords: Fibroblast growth factors (FGFs), neuropathic pain, central sensitization, inflammation, somatosensory, inhibitory modulation.

Graphical Abstract

[1]
Mathew PJ, Mathew JL. Assessment and management of pain in infants. Postgrad Med J 2003; 79(934): 438-43.
[http://dx.doi.org/10.1136/pmj.79.934.438] [PMID: 12954954]
[2]
Treede R-D, Rief W, Barke A, et al. Chronic pain as a symptom or a disease: the IASP Classification of Chronic Pain for the International Classification of Diseases (ICD-11). Pain 2019; 160(1): 19-27.
[http://dx.doi.org/10.1097/j.pain.0000000000001384] [PMID: 30586067]
[3]
Lumley MA, Cohen JL, Borszcz GS, et al. Pain and emotion: a biopsychosocial review of recent research. J Clin Psychol 2011; 67(9): 942-68.
[http://dx.doi.org/10.1002/jclp.20816] [PMID: 21647882]
[4]
O’Neill MC, Ahola Kohut S, Pillai Riddell R, Oster H. Age-related differences in the acute pain facial expression during infancy. Eur J Pain 2019; 23(9): 1596-607.
[http://dx.doi.org/10.1002/ejp.1436] [PMID: 31162761]
[5]
Jensen TS, Baron R, Haanpää M, et al. A new definition of neuropathic pain. Pain 2011; 152(10): 2204-5.
[http://dx.doi.org/10.1016/j.pain.2011.06.017] [PMID: 21764514]
[6]
Treede R-D, Rief W, Barke A, et al. A classification of chronic pain for ICD-11. Pain 2015; 156(6): 1003-7.
[http://dx.doi.org/10.1097/j.pain.0000000000000160] [PMID: 25844555]
[7]
Scholz J, Finnerup NB, Attal N, et al. Classification committee of the neuropathic pain special interest group (neupsig). the iasp classification of chronic pain for icd-11: chronic neuropathic pain. Pain 2019; 160(1): 53-9.
[http://dx.doi.org/10.1097/j.pain.0000000000001365] [PMID: 30586071]
[8]
Mulla SM, Buckley DN, Moulin DE, et al. Management of chronic neuropathic pain: a protocol for a multiple treatment comparison meta-analysis of randomised controlled trials. BMJ Open 2014; 4(11) e006112
[http://dx.doi.org/10.1136/bmjopen-2014-006112] [PMID: 25412864]
[9]
Gilron I, Watson CPN, Cahill CM, Moulin DE. Neuropathic pain: a practical guide for the clinician. CMAJ 2006; 175(3): 265-75.
[http://dx.doi.org/10.1503/cmaj.060146] [PMID: 16880448]
[10]
Degirolamo C, Sabbà C, Moschetta A. Therapeutic potential of the endocrine fibroblast growth factors FGF19, FGF21 and FGF23. Nat Rev Drug Discov 2016; 15(1): 51-69.
[http://dx.doi.org/10.1038/nrd.2015.9] [PMID: 26567701]
[11]
Deng Z, Deng S, Zhang MR, Tang MM. Fibroblast Growth Factors in Depression. Front Pharmacol 2019; 10: 60.
[http://dx.doi.org/10.3389/fphar.2019.00060] [PMID: 30804785]
[12]
Terwisscha van Scheltinga AF, Bakker SC, Kahn RS. Fibroblast growth factors in schizophrenia. Schizophr Bull 2010; 36(6): 1157-66.
[http://dx.doi.org/10.1093/schbul/sbp033] [PMID: 19429845]
[13]
Zimmermann M. Pathobiology of neuropathic pain. Eur J Pharmacol 2001; 429(1-3): 23-37.
[http://dx.doi.org/10.1016/S0014-2999(01)01303-6] [PMID: 11698024]
[14]
Koop LK, Hawkins JL, Cornelison LE, Durham PL. Central role of protein kinase a in promoting trigeminal nociception in an in vivo model of temporomandibular joint disorder. J Oral Facial Pain Headache 2017; 31(3): 264-74.
[http://dx.doi.org/10.11607/ofph.1803] [PMID: 28738112]
[15]
Zhou Y, Wang Z, Li J, Li X, Xiao J. Fibroblast growth factors in the management of spinal cord injury. J Cell Mol Med 2018; 22(1): 25-37.
[http://dx.doi.org/10.1111/jcmm.13353] [PMID: 29063730]
[16]
Lin Y-L, Kuo H-S, Lo M-J, et al. Treatment with nerve grafts and aFGF attenuates allodynia caused by cervical root transection injuries. Restor Neurol Neurosci 2011; 29(4): 265-74.
[http://dx.doi.org/10.3233/RNN-2011-0597] [PMID: 21697592]
[17]
Forouzanfar F, Amin B, Ghorbani A, et al. New approach for the treatment of neuropathic pain: Fibroblast growth factor 1 gene-transfected adipose-derived mesenchymal stem cells. Eur J Pain 2018; 22(2): 295-310.
[http://dx.doi.org/10.1002/ejp.1119] [PMID: 28949091]
[18]
Madiai F, Goettl VM, Hussain S-R, Clairmont AR, Stephens RL Jr, Hackshaw KV. Anti-fibroblast growth factor-2 antibodies attenuate mechanical allodynia in a rat model of neuropathic pain. J Mol Neurosci 2005; 27(3): 315-24.
[http://dx.doi.org/10.1385/JMN:27:3:315] [PMID: 16280602]
[19]
von Hehn CA, Baron R, Woolf CJ. Deconstructing the neuropathic pain phenotype to reveal neural mechanisms. Neuron 2012; 73(4): 638-52.
[http://dx.doi.org/10.1016/j.neuron.2012.02.008] [PMID: 22365541]
[20]
Kim HY, Park C-K, Cho I-H, Jung SJ, Kim JS, Oh SB. Differential Changes in TRPV1 expression after trigeminal sensory nerve injury. J Pain 2008; 9(3): 280-8.
[http://dx.doi.org/10.1016/j.jpain.2007.11.013] [PMID: 18226965]
[21]
Attal N. Neuropathic pain: mechanisms, therapeutic approach, and interpretation of clinical trials. CONTINUUM: Lifelong Learning in Neurology 2012; 181, Peripheral Neuropathy : 161-75.
[http://dx.doi.org/10.1212/01.CON.0000411564.41709.2d]
[22]
Gilron I, Baron R, Jensen T, Eds. Neuropathic pain: principles of diagnosis and treatment Mayo Clinic Proceedings. Elsevier 2015.
[23]
Woolf CJ. Central sensitization: implications for the diagnosis and treatment of pain. Pain 2011; 152(3)(Suppl.): S2-S15.
[http://dx.doi.org/10.1016/j.pain.2010.09.030] [PMID: 20961685]
[24]
Gao Y-J, Ji R-R. Chemokines, neuronal-glial interactions, and central processing of neuropathic pain. Pharmacol Ther 2010; 126(1): 56-68.
[http://dx.doi.org/10.1016/j.pharmthera.2010.01.002] [PMID: 20117131]
[25]
Forouzanfar F, Hosseinzadeh H. Medicinal herbs in the treatment of neuropathic pain: a review. Iran J Basic Med Sci 2018; 21(4): 347-58.
[PMID: 29796216]
[26]
Scholz J, Broom DC, Youn D-H, et al. Blocking caspase activity prevents transsynaptic neuronal apoptosis and the loss of inhibition in lamina II of the dorsal horn after peripheral nerve injury. J Neurosci 2005; 25(32): 7317-23.
[http://dx.doi.org/10.1523/JNEUROSCI.1526-05.2005] [PMID: 16093381]
[27]
Hui Q, Jin Z, Li X, Liu C, Wang X. FGF family: from drug development to clinical application. Int J Mol Sci 2018; 19(7): 1875.
[http://dx.doi.org/10.3390/ijms19071875] [PMID: 29949887]
[28]
Beenken A, Mohammadi M. The FGF family: biology, pathophysiology and therapy. Nat Rev Drug Discov 2009; 8(3): 235-53.
[http://dx.doi.org/10.1038/nrd2792] [PMID: 19247306]
[29]
Mohammadi M, Olsen SK, Ibrahimi OA. Structural basis for fibroblast growth factor receptor activation. Cytokine Growth Factor Rev 2005; 16(2): 107-37.
[http://dx.doi.org/10.1016/j.cytogfr.2005.01.008] [PMID: 15863029]
[30]
Sobhani N, Ianza A, D’Angelo A, et al. Current status of fibroblast growth factor receptor-targeted therapies in breast cancer. Cells 2018; 7(7): 76.
[http://dx.doi.org/10.3390/cells7070076] [PMID: 30011957]
[31]
Turner CA, Watson SJ, Akil H. The fibroblast growth factor family: neuromodulation of affective behavior. Neuron 2012; 76(1): 160-74.
[http://dx.doi.org/10.1016/j.neuron.2012.08.037] [PMID: 23040813]
[32]
Yun Y-R, Won JE, Jeon E, et al. Fibroblast growth factors: biology, function, and application for tissue regeneration. J Tissue Eng 2010; 2010(1) 218142
[http://dx.doi.org/10.4061/2010/218142] [PMID: 21350642]
[33]
Pearson G, Robinson F, Beers Gibson T, et al. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 2001; 22(2): 153-83.
[PMID: 11294822]
[34]
Katoh M, Katoh M. FGF signaling network in the gastrointestinal tract (review). Int J Oncol 2006; 29(1): 163-8.
[http://dx.doi.org/10.3892/ijo.29.1.163] [PMID: 16773196]
[35]
Zhao M, Li D, Shimazu K, Zhou Y-X, Lu B, Deng C-X. Fibroblast growth factor receptor-1 is required for long-term potentiation, memory consolidation, and neurogenesis. Biol Psychiatry 2007; 62(5): 381-90.
[http://dx.doi.org/10.1016/j.biopsych.2006.10.019] [PMID: 17239352]
[36]
Goyal L, Saha SK, Liu LY, et al. Polyclonal secondary FGFR2 mutations drive acquired resistance to FGFR inhibition in patients with FGFR2 fusion–positive cholangiocarcinoma. Cancer Discov 2017; 7(3): 252-63.
[http://dx.doi.org/10.1158/2159-8290.CD-16-1000] [PMID: 28034880]
[37]
Frinchi M, Bonomo A, Trovato-Salinaro A, et al. Fibroblast growth factor-2 and its receptor expression in proliferating precursor cells of the subventricular zone in the adult rat brain. Neurosci Lett 2008; 447(1): 20-5.
[http://dx.doi.org/10.1016/j.neulet.2008.09.059] [PMID: 18835325]
[38]
Stevens HE, Smith KM, Maragnoli ME, et al. Fgfr2 is required for the development of the medial prefrontal cortex and its connections with limbic circuits. J Neurosci 2010; 30(16): 5590-602.
[http://dx.doi.org/10.1523/JNEUROSCI.5837-09.2010] [PMID: 20410112]
[39]
Furusho M, Ishii A, Bansal R. signaling by fgf receptor 2, not fgf receptor 1, regulates myelin thickness through activation of erk1/2-mapk, which promotes mtorc1 activity in an akt-independent manner. J Neurosci 2017; 37(11): 2931-46.
[http://dx.doi.org/10.1523/JNEUROSCI.3316-16.2017] [PMID: 28193689]
[40]
Moldrich RX, Mezzera C, Holmes WM, et al. Fgfr3 regulates development of the caudal telencephalon. Dev Dyn 2011; 240(6): 1586-99.
[http://dx.doi.org/10.1002/dvdy.22636] [PMID: 21491541]
[41]
Frattini V, Pagnotta SM, Tala , et al. A metabolic function of FGFR3-TACC3 gene fusions in cancer. Nature 2018; 553(7687): 222-7.
[http://dx.doi.org/10.1038/nature25171] [PMID: 29323298]
[42]
Marics I, Padilla F, Guillemot J-F, Scaal M, Marcelle C. FGFR4 signaling is a necessary step in limb muscle differentiation. Development 2002; 129(19): 4559-69.
[PMID: 12223412]
[43]
Lesca E, Lammens A, Huber R, Augustin M. Structural analysis of the human fibroblast growth factor receptor 4 kinase. J Mol Biol 2014; 426(22): 3744-56.
[http://dx.doi.org/10.1016/j.jmb.2014.09.004] [PMID: 25219510]
[44]
French DM, Lin BC, Wang M, et al. Targeting FGFR4 inhibits hepatocellular carcinoma in preclinical mouse models. PLoS One 2012; 7(5) e36713
[http://dx.doi.org/10.1371/journal.pone.0036713] [PMID: 22615798]
[45]
Zilliox LA. Neuropathic Pain.Continuum (Minneapolis, Minn). 2017; 23: pp. 512-32.
[46]
Fornasari D. Pharmacotherapy for neuropathic pain: a review. Pain Ther 2017; 6(1)(Suppl. 1): 25-33.
[http://dx.doi.org/10.1007/s40122-017-0091-4] [PMID: 29178034]
[47]
Finnerup NB, Attal N, Haroutounian S, et al. Pharmacotherapy for neuropathic pain in adults: a systematic review and meta-analysis. Lancet Neurol 2015; 14(2): 162-73.
[http://dx.doi.org/10.1016/S1474-4422(14)70251-0] [PMID: 25575710]
[48]
Furusho M, Dupree JL, Bryant M, Bansal R. Disruption of fibroblast growth factor receptor signaling in nonmyelinating Schwann cells causes sensory axonal neuropathy and impairment of thermal pain sensitivity. J Neurosci 2009; 29(6): 1608-14.
[http://dx.doi.org/10.1523/JNEUROSCI.5615-08.2009] [PMID: 19211868]
[49]
Ferhat L, Represa A, Zouaoui-Aggoun D, Ferhat W, Ben-Ari Y, Khrestchatisky M. FGF-2 induces nerve growth factor expression in cultured rat hippocampal neurons. Eur J Neurosci 1997; 9(6): 1282-9.
[http://dx.doi.org/10.1111/j.1460-9568.1997.tb01483.x] [PMID: 9215712]
[50]
Suter-Crazzolara C, Unsicker K. GDNF mRNA levels are induced by FGF-2 in rat C6 glioblastoma cells. Brain Res Mol Brain Res 1996; 41(1-2): 175-82.
[http://dx.doi.org/10.1016/0169-328X(96)00089-7] [PMID: 8883950]
[51]
Hammarberg H, Piehl F, Cullheim S, Fjell J, Hökfelt T, Fried K. GDNF mRNA in Schwann cells and DRG satellite cells after chronic sciatic nerve injury. Neuroreport 1996; 7(4): 857-60.
[http://dx.doi.org/10.1097/00001756-199603220-00004] [PMID: 8724660]
[52]
Chen S, Rio C, Ji R-R, et al. Disruption of ErbB receptor signaling in adult non-myelinating Schwann cells causes progressive sensory loss. Nat Neurosci 2003; 6(11): 1186-93.
[http://dx.doi.org/10.1038/nn1139] [PMID: 14555954]
[53]
Yin X, Crawford TO, Griffin JW, et al. Myelin-associated glycoprotein is a myelin signal that modulates the caliber of myelinated axons. J Neurosci 1998; 18(6): 1953-62.
[http://dx.doi.org/10.1523/JNEUROSCI.18-06-01953.1998] [PMID: 9482781]
[54]
Coleman M. Axon degeneration mechanisms: commonality amid diversity. Nat Rev Neurosci 2005; 6(11): 889-98.
[http://dx.doi.org/10.1038/nrn1788] [PMID: 16224497]
[55]
Yamanaka H, Obata K, Kobayashi K, Dai Y, Fukuoka T, Noguchi K. Activation of fibroblast growth factor receptor by axotomy, through downstream p38 in dorsal root ganglion, contributes to neuropathic pain. Neuroscience 2007; 150(1): 202-11.
[http://dx.doi.org/10.1016/j.neuroscience.2007.08.024] [PMID: 17905520]
[56]
Jin S-X, Zhuang Z-Y, Woolf CJ, Ji R-R. p38 mitogen-activated protein kinase is activated after a spinal nerve ligation in spinal cord microglia and dorsal root ganglion neurons and contributes to the generation of neuropathic pain. J Neurosci 2003; 23(10): 4017-22.
[http://dx.doi.org/10.1523/JNEUROSCI.23-10-04017.2003] [PMID: 12764087]
[57]
Ito J, Gong J, Michikawa M. Oxidative Stress and FGF-1 Release from Astrocytes. J Alzheimers Dis Parkinsonism 2013; 3(5)
[58]
Hoseini SJ, Ghazavi H, Forouzanfar F, et al. Fibroblast growth factor 1-transfected adipose-derived mesenchymal stem cells promote angiogenic proliferation. DNA Cell Biol 2017; 36(5): 401-12.
[http://dx.doi.org/10.1089/dna.2016.3546] [PMID: 28281780]
[59]
Prudovsky I, Mandinova A, Soldi R, et al. The non-classical export routes: FGF1 and IL-1α point the way. J Cell Sci 2003; 116(Pt 24): 4871-81.
[http://dx.doi.org/10.1242/jcs.00872] [PMID: 14625381]
[60]
Raju R, Palapetta SM, Sandhya VK, Sahu A, Alipoor A, Balakrishnan L, et al. A network map of FGF-1/FGFR signaling system. Journal of signal transduction 2014 2014.
[61]
Walpurgis K, Thomas A, Laussmann T, et al. Identification of fibroblast growth factor 1 (FGF-1) in a black market product. Drug Test Anal 2011; 3(11-12): 791-7.
[http://dx.doi.org/10.1002/dta.364] [PMID: 21998075]
[62]
Ghazavi H, Hoseini SJ, Ebrahimzadeh-Bideskan A, et al. Fibroblast growth factor type 1 (fgf1)-overexpressed adipose-derived mesenchaymal stem cells (ad-mscfgf1) induce neuroprotection and functional recovery in a rat stroke model. Stem Cell Rev Rep 2017; 13(5): 670-85.
[http://dx.doi.org/10.1007/s12015-017-9755-z]
[63]
Tsai MJ, Tsai SK, Huang MC, et al. Acidic FGF promotes neurite outgrowth of cortical neurons and improves neuroprotective effect in a cerebral ischemic rat model. Neuroscience 2015; 305: 238-47.
[http://dx.doi.org/10.1016/j.neuroscience.2015.07.074] [PMID: 26241340]
[64]
Alexander GM, van Rijn MA, van Hilten JJ, Perreault MJ, Schwartzman RJ. Changes in cerebrospinal fluid levels of pro-inflammatory cytokines in CRPS. Pain 2005; 116(3): 213-9.
[http://dx.doi.org/10.1016/j.pain.2005.04.013] [PMID: 15964681]
[65]
Wang W, Wang W, Mei X, et al. Crosstalk between spinal astrocytes and neurons in nerve injury-induced neuropathic pain. PLoS One 2009; 4(9) e6973
[http://dx.doi.org/10.1371/journal.pone.0006973] [PMID: 19759893]
[66]
Wu J-C, Huang W-C, Tsai Y-A, Chen Y-C, Cheng H. Nerve repair using acidic fibroblast growth factor in human cervical spinal cord injury: a preliminary Phase I clinical study. J Neurosurg Spine 2008; 8(3): 208-14.
[http://dx.doi.org/10.3171/SPI/2008/8/3/208] [PMID: 18312071]
[67]
Tsai P-Y, Cheng H, Huang W-C, et al. Outcomes of common peroneal nerve lesions after surgical repair with acidic fibroblast growth factor. J Trauma 2009; 66(5): 1379-84.
[http://dx.doi.org/10.1097/TA.0b013e3181847a63] [PMID: 19430242]
[68]
Höke A, Silver J. Proteoglycans and other repulsive molecules in glial boundaries during development and regeneration of the nervous system. Prog Brain Res 1996; 108: 149-63.
[http://dx.doi.org/10.1016/S0079-6123(08)62538-8] [PMID: 8979800]
[69]
Lee Y-S, Hsiao I, Lin VW. Peripheral nerve grafts and aFGF restore partial hindlimb function in adult paraplegic rats. J Neurotrauma 2002; 19(10): 1203-16.
[http://dx.doi.org/10.1089/08977150260338001] [PMID: 12427329]
[70]
Fawcett JW, Asher RA. The glial scar and central nervous system repair. Brain Res Bull 1999; 49(6): 377-91.
[http://dx.doi.org/10.1016/S0361-9230(99)00072-6] [PMID: 10483914]
[71]
DePaul MA, Lin C-Y, Silver J, Lee Y-S. Peripheral nerve transplantation combined with acidic fibroblast growth factor and chondroitinase induces regeneration and improves urinary function in complete spinal cord transected adult mice. PLoS One 2015; 10(10) e0139335
[http://dx.doi.org/10.1371/journal.pone.0139335] [PMID: 26426529]
[72]
Powers CJ, McLeskey SW, Wellstein A. Fibroblast growth factors, their receptors and signaling. Endocr Relat Cancer 2000; 7(3): 165-97.
[http://dx.doi.org/10.1677/erc.0.0070165] [PMID: 11021964]
[73]
Kuo H-S, Tsai M-J, Huang M-C, et al. Acid fibroblast growth factor and peripheral nerve grafts regulate Th2 cytokine expression, macrophage activation, polyamine synthesis, and neurotrophin expression in transected rat spinal cords. J Neurosci 2011; 31(11): 4137-47.
[http://dx.doi.org/10.1523/JNEUROSCI.2592-10.2011] [PMID: 21411654]
[74]
Cai D, Deng K, Mellado W, Lee J, Ratan RR, Filbin MT. Arginase I and polyamines act downstream from cyclic AMP in overcoming inhibition of axonal growth MAG and myelin in vitro. Neuron 2002; 35(4): 711-9.
[http://dx.doi.org/10.1016/S0896-6273(02)00826-7] [PMID: 12194870]
[75]
Esch F, Lin K-I, Hills A, et al. Purification of a multipotent antideath activity from bovine liver and its identification as arginase: nitric oxide-independent inhibition of neuronal apoptosis. J Neurosci 1998; 18(11): 4083-95.
[http://dx.doi.org/10.1523/JNEUROSCI.18-11-04083.1998] [PMID: 9592089]
[76]
Rai KS, Hattiangady B, Shetty AK. Enhanced production and dendritic growth of new dentate granule cells in the middle-aged hippocampus following intracerebroventricular FGF-2 infusions. Eur J Neurosci 2007; 26(7): 1765-79.
[http://dx.doi.org/10.1111/j.1460-9568.2007.05820.x] [PMID: 17883411]
[77]
Ford-Perriss M, Abud H, Murphy M. Fibroblast growth factors in the developing central nervous system. Clin Exp Pharmacol Physiol 2001; 28(7): 493-503.
[http://dx.doi.org/10.1046/j.1440-1681.2001.03477.x] [PMID: 11422214]
[78]
Yoshimura S, Takagi Y, Harada J, et al. FGF-2 regulation of neurogenesis in adult hippocampus after brain injury. Proc Natl Acad Sci USA 2001; 98(10): 5874-9.
[http://dx.doi.org/10.1073/pnas.101034998] [PMID: 11320217]
[79]
Zheng W, Nowakowski RS, Vaccarino FM. Fibroblast growth factor 2 is required for maintaining the neural stem cell pool in the mouse brain subventricular zone. Dev Neurosci 2004; 26(2-4): 181-96.
[http://dx.doi.org/10.1159/000082136] [PMID: 15711059]
[80]
Ortega S, Ittmann M, Tsang SH, Ehrlich M, Basilico C. Neuronal defects and delayed wound healing in mice lacking fibroblast growth factor 2. Proc Natl Acad Sci USA 1998; 95(10): 5672-7.
[http://dx.doi.org/10.1073/pnas.95.10.5672] [PMID: 9576942]
[81]
Nindl W, Kavakebi P, Claus P, Grothe C, Pfaller K, Klimaschewski L. Expression of basic fibroblast growth factor isoforms in postmitotic sympathetic neurons: synthesis, intracellular localization and involvement in karyokinesis. Neuroscience 2004; 124(3): 561-72.
[http://dx.doi.org/10.1016/j.neuroscience.2003.11.032] [PMID: 14980727]
[82]
Salvarezza SB, López HS, Mascó DH. The same cellular signaling pathways mediate survival in sensory neurons that switch their trophic requirements during development. J Neurochem 2003; 85(5): 1347-58.
[http://dx.doi.org/10.1046/j.1471-4159.2003.01771.x] [PMID: 12753092]
[83]
Fujimaki H, Uchida K, Inoue G, et al. Oriented collagen tubes combined with basic fibroblast growth factor promote peripheral nerve regeneration in a 15 mm sciatic nerve defect rat model. J Biomed Mater Res A 2017; 105(1): 8-14.
[http://dx.doi.org/10.1002/jbm.a.35866] [PMID: 27529414]
[84]
Wang S, Cai Q, Hou J, et al. Acceleration effect of basic fibroblast growth factor on the regeneration of peripheral nerve through a 15-mm gap. J Biomed Mater Res A 2003; 66(3): 522-31.
[http://dx.doi.org/10.1002/jbm.a.10008] [PMID: 12918035]
[85]
Madiai F, Hussain S-RA, Goettl VM, Burry RW, Stephens RL Jr, Hackshaw KV. Upregulation of FGF-2 in reactive spinal cord astrocytes following unilateral lumbar spinal nerve ligation. Exp Brain Res 2003; 148(3): 366-76.
[http://dx.doi.org/10.1007/s00221-002-1286-3] [PMID: 12541147]
[86]
Meisinger C, Grothe C. Differential regulation of fibroblast growth factor (FGF)-2 and FGF receptor 1 mRNAs and FGF-2 isoforms in spinal ganglia and sciatic nerve after peripheral nerve lesion. J Neurochem 1997; 68(3): 1150-8.
[http://dx.doi.org/10.1046/j.1471-4159.1997.68031150.x] [PMID: 9048761]
[87]
Grothe C, Meisinger C, Hertenstein A, Kurz H, Wewetzer K. Expression of fibroblast growth factor-2 and fibroblast growth factor receptor 1 messenger RNAs in spinal ganglia and sciatic nerve: regulation after peripheral nerve lesion. Neuroscience 1997; 76(1): 123-35.
[http://dx.doi.org/10.1016/S0306-4522(96)00355-7] [PMID: 8971765]
[88]
Li GD, Wo Y, Zhong MF, et al. Expression of fibroblast growth factors in rat dorsal root ganglion neurons and regulation after peripheral nerve injury. Neuroreport 2002; 13(15): 1903-7.
[http://dx.doi.org/10.1097/00001756-200210280-00014] [PMID: 12395088]
[89]
You J, Gao J, Chen P, Sun L, Yang X. Changes of basic fibroblast growth factor expression in the spinal cord of rats with spared nerve injury of the sciatic nerve. Nan fang yi ke da xue xue bao = Journal of Southern Medical University 2013; 33(4): 563-7.
[90]
Gao J, You J, Chen P. Effect of intrathecal anti-fibroblast growth factor-2 antibodies on the mechanical allodynia and activation of spinal cord astrocytes in rats. Turk Neurosurg 2016; 26(4): 582-5.
[PMID: 27400106]
[91]
Fujimaki H, Inoue G, Uchida K, et al. Elevation of Microglial Basic Fibroblast Growth Factor Contributes to Development of Neuropathic Pain after Spinal Nerve Ligation in Rats. Spine 2016; 41(3): E108-15.
[http://dx.doi.org/10.1097/BRS.0000000000001131] [PMID: 26583471]
[92]
Liu H, Wu Q-F, Li J-Y, et al. Fibroblast growth factor 7 is a nociceptive modulator secreted via large dense-core vesicles. J Mol Cell Biol 2015; 7(5): 466-75.
[http://dx.doi.org/10.1093/jmcb/mjv019] [PMID: 25782913]
[93]
Zhou W-J, Hou X-X, Wang X-Q, Li D-J. Fibroblast growth factor 7 regulates proliferation and decidualization of human endometrial stromal cells via ERK and JNK pathway in an autocrine manner. Reprod Sci 2017; 24(12): 1607-19.
[http://dx.doi.org/10.1177/1933719117697122] [PMID: 28270036]
[94]
Takase HM, Itoh T, Ino S, et al. FGF7 is a functional niche signal required for stimulation of adult liver progenitor cells that support liver regeneration. Genes Dev 2013; 27(2): 169-81.
[http://dx.doi.org/10.1101/gad.204776.112] [PMID: 23322300]
[95]
Terauchi A, Johnson-Venkatesh EM, Toth AB, Javed D, Sutton MA, Umemori H. Distinct FGFs promote differentiation of excitatory and inhibitory synapses. Nature 2010; 465(7299): 783-7.
[http://dx.doi.org/10.1038/nature09041] [PMID: 20505669]
[96]
Kanda T, Iwasaki T, Nakamura S, Kurokawa T, Ikeda K, Mizusawa H. Self-secretion of fibroblast growth factor-9 supports basal forebrain cholinergic neurons in an autocrine/paracrine manner. Brain Res 2000; 876(1-2): 22-30.
[http://dx.doi.org/10.1016/S0006-8993(00)02563-4] [PMID: 10973589]
[97]
Behr B, Leucht P, Longaker MT, Quarto N. Fgf-9 is required for angiogenesis and osteogenesis in long bone repair. Proc Natl Acad Sci USA 2010; 107(26): 11853-8.
[http://dx.doi.org/10.1073/pnas.1003317107] [PMID: 20547837]
[98]
Kloosterman WP, Wienholds E, de Bruijn E, Kauppinen S, Plasterk RH. In situ detection of miRNAs in animal embryos using LNA-modified oligonucleotide probes. Nat Methods 2006; 3(1): 27-9.
[http://dx.doi.org/10.1038/nmeth843] [PMID: 16369549]
[99]
Zhu Q, Sun W, Okano K, et al. Sponge transgenic mouse model reveals important roles for the microRNA-183 (miR-183)/96/182 cluster in postmitotic photoreceptors of the retina. J Biol Chem 2011; 286(36): 31749-60.
[http://dx.doi.org/10.1074/jbc.M111.259028] [PMID: 21768104]
[100]
Aldrich BT, Frakes EP, Kasuya J, Hammond DL, Kitamoto T. Changes in expression of sensory organ-specific microRNAs in rat dorsal root ganglia in association with mechanical hypersensitivity induced by spinal nerve ligation. Neuroscience 2009; 164(2): 711-23.
[http://dx.doi.org/10.1016/j.neuroscience.2009.08.033] [PMID: 19699278]
[101]
Yu B, Qian T, Wang Y, et al. miR-182 inhibits Schwann cell proliferation and migration by targeting FGF9 and NTM, respectively at an early stage following sciatic nerve injury. Nucleic Acids Res 2012; 40(20): 10356-65.
[http://dx.doi.org/10.1093/nar/gks750] [PMID: 22917588]
[102]
Ohmachi S, Mikami T, Konishi M, Miyake A, Itoh N. Preferential neurotrophic activity of fibroblast growth factor-20 for dopaminergic neurons through fibroblast growth factor receptor-1c. J Neurosci Res 2003; 72(4): 436-43.
[http://dx.doi.org/10.1002/jnr.10592] [PMID: 12704805]
[103]
Wu A-L, Coulter S, Liddle C, et al. FGF19 regulates cell proliferation, glucose and bile acid metabolism via FGFR4-dependent and independent pathways. PLoS One 2011; 6(3) e17868
[http://dx.doi.org/10.1371/journal.pone.0017868] [PMID: 21437243]
[104]
Tiong KH, Mah LY, Leong C-O. Functional roles of fibroblast growth factor receptors (FGFRs) signaling in human cancers. Apoptosis 2013; 18(12): 1447-68.
[http://dx.doi.org/10.1007/s10495-013-0886-7] [PMID: 23900974]